[1] Cady W. Nature and use of piezoelectricity[J]. Electrical Engineering, 1947, 66(8):758-762.
[2] Klickstein HS. Pierre Curie-An appreciation of his scientific achievements[J]. Journal of Chemical Education, 1947, 24(6):278.
[3] Jean-Mistral C, Basrour S, Chaillout J. Comparison of electroactive polymers for energy scavenging applications[J]. Smart Materials and Structures, 2010, 19(8):085012.
[4] Kochervinskii V. Piezoelectricity in crystallizing ferroelectric polymers: Poly (vinylidene fluoride) and its copolymers (A review) [J]. Crystallography Reports, 2003, 48(4):649-675.
[5] Mahapatra SD, Mohapatra PC, Aria AI, Christie G, Mishra YK, Hofmann S, et al. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Advanced Science, 2021, 8(17):2100864.
[6] Greaves R, Fowler E, Goodings A, Lamb D. The direct piezoelectric effect in extruded polyethylene[J]. Journal of Materials Science, 1974, 9(10):1602-1608.
[7] 杨绪军, 陈箫, 刘岗, 等. 铌酸锂晶片的键合减薄及热释电性能研究[J]. 电子元件与材料, 2011, 30(10):31-34.
[8] Curie J, Curie P. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées[J]. Bulletin de minéralogie, 1880, 3(4):90-93.
[9] Moore R. A Method of growing large perfect crystals from solution[J]. Journal of the American Chemical Society, 1919, 41(7):1060-1066.
[10] Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790):350-354.
[11] 曲远方. 功能陶瓷材料[J]. 北京: 化学 I, Il. 2003:28-66.
[12] Kuwata J, Uchino K, Nomura S. Phase transitions in the Pb(Zn1/3Nb2/3)O3-PbTiO3 system[J]. Ferroelectrics, 1981, 37(1):579-582.
[13] Li F, Cabral MJ, Xu B, Cheng Z, Dickey EC, LeBeau JM, et al. Giant piezoelectricity of Sm-doped Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437):264-268.
[14] Valasek, J. Piezo-Electric and Allied Phenomena in Rochelle Salt[J]. Physical Review, 1920, 17(4):475-481.
[15] Valasek J. The early history of ferroelectricity[J]. Ferroelectrics, 1971, 2(1):239-244.
[16] You Y-M, Liao W-Q, Zhao D, Ye H-Y, Zhang Y, Zhou Q, et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response[J]. Science, 2017, 357(6348):306-309.
[17] 刘世清, 麻磊磊. 径向振动压电超声换能器的发展及应用[J]. 陕西师范大学学报(自然科学版), 2020, 48(3):60-66.
[18] Takaishi K, Kubota Y, Kurita H, Wang Z, Narita F. Fabrication and electromechanical characterization of mullite ceramic fiber/thermoplastic polymer piezoelectric composites[J]. Journal of the American Ceramic Society, 2022, 105(1): 308-316.
[19] Haertling GH. Ferroelectric ceramics: history and technology[J]. Journal of the American Ceramic Society, 1999, 82(4):797-818.
[20] Shah S, Rao MR. Preparation and dielectric study of high-quality PLZT x/65/35 (x= 6, 7, 8) ferroelectric ceramics[J]. Applied Physics A, 2000, 71(1):65-69.
[21] Klissurska RD, Brooks KG, Reaney IM, Pawlaczyk C, Kosec M, Setter N. Effect of Nb doping on the microstructure of sol-gel-derived PZT thin films[J]. Journal of the American Ceramic Society, 1995, 78(6):1513-1520.
[22] Park HY, Seo IT, Choi JH, Nahm S, Lee HG. Low‐temperature sintering and piezoelectric properties of (Na0.5K0.5) NbO3 lead‐free piezoelectric ceramics[J]. Journal of the American Ceramic Society, 2010, 93(1):36-39.
[23] Zhilun G, Longtu L, Suhua G, Xiaowen Z. Low-temperature sintering of lead-based piezoelectric ceramics[J]. Journal of the American Ceramic Society, 1989, 72(3):486-491.
[24] Tressler JF, Alkoy S, Newnham RE. Piezoelectric sensors and sensor materials[J]. Journal of Electroceramics, 1998, 2(4):257-272.
[25] 盖学周. 压电材料的研究发展方向和现状[J]. 中国陶瓷, 2008, 44(5):9-13.
[26] Li Z, Thong HC, Zhang YF, Xu Z, Zhou Z, Liu YX, et al. Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency[J]. Advanced Functional Materials, 2021, 31(1):2005012.
[27] Zheng T, Wu J, Xiao D, Zhu J. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Progress in Materials Science, 2018, 98:552-624.
[28] Von Hippel A, Breckenridge R, Chesley F, Tisza L. High dielectric constant ceramics[J]. Industrial & Engineering Chemistry, 1946, 38(11):1097-109.
[29] Matthias B, Remeika J. Dielectric properties of sodium and potassium niobates[J]. Physical Review, 1951, 82(5):727.
[30] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013):84-87.
[31] Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective[J]. Cheminform, 2013, 44(25):71-93.
[32] Rdel J, Webber KG, Dittmer R, Jo W, Damjanovic D. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6):1659-1681.
[33] Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries[J]. Chemical Reviews, 2015, 115(7):2559.
[34] Katsouras I, Asadi K, Li M, Van Driel TB, Kjaer KS, Zhao D, et al. The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride) [J]. Nature Materials, 2016, 15(1):78-84.
[35] Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene) [J]. Nature Communications, 2013, 4(1):1-10.
[36] Kim J, Yun S, Ounaies Z. Discovery of cellulose as a smart material[J]. Macromolecules, 2006, 39(16): 4202-4206.
[37] Rajala S, Siponkoski T, Sarlin E, Mettänen M, Vuoriluoto M, Pammo A, et al. Cellulose nanofibril film as a piezoelectric sensor material[J]. ACS Applied Materials & Interfaces, 2016, 8(24):15607-15614.
[38] Hassan S, Voon LH, Velayutham T, Zhai L, Kim HC, Kim J. Review of cellulose smart material: biomass conversion process and progress on cellulose-based electroactive paper[J]. Journal of Renewable Materials, 2018, 6(1):1-25.
[39] Park C, Ounaies Z, Wise KE, Harrison JS. In situ poling and imidization of amorphous piezoelectric polyimides[J]. Polymer, 2004, 45(16):5417-5425.
[40] Frübing P, Kremmer A, Gerhard-Multhaupt R, Spanoudaki A, Pissis P. Relaxation processes at the glass transition in polyamide 11: From rigidity to viscoelasticity[J]. The Journal of Chemical Physics, 2006, 125(21):214701.
[41] Fukada E. Recent developments of polar piezoelectric polymers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(5):1110-1119.
[42] Gomes J, Nunes JS, Sencadas V, Lanceros-Méndez S. Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly (vinylidene fluoride) [J]. Smart Materials and Structures, 2010, 19(6):065010.
[43] Kaura T, Nath R, Perlman M. Simultaneous stretching and corona poling of PVDF films[J]. Journal of Physics D: Applied Physics, 1991, 24(10):1848.
[44] Koga K, Ohigashi H. Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers[J]. Journal of Applied Physics, 1986, 59(6):2142-2150.
[45] Harrison J, Ounaies Z. Polymers, piezoelectric[M]. Encyclopedia of Smart Materials, 2002.
[46] Martins P, Nunes JS, Hungerford G, Miranda D, Ferreira A, Sencadas V, et al. Local variation of the dielectric properties of poly (vinylidene fluoride) during the α-to β-phase transformation[J]. Physics Letters A, 2009, 373(2):177-180.
[47] Lutkenhaus JL, McEnnis K, Serghei A, Russell TP. Confinement effects on crystallization and curie transitions of poly (vinylidene fluoride-co-trifluoroethylene) [J]. Macromolecules, 2010, 43(8):3844-3850.
[48] Lovinger AJ. Ferroelectric polymers[J]. Science, 1983, 220(4602):1115-1121.
[49] Fukada E. New piezoelectric polymers[J]. Japanese Journal of Applied Physics, 1998, 37(5S):2775.
[50] Xu H. Dielectric properties and ferroelectric behavior of poly (vinylidene fluoride‐trifluoroethylene) 50/50 copolymer ultrathin films[J]. Journal of Applied Polymer Science, 2001, 80(12):2259-2266.
[51] Kim J, Yun S, Mahadeva SK, Yun K, Yang SY, Maniruzzaman M. Paper actuators made with cellulose and hybrid materials[J]. Sensors, 2010, 10(3):1473-1485.
[52] Ramadan KS, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers[J]. Smart Materials and Structures, 2014, 23(3):033001.
[53] Takase Y, Lee J, Scheinbeim J, Newman B. High-temperature characteristics of nylon-11 and nylon-7 piezoelectrics[J]. Macromolecules, 1991, 24(25):6644-6652.
[54] Lebrun L, Guyomar D, Guiffard B, Cottinet P-J, Putson C. The Characterisation of the harvesting capabilities of an electrostrictive polymer composite[J]. Sensors and Actuators A: Physical, 2009, 153(2):251-257.
[55] Kawai H. The piezoelectricity of poly (vinylidene fluoride) [J]. Japanese Journal of Applied Physics, 1969, 8(7):975.
[56] Wu J, Shi H, Zhao T, Yu Y, Dong S. High‐Temperature BiScO3‐PbTiO3 Piezoelectric Vibration Energy Harvester[J]. Advanced Functional Materials, 2016, 26(39):7186-7194.
[57] Li H, Tian C, Deng ZD. Energy harvesting from low frequency applications using piezoelectric materials[J]. Applied Physics Reviews, 2014, 1(4):041301.
[58] Gong F, Li H, Huang J, Jing Y, Hu Z, Xia D, et al. Low-grade energy harvesting from dispersed exhaust steam for power generation using a soft biomimetic actuator[J]. Nano Energy, 2022, 91:106677.
[59] Su H, Wang X, Li C, Wang Z, Wu Y, Zhang J, et al. Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application[J]. Nano Energy, 2021, 83:105809.
[60] Yan M, Zhong J, Liu S, Xiao Z, Yuan X, Zhai D, et al. Flexible pillar-base structured piezocomposite with aligned porosity for piezoelectric energy harvesting[J]. Nano Energy, 2021, 88:106278.
[61] Gao J, Xue D, Liu W, Zhou C, Ren X. Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications[J]. Actuators, 2017, 6(3):24;
[62] 王树昕, 董蜀湘, 桂治轮, 等. 压电陶瓷材料对超声马达性能的影响[J]. 压电与声光, 2000, 22(1):23-26.
[63] 董蜀湘, 李龙土. 压电陶瓷为动力源的压电马达与驱动器[J]. 材料导报, 1999, 13(4):24-27.
[64] Mohith S, Upadhya AR, Karanth N, Kulkarni S, Rao M. Recent trends in piezoelectric actuators for precision motion and their applications: A review. Smart Materials and Structures[J]. 2020, 30(1): 013002.
[65] Li Z, Gao X, Yang J, Xin X, Yi X, Bian L, et al. Designing ordered structure with piezoceramic actuation units (OSPAU) for generating continual nanostep motion[J]. Advanced Science, 2020, 7(16):2001155.
[66] Bai F, Saalbach K-A, Twiefel J, Wallaschek J. Effect of different standoff distance and driving current on transducer during ultrasonic cavitation peening[J]. Sensors and Actuators A: Physical, 2017, 261:274-279.
[67] Lin S. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal–flexural composite vibrational mode[J]. Ultrasonics, 2006, 44(1):109-114.
[68] Karafi MR, Khorasani F. Evaluation of mechanical and electric power losses in a typical piezoelectric ultrasonic transducer[J]. Sensors and Actuators A: Physical, 2019, 288:156-164.
[69] Pérez-Sánchez A, Segura J, Rubio-Gonzalez C, Baldenegro-Perez LA, Soto-Cajiga J. Numerical design and analysis of a langevin power ultrasonic transducer for acoustic cavitation generation[J]. Sensors and Actuators A: Physical, 2020, 311:112035.
[70] Tian J, Li X, Liang Z, Ding W, Li X, Tao C, et al. Fabrication of 1–3 piezoelectric composites via modified soft mold process for 40 MHz ultrasonic medical transducers[J]. Ceramics International, 2022, 48(3): 3841-3848.
[71] Liu T, Dangi A, Kim JN, Kothapalli S-R, Choi K, Trolier-McKinstry S, et al. Flexible Thin-film PZT ultrasonic transducers on polyimide substrates[J]. Sensors, 2021, 21(3):1014.
[72] Chen C, Wang X, Wang Y, Yang D, Yao F, Zhang W, et al. Additive manufacturing of piezoelectric materials[J]. Advanced Functional Materials, 2020, 30(52):2005141.
[73] Dave HK, Patadiya NH, Prajapati AR, Rajpurohit SR. Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(10):1811-1827.
[74] Kim H, Torres F, Wu Y, Villagran D, Lin Y, Tseng T-LB. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application[J]. Smart Materials and Structures, 2017, 26(8):085027.
[75] Dave HK, Prajapati AR, Rajpurohit SR, Patadiya NH, Raval HK. Investigation on tensile strength and failure modes of FDM printed part using in-house fabricated PLA filament[J]. Advances in Materials and Processing Technologies, 2020, 1(1): 22.
[76] Liu J, Shang Y, Shao Z, Liu X, Zhang C. Three-dimensional printing to translate simulation to architecting for three-dimensional high performance piezoelectric energy harvester[J]. Industrial & Engineering Chemistry Research, 2022, 61(1):433-440
[77] Bach M, Sebastian T, Melnykowycz M, Lusiola T, Scharf D, Clemens F. Additive manufacturing of piezoelectric 3-3 composite structures[J]. International Conference on Additive Manufacturing in Products and Applications: Springer, 2017. 3(1):93-103.
[78] Kim H, Renteria‐Marquez A, Islam MD, Chavez LA, Garcia Rosales CA, Ahsan MA, et al. Fabrication of bulk piezoelectric and dielectric BaTiO3 ceramics using paste extrusion 3D printing technique[J]. Journal of the American Ceramic Society, 2019, 102(6):3685-3694.
[79] Hall SE, Regis JE, Renteria A, Chavez LA, Delfin L, Vargas S, et al. Paste extrusion 3D printing and characterization of lead zirconate titanate piezoelectric ceramics[J]. Ceramics International, 2021, 47(15): 22042-22048.
[80] Nan B, Olhero S, Pinho R, Vilarinho PM, Button TW, Ferreira JM. Direct ink writing of macroporous lead‐free piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3[J]. Journal of the American Ceramic Society, 2019, 102(6):3191-3203.
[81] Luo J, Zhang L, Wu T, Song H, Tang C, Huang F, et al. Flexible electronic skin with high performance pressure sensing based on PVDF/rGO/BaTiO3 composite thin film[J]. Organic Electronics, 2021, 98:106296.
[82] Bodkhe S, Rajesh PS, Gosselin FP, Therriault D. Simultaneous 3D printing and poling of PVDF and its nanocomposites[J]. ACS Applied Energy Materials, 2018, 1(6):2474-2482.
[83] Zhou X, Parida K, Halevi O, Liu Y, Xiong J, Magdassi S, et al. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure[J]. Nano Energy, 2020, 72:104676.
[84] Yuan X, Gao X, Yang J, Shen X, Li Z, You S, et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester[J]. Energy & Environmental Science, 2020, 13(1):152-161.
[85] Maines EM, Porwal MK, Ellison CJ, Reineke TM. Sustainable advances in SLA/DLP 3D printing materials and processes[J]. Green Chemistry, 2021, 24(2):6863-6897
[86] Borrello J, Nasser P, Iatridis JC, Costa KD. 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer[J]. Additive Manufacturing, 2018, 23:374-380.
[87] Yun JS, Park T-W, Jeong YH, Cho JH. Development of ceramic-reinforced photopolymers for SLA 3D printing technology[J]. Applied Physics A, 2016, 122(6):1-6.
[88] Song X, Chen Z, Lei L, Shung K, Zhou Q, Chen Y. Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions[J]. Rapid Prototyping Journal, 2017, 23(1):1-6.
[89] Wang W, Sun J, Guo B, Chen X, Ananth KP, Bai J. Fabrication of piezoelectric nano-ceramics via stereolithography of low viscous and non-aqueous suspensions[J]. Journal of the European Ceramic Society, 2020, 40(3):682-688.
[90] Chen Z, Song X, Lei L, Chen X, Fei C, Chiu CT, et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing[J]. Nano Energy, 2016, 27:78-86.
[91] Song H, Li H, Lim S. Fast 3D digital light process printing of PVDF‐HFP composite with electric in situ poling system for piezoelectric applications[J]. Macromolecular Materials and Engineering, 2021, 306(10): 2100266.
[92] Zhang J, Ye S, Liu H, Chen X, Chen X, Li B, et al. 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors[J]. Nano Energy, 2020, 77:105300.
[93] Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: Alternatives for PZT[J]. Journal of Electroceramics, 2007, 19(1):113-26.
[94] Chorsi MT, Curry EJ, Chorsi HT, Das R, Baroody J, Purohit PK, et al. Piezoelectric biomaterials for sensors and actuators[J]. Advanced Materials, 2019, 31(1):1802084.
[95] Park DY, Joe DJ, Kim DH, Park H, Han JH, Jeong CK, et al. Self‐powered real‐time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Advanced Materials, 2017, 29(37):1702308.
[96] Chen X, Xu S, Yao N, Shi Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers[J]. Nano Letters, 2010, 10(6):2133-2137.
[97] Chen G, Li Y, Bick M, Smart textiles for electricity generation[J]. Chemical Reviews, 2020, 120(8): 3668-3720.
[98] Chen Y, Zhang Y, Yuan F, Ding F, Schmidt OG. A flexible PMN‐PT ribbon‐based piezoelectric‐pyroelectric hybrid generator for human‐activity energy harvesting and monitoring[J]. Advanced Electronic Materials, 2017, 3(3):1600540.
[99] Gao X, Wu J, Yu Y, Chu Z, Shi H, Dong S. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN‐PZT for vibration energy harvesting[J]. Advanced Functional Materials, 2018, 28(30):1706895.
[100] Bian L, Qi X, Li K, Yu Y, Liu L, Chang Y, et al. High‐performance
[001] c‐textured PNN‐PZT relaxor ferroelectric ceramics for electromechanical coupling devices[J]. Advanced Functional Materials, 2020, 30(25):2001846.
[101] Xie M, Zhang Y, Kraśny MJ, Bowen C, Khanbareh H, Gathercole N. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic–polymer composites[J]. Energy & Environmental Science, 2018, 11(10):2919-2927.
[102] Newnham R, Skinner D, Cross L. Connectivity and piezoelectric-pyroelectric composites[J]. Materials Research Bulletin, 1978, 13(5):525-536.
[103] Park KI, Jeong CK, Ryu J, Hwang GT, Lee KJ. Flexible and large‐area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes[J]. Advanced Energy Materials, 2013,3(12):1539-1544.
[104] Jeong CK, Lee J, Han S, Ryu J, Hwang GT, Park DY, et al. A hyper‐stretchable elastic‐composite energy harvester[J]. Advanced Materials, 2015, 27(18):2866-2875.
[105] Jeong CK, Park KI, Ryu J, Hwang GT, Lee KJ. Large‐area and flexible lead‐free nanocomposite generator using alkaline niobate particles and metal nanorod filler[J]. Advanced Functional Materials, 2014, 24(18):2620-2629.
[106] Baek C, Yun JH, Wang JE, Jeong CK, Lee KJ, Park K-I, et al. A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle–polymer composite[J]. Nanoscale, 2016, 8(40):17632-17638.
[107] Huan Y, Zhang X, Song J, Zhao Y, Wei T, Zhang G, et al. High-performance piezoelectric composite nanogenerator based on Ag/(K, Na) NbO3 heterostructure[J]. Nano Energy, 2018, 50:62-69.
[108] Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371-378.
[109] Gantenbein S, Masania K, Woigk W, Sesseg JP, Tervoort TA, Studart AR. Three-dimensional printing of hierarchical liquid-crystal-polymer structures[J]. Nature, 2018, 561(7722):226-230.
[110] Wu L, Dong Z, Du H, Li C, Fang N, Song Y. Bioinspired ultra-low adhesive energy interface for continuous 3D printing: reducing curing induced adhesion[J]. Research, 2018, 2018:10.
[111] Liu G, Zhao Y, Wu G, Lu J. Origami and 4D printing of elastomer-derived ceramic structures[J]. Science Advances, 2018, 4(8):eaat0641.
[112] Yao D, Cui H, Hensleigh R, Smith P, Alford S, Bernero D, et al. Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites[J]. Advanced Functional Materials, 2019, 29(42):1903866.
[113] Buyanova E, Strelets P, Serova I, Isupov V. Ferroelectric properties of PbTiO3-PbZrO3-PbNi1/3Nb2/3O3 solid solutions[J]. Bull Acad Sci USSR Phys Ser, 1965, 29:2042-2045.
[114] Ozbolat V, Dey M, Ayan B, Povilianskas A, Demirel MC, Ozbolat IT. 3D printing of PDMS improves its mechanical and cell adhesion properties[J]. ACS Biomaterials Science & Engineering, 2018, 4(2):682-693.
[115] Du K, Basuki J, Glattauer V, Mesnard C, Nguyen AT, Alexander DL, et al. Digital light processing 3D printing of PDMS-based soft and elastic materials with tunable mechanical properties[J]. ACS Applied Polymer Materials. 2021, 3(6): 3049-3059..
[116] Ji Z, Jiang D, Zhang X, Guo Y, Wang X. Facile photo and thermal two‐stage curing for high‐performance 3D printing of poly (dimethylsiloxane) [J]. Macromolecular Rapid Communications, 2020, 41(10):2000064.
[117] Lv J, Gong Z, He Z, Yang J, Chen Y, Tang C, et al. 3D printing of a mechanically durable superhydrophobic porous membrane for oil–water separation[J]. Journal of Materials Chemistry A, 2017, 5(24):12435-12444.
[118] Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature, 2019, 575(7782):330-335.
[119] Racles C, Bele A, Dascalu M, Musteata V, Varganici C, Ionita D, et al. Polar–nonpolar interconnected elastic networks with increased permittivity and high breakdown fields for dielectric elastomer transducers[J]. RSC Advances, 2015, 5(72):58428-58438.
[120] Cui H, Hensleigh R, Yao D, Maurya D, Kumar P, Kang MG, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response[J]. Nature Materials, 2019, 18(3):234-241.
[121] Priya S, Song H-C, Zhou Y, Varghese R, Chopra A, Kim S-G, et al. A review on piezoelectric energy harvesting: materials, methods, and circuits[J]. Energy Harvesting and Systems, 2017, 4(1):3-39.
[122] Tian X, Jin J, Yuan S, Chua CK, Tor SB, Zhou K. Emerging 3D‐printed electrochemical energy storage devices: a critical review[J]. Advanced Energy Materials, 2017, 7(17):1700127.
[123] Yang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q, et al. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures[J]. Advanced Materials, 2018, 30(36):1706539.
[124] Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S. Highly stretchable and UV curable elastomers for digital light processing based 3D printing[J]. Advanced Materials, 2017, 29(15):1606000.
[125] Chang P, Mei H, Zhou S, Dassios KG, Cheng L. 3D printed electrochemical energy storage devices[J]. Journal of Materials Chemistry A, 2019, 7(9):4230-4258.
[126] Heo YJ, Lee JW, Son YR, Lee JH, Yeo CS, Lam TD, et al. Large‐Scale Conductive Yarns Based on Twistable Korean Traditional Paper (Hanji) for Supercapacitor Applications: Toward High‐Performance Paper Supercapacitors[J]. Advanced Energy Materials, 2018, 8(27):1801854.
[127] Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, et al. Paper‐based electronics: flexible electronics based on micro/nanostructured paper[J]. Advanced Materials, 2018, 30(51):1870394.
[128] Bu L, Chen Z, Chen Z, Qin L, Yang F, Xu K, et al. Impact induced compound method for triboelectric-piezoelectric hybrid nanogenerators to achieve Watt level average power in low frequency rotations[J]. Nano Energy, 2020, 70:104500.
[129] Bai P, Zhu G, Lin Z-H, Jing Q, Chen J, Zhang G, et al. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions[J]. ACS Nano, 2013, 7(4):3713-3719.
[130] Yang Y, Zhang H, Lin Z-H, Zhou YS, Jing Q, Su Y, et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system[J]. ACS Nano, 2013, 7(10):9213-9222.
[131] Yang R, Qin Y, Li C, Zhu G, Wang ZL. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator[J]. Nano Letters, 2009, 9(3):1201-1205.
[132] Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771):242-246.
[133] Park KI, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, et al. Highly‐efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26(16):2514-2520.
[134] Richter T, Denneler S, Schuh C, Suvaci E, Moos R. Textured PMN-PT and PMN-PZT[J]. Journal of the American Ceramic Society, 2008, 91(3):929-933.
[135] Peng G, Chen C, Zhang J, Zheng D, Hu S, Zhang H. Effects of PNN/PZT ratios on phase structure, electric properties and relaxation behavior of PZN-PNN-PZT ceramics[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4):3145-3151.
[136] Dingquan X. Environmentally conscious ferroelectrics research—present and prospect[J]. Ferroelectrics, 1999, 231(1):133-141.
[137] Lu L, Ding W, Liu J, Yang B. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.
[138] Stuber VL, Deutz DB, Bennett J, Cannel D, de Leeuw DM, van der Zwaag S, et al. Flexible lead‐free piezoelectric composite materials for energy harvesting applications[J]. Energy Technology, 2019, 7(1):177-185.
[139] Yang W, Li P, Wu S, Li F, Shen B, Zhai J. Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics[J]. Ceramics International, 2020, 46(2):1390-1395.
[140] Park KI, Lee M, Liu Y, Moon S, Hwang GT, Zhu G, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Advanced Materials, 2012, 24(22):2999-3004.
[141] Lim J, Jung H, Baek C, Hwang G-T, Ryu J, Yoon D, et al. All-inkjet-printed flexible piezoelectric generator made of solvent evaporation assisted BaTiO3 hybrid material[J]. Nano Energy, 2017, 41:337-343.
[142] Park H, Hyeon DY, Jung M, Park K-I, Park J. Piezoelectric BaTiO3 microclusters and embossed ZnSnO3 microspheres-based monolayer for highly-efficient and flexible composite generator[J]. Composites Part B: Engineering, 2020, 203:108476.
[143] Kim Y-g, Kim H, Lee G-J, Lee H-U, Lee SG, Baek C, et al. Flexoelectric-boosted piezoelectricity of BaTiO3@ SrTiO3 core-shell nanostructure determined by multiscale simulations for flexible energy harvesters[J]. Nano Energy, 2021, 89:106469.
[144] Lin Z-H, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL. BaTiO3 nanotubes-based flexible and transparent nanogenerators[J]. The Journal of Physical Chemistry Letters, 2012, 3(23):3599-3604.
[145] Park K-I, Bae SB, Yang SH, Lee HI, Lee K, Lee SJ. Lead-free BaTiO3 nanowires-based flexible nanocomposite generator[J]. Nanoscale, 2014, 6(15):8962-8968.
[146] Jeong CK, Baek C, Kingon AI, Park KI, Kim SH. Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester[J]. Small, 2018, 14(19):1704022.
[147] Shi K, Huang X, Sun B, Wu Z, He J, Jiang P. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity[J]. Nano Energy, 2019, 57:450-458.
[148] Newnham RE. Composite electroceramics[J]. Ferroelectrics, 1986, 68(1):1-32.
[149] Zhang X, Le M-Q, Zahhaf O, Capsal J-F, Cottinet P-J, Petit L. Enhancing dielectric and piezoelectric properties of micro-ZnO/PDMS composite-based dielectrophoresis[J]. Materials & Design, 2020, 192:108783.
[150] d'Ambrogio G, Zahhaf O, Hebrard Y, Le MQ, Cottinet PJ, Capsal JF. Micro‐structuration of piezoelectric composites using dielectrophoresis: toward application in condition monitoring of bearings[J]. Advanced Engineering Materials, 2021, 23(1):2000773.
[151] Randall CA, Miller D, Adair JH, Bhalla A. Processing of electroceramic-polymer composites using the electrorheological effect[J]. Journal of Materials Research, 1993, 8(4):899-904.
[152] Van den Ende D, Bory B, Groen W, Van Der Zwaag S. Properties of quasi 1-3 piezoelectric PZT-epoxy composites obtained by dielectrophoresis[J]. Integrated Ferroelectrics, 2010, 114(1):108-18.
[153] Deutz DB, Mascarenhas NT, Schelen JBJ, de Leeuw DM, van der Zwaag S, Groen P. Flexible Piezoelectric Touch Sensor by Alignment of Lead‐Free Alkaline Niobate Microcubes in PDMS[J]. Advanced Functional Materials, 2017, 27(24):1700728.
[154] Lu S, Liao Q, Qi J, Liu S, Liu Y, Liang Q, et al. The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction[J]. Nano Research, 2016, 9(2):372-9.
[155] Hospodiuk-Karwowski M, Bokhari SM, Chi K, Moncal KK, Ozbolat V, Ozbolat IT, et al. Dual-charge bacterial cellulose as a potential 3D printable material for soft tissue engineering[J]. Composites Part B: Engineering, 2022, 231: 109598.
[156] Burgos GR, Alexandrou AN, Entov V. On the determination of yield surfaces in Herschel-Bulkley fluids[J]. Journal of Rheology, 1999, 43(3):463-483.
[157] Bowen C, Shrout T, Newnham R, Randall C. A study of the frequency dependence of the dielectrophoretic effect in thermoset polymers[J]. Journal of Materials Research, 1997, 12(9):2345-2356.
[158] Tomer V, Randall C, Polizos G, Kostelnick J, Manias E. High-and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites[J]. Journal of Applied Physics, 2008, 103(3):034115.
[159] Frenzel T, Kadic M, Wegener M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366):1072-1074.
[160] Bertoldi K, Vitelli V, Christensen J, Van Hecke M. Flexible mechanical metamaterials[J]. Nature Reviews Materials, 2017, 2(11):1-11.
[161] Meza LR, Das S, Greer JR. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 2014, 345(6202):1322-1326.
[162] Meza LR, Zelhofer AJ, Clarke N, Mateos AJ, Kochmann DM, Greer JR. Resilient 3D hierarchical architected metamaterials[J]. Proceedings of the National Academy of Sciences, 2015,112(37):11502-11507.
[163] Sing SL, An J, Yeong WY, Wiria FE. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34(3):369-385.
[164] Martorelli M, Gerbino S, Giudice M, Ausiello P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques[J]. Dental Materials. 2013;29(2):1-10.
[165] Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery[J]. Annals of Biomedical Engineering, 2017, 45(1):23-44.
[166] Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: A preliminary experience in digital workflow[J]. The Journal of Prosthetic Dentistry, 2018, 120(2):303-308.
[167] Pattinson SW, Huber ME, Kim S, Lee J, Grunsfeld S, Roberts R, et al. Additive manufacturing of biomechanically tailored meshes for compliant wearable and implantable devices[J]. Advanced Functional Materials, 2019, 29(32):1901815.
[168] Wang Z, Yuan X, Yang J, Huan Y, Gao X, Li Z, et al. 3D-printed flexible, Ag-coated PNN-PZT ceramic-polymer grid-composite for electromechanical energy conversion[J]. Nano Energy, 2020, 73:104737.
[169] Babu I, de With G. Highly flexible piezoelectric 0–3 PZT–PDMS composites with high filler content[J]. Composites Science and Technology, 2014, 91:91-97.
[170] Malakooti MH, Julé F, Sodano HA. Printed nanocomposite energy harvesters with controlled alignment of barium titanate nanowires[J]. ACS Applied Materials & Interfaces, 2018, 10(44):38359-38367.
[171] Yan J, Jeong YG. High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes[J]. ACS Applied Materials & Interfaces, 2016, 8(24):15700-15709.
[172] Alluri NR, Saravanakumar B, Kim S-J. Flexible, hybrid piezoelectric film (BaTi(1–x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor[J]. ACS Applied Materials & Interfaces, 2015, 7(18):9831-9840.
[173] Singh HH, Khare N. Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator[J]. Nano Energy, 2018, 51:216-222.
[174] Zhang G, Liao Q, Zhang Z, Liang Q, Zhao Y, Zheng X, et al. Novel piezoelectric paper‐based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose[J]. Advanced Science, 2016, 3(2):1500257.
[175] Shi K, Sun B, Huang X, Jiang P. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators[J]. Nano Energy, 2018, 52:153-162.
[176] Fu J, Hou Y, Gao X, Zheng M, Zhu M. Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density[J]. Nano Energy, 2018, 52:391-401.
[177] Ye S, Cheng C, Chen X, Chen X, Shao J, Zhang J, et al. High-performance piezoelectric nanogenerator based on microstructured P (VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space[J]. Nano Energy, 2019, 60:701-714.
[178] Zhou Z, Du X, Zhang Z, Luo J, Niu S, Shen D, et al. Interface modulated 0-D piezoceramic nanoparticles/PDMS based piezoelectric composites for highly efficient energy harvesting application[J]. Nano Energy, 2021, 82:105709.
[179] Zhang Y, Jeong CK, Yang T, Sun H, Chen L-Q, Zhang S, et al. Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting[J]. Journal of Materials Chemistry A, 2018, 6(30):14546-14552.
[180] Wang X, He X, Zhu H, Sun L, Fu W, Wang X, et al. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films[J]. Science Advances, 2016, 2(7):e1600209.
[181] Masmanidis SC, Karabalin RB, De Vlaminck I, Borghs G, Freeman MR, Roukes ML. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation[J]. Science, 2007, 317(5839):780-783.
[182] Egusa S, Wang Z, Chocat N, Ruff Z, Stolyarov A, Shemuly D, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8):643-648.
[183] Lu X, Qu H, Skorobogatiy M. Piezoelectric micro-and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications[J]. ACS Nano, 2017, 11(2):2103-2114.
[184] Buscaglia V, Viviani M, Buscaglia M, Nanni P, Mitoseriu L, Testino A, et al. Nanostructured barium titanate ceramics[J]. Powder Technology, 2004, 148(1):24-27.
[185] Maison W, Ananta S, Tunkasiri T, Thavornyutikarn P, Phanichphant S. Effect of calcination temperature on phase transformation and particle size of barium titanate fine powders synthesized by the catecholate process[J]. Science Asia, 2001, 27(4):239-243.
[186] Gaytan S, Cadena M, Karim H, Delfin D, Lin Y, Espalin D, et al. Fabrication of barium titanate by binder jetting additive manufacturing technology[J]. Ceramics International, 2015, 41(5):6610-6619.
[187] Goat C, Whatmore R. The effect of grinding conditions on lead zirconate titanate machinability[J]. Journal of the European Ceramic Society, 1999,19(6-7):1311-1313.
[188] Guo B, Zhang J, Ananth KP, Zhao S, Ji X, Bai J. Stretchable, self-healing and biodegradable water-based heater produced by 3D printing[J]. Composites Part A: Applied Science and Manufacturing, 2020,133:105863.
[189] Guo B, Liang G, Yu S, Wang Y, Zhi C, Bai J. 3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications[J]. Energy Storage Materials, 2021,39:146-165.
[190] Rengarajan S, Walser R. High-speed fiber-optic sensor for magnetic-field mapping[J]. Journal of Applied Physics, 1997, 81(8):4278-4280.
[191] Walser RM. Electromagnetic metamaterials[M]. Complex Mediums II: beyond linear isotropic dielectrics: International Society for Optics and Photonics, 2001.
[192] Deng G, Lv K, Sun H, Yang J, Yin Z, Chi B, et al. An ultra-broadband and optically transparent metamaterial absorber based on multilayer indium-tin-oxide structure[J]. Journal of Physics D: Applied Physics, 2021, 54(16):165301.
[193] Schurig D, Mock JJ, Justice B, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980.
[194] Ziolkowski RW. Propagation in and scattering from a matched metamaterial having a zero index of refraction[J]. Physical Review E, 2004, 70(4):046608.
[195] Yang J, Li Z, Xin X, Gao X, Yuan X, Wang Z, et al. Designing electromechanical metamaterial with full nonzero piezoelectric coefficients[J]. Science Advances, 2019,5(11):eaax1782.
[196] Yang J, Huan Q, Yu Y, Wu J, Chu Z, PourhosseiniAsl M, et al. Tailoring Artificial Mode to Enable Cofired Integration of Shear‐type Piezoelectric Devices[J]. Advanced Science, 2020, 7(17):2001368.
[197] Hansen C, Amirkhizi A, Shah D, Morris J, Wang W, Plaisted T, et al[M]. Mechanical metamaterials by DLP printing, 2020.
[198] Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190):1373-1377.
[199] Griffith ML, Halloran JW. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79(10):2601-2608.
[200] Xu S, Shi Y. Power generation from piezoelectric lead zirconate titanate nanotubes[J]. Journal of Physics D: Applied Physics, 2009, 42(8):085301.
[201] Xu Y, Liu D, Lai F, Zhen Y, Li JF. Fabrication of (K, Na) NbO3 Lead‐Free Piezoceramic Microrod Arrays by Sol–Gel Processing with Micromachined Silicon Templates[J]. Journal of the American Ceramic Society, 2008, 91(9):2844-2847.
[202] Ou C, Sanchez-Jimenez PE, Datta A, Boughey FL, Whiter RA, Sahonta S-L, et al. Template-assisted hydrothermal growth of aligned zinc oxide nanowires for piezoelectric energy harvesting applications[J]. ACS Applied Materials & Interfaces, 2016, 8(22):13678-13683.
[203] Zhang G, Zhao P, Zhang X, Han K, Zhao T, Zhang Y, et al. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting[J]. Energy & Environmental Science, 2018, 11(8):2046-2056.
[204] Li W, Li C, Zhang G, Li L, Huang K, Gong X, et al. Molecular Ferroelectric‐Based Flexible Sensors Exhibiting Supersensitivity and Multimodal Capability for Detection[J]. Advanced Materials, 2021, 33(44):2104107.
[205] Lee HA, Park E, Lee H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST[J]. Advanced Materials, 2020, 32(35):1907505.
[206] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426-430.
[207] Jiang C, Wang Y, Wang J, Song W, Lu L. Achieving ultrasensitive in vivo detection of bone crack with polydopamine-capsulated surface-enhanced Raman nanoparticle[J]. Biomaterials, 2017, 114:54-61.
[208] Wang C, Li Z, Chen J, Yin Y, Wu H. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating[J]. Applied Surface Science, 2018, 427:1092-1098.
[209] Yuk J, Troczynski T. Sol–gel BaTiO3 thin film for humidity sensors[J]. Sensors and Actuators B: Chemical, 2003, 94(3):290-293.
[210] Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018,17(4):349-354.
[211] Wang D, Fan Z, Rao G, Wang G, Liu Y, Yuan C, et al. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design[J]. Nano Energy, 2020, 76:104944.
[212] Gao X, Yang J, Wu J, Xin X, Li Z, Yuan X, et al. Piezoelectric actuators and motors: materials, designs, and applications[J]. Advanced Materials Technologies, 2020, 5(1):1900716.
[213] Gao X, Liu J, Xin B, Jin H, Luo L, Guo J, et al. A bending-bending mode piezoelectric actuator based on PIN-PMN-PT crystal stacks[J]. Sensors and Actuators A: Physical, 2021, 331:113052.
[214] Zhou C, Ke X, Yao Y, Yang S, Ji Y, Liu W, et al. Evolution from successive phase transitions to “morphotropic phase boundary” in BaTiO3-based ferroelectrics[J]. Applied Physics Letters, 2018, 112(18):182903.
[215] Zhu L-F, Zhang B-P, Duan J-Q, Xun B-W, Wang N, Tang Y-C, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time[J]. Journal of the European Ceramic Society, 2018, 38(10):3463-3471.
[216] Ruan W, Li G, Zeng J, Kamzina LS, Zeng H, Zheng L, et al. Fabrication of PMN–PZT transparent ceramics by two‐stage sintering[J]. Journal of the American Ceramic Society, 2012, 95(7):2103-2106.
[217] Yan K, Chen X, Wang F, Zhu K. Large piezoelectricity and high transparency in fine-grained BaTiO3 ceramics[J]. Applied Physics Letters, 2020,116(8):082902.
[218] Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, et al. High‐performance lead‐free piezoceramics with high curie temperatures[J]. Advanced Materials, 2015, 27(43):6976-6982.
[219] Yu Z, Zeng J, Zheng L, Liu W, Li G, Kassiba A. Large piezoelectricity and high Curie temperature in novel bismuth ferrite‐based ferroelectric ceramics[J]. Journal of the American Ceramic Society, 2020, 103(11):6435-6444.
[220] Franks GV, Tallon C, Studart AR, Sesso ML, Leo S. Colloidal processing: enabling complex shaped ceramics with unique multiscale structures[J]. Journal of the American Ceramic Society, 2017, 100(2):458-490.
[221] Cho J, Li Q, Wang H, Fan Z, Li J, Xue S, et al. High temperature deformability of ductile flash-sintered ceramics via in-situ compression[J]. Nature Communications, 2018, 9(1):1-9.
[222] Su X, Fu F, Yan Y, Zheng G, Liang T, Zhang Q, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing[J]. Nature Communications, 2014, 5(1):1-7.
[223] Olevsky E, German R. Effect of gravity on dimensional change during sintering—I. Shrinkage anisotropy[J]. Acta Materialia, 2000, 48(5):1153-1166.
[224] Olevsky E, German R, Upadhyaya A. Effect of gravity on dimensional change during sintering—II. Shape distortion[J]. Acta Materialia, 2000, 48(5):1167-1180.
[225] Cui J, Poblete FR, Zhu Y. Origami/Kirigami‐Guided Morphing of Composite Sheets[J]. Advanced Functional Materials, 2018, 28(44):1802768.
[226] Callens SJ, Zadpoor AA. From flat sheets to curved geometries: Origami and kirigami approaches[J]. Materials Today, 2018, 21(3):241-264.
[227] Zirbel SA, Lang RJ, Thomson MW, Sigel DA, Walkemeyer PE, Trease BP, et al. Accommodating thickness in origami-based deployable arrays[J]. Journal of Mechanical Design, 2013, 135(11): 111005.
[228] Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science, 2014, 345(6197):647-650.
[229] Overvelde JT, Weaver JC, Hoberman C, Bertoldi K. Rational design of reconfigurable prismatic architected materials[J]. Nature, 2017, 541(7637):347-352.
[230] Felton S, Tolley M, Demaine E, Rus D, Wood R. A method for building self-folding machines[J]. Science, 2014,345(6197):644-646.
[231] Felton SM, Tolley MT, Shin B, Onal CD, Demaine ED, Rus D, et al. Self-folding with shape memory composites[J]. Soft Matter, 2013, 9(32):7688-7694.
[232] Kuribayashi K, Tsuchiya K, You Z, Tomus D, Umemoto M, Ito T, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[J]. Materials Science and Engineering: A, 2006, 419(1-2):131-137.
[233] Shyu TC, Damasceno PF, Dodd PM, Lamoureux A, Xu L, Shlian M, et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects[J]. Nature Materials, 2015, 14(8):785-789.
[234] Cho Y, Shin J-H, Costa A, Kim TA, Kunin V, Li J, et al. Engineering the shape and structure of materials by fractal cut[J]. Proceedings of the National Academy of Sciences, 2014, 111(49):17390-17395.
[235] Maurya D, Zhou Y, Wang Y, Yan Y, Li J, Viehland D, et al. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials[J]. Scientific Reports, 2015, 5(2) :131-135.
[236] Kawashima T, Suzuki Y. High-temperature X-ray diffraction analysis and reactive sintering of BaTiO3 piezoelectric ceramics[J]. Journal of the Ceramic Society of Japan, 2015, 123(1434):83-85.
[237] Takahashi H, Numamoto Y, Tani J, Tsurekawa S. Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering[J]. Japanese Journal of Applied Physics, 2006, 45(9S):7405.
Edit Comment