中文版 | English
Title

聚合物/陶瓷复合压电材料的增材制造与应用研究

Alternative Title
Additive Manufacturing of Polymer/Ceramic Composited Piezoelectric Materials and their Applications
Author
Name pinyin
WANG Zehuan
School number
11866005
Degree
博士
Discipline
080501 材料物理与化学
Subject category of dissertation
08 工学
Supervisor
汪宏
Mentor unit
研究生院、党委研究生工作部
Tutor of External Organizations
董蜀湘
Tutor units of foreign institutions
北京大学工学院
Publication Years
2022-05-27
Submission date
2022-06-30
University
北京大学
Place of Publication
北京
Abstract

传统的压电器件制备方法是通过减材制造制造的。该工艺不仅制造成本高,生产周期长,工艺复杂、材料利用率低,而且对几何形状复杂的压电器件主要采用划片、拉削、锯切或蚀刻等切割技术,极大地限制了操作条件。作为一种新兴的尖端制造方法,增材制造技术推动了压电器件的发展,实现了从一步成型的微型器件向大规模器件制造的迈进。它改变了器件的生产工艺,提高了器件的性能。增材制造技术应用于压电材料的制造正在成为器件制造的主流趋势。本文尝试开拓压电材料的增材制造的新工艺,希望得到低成本、高效率、可大规模制造的下一代多功能压电器件。本文主要介绍以下四个方面的工作:

工作一,通过直写式打印制备了一种有银颗粒负载0.55Pb(Ni1/3Nb2/3)O3-0.135PbZrO3-0.315PbTiO3PNN-PZT)陶瓷聚二甲基硅氧烷弹性体基体制成的柔性0-3结构陶瓷-聚合物复合材料。直写打印的非立体光刻网格复合材料在掺杂陶瓷颗粒后表现出更大的柔韧性,压电电压系数g33高达400×10-3 m V N-1,这是比PZT基陶瓷高一个数量级。这项工作表明直写式3D打印的柔性陶瓷-聚合物复合材料有潜力替代脆性压电陶瓷,用于机电能量转换和接触力传感器应用,例如软机器人,人造肌肉和生物信号识别。

工作二,创造性地将介电泳技术和增材制造技术相结合,制备了一种高性能压电聚合物复合材料。对齐的1-3结构3D打印压电复合材料相比没有经过介电泳处理的压电常数和压电电压系数都显着增加。制备得到性能最优的介电泳3D打印无铅压电复合材料的峰值输出功率密度高达242 μW cm -2,这比3D打印随机分散纳米颗粒复合材料高9倍。这项工作为开发用于机电设备的高性能柔性压电复合材料开辟了一条途径,可能有助于可穿戴电子设备的普及。

工作三,引入了一种简便且可扩展的方法,通过使用超材料作为模板,制备高性能无铅压电复合材料。首先通过投影微立体光刻3D打印技术打印机构建了三维连续超材料结构,然后通过溶胶-凝胶法制备了无铅压电陶瓷框架。通过合理设计的三维超材料框架制备的超材料压电结构聚合物复合材料。与无规钛酸钡-聚合物复合材料相比,超材料压电结构聚合物复合材料大大提高了机电效率和压电性能,也可作为可穿戴传感器和能量收集器。这种策略可能会为制造具有复杂形状和增强压电响应的高性能增材制造电子产品开辟有前景的途径。

工作四,提出了一种受剪纸/折纸结构启发使用直写式打印机制备压电陶瓷的方法。直写打印过程类似于剪纸过程设计拓扑结构,煅烧过程在生胚上放置耐高温的氧化铝陶瓷得到弯曲陶瓷的过程类似于折纸。烧结后的压电陶瓷极化后压电常数可达到275 pC N-1,比同类普通片状陶瓷压电常数高45%。其弯曲结构与人体能很好地贴合,也可以检测脉搏信号。这种策略也成功地推广到弯曲多孔氧化锆陶瓷的制备上。这项工作为制备复杂形状的陶瓷提供了一种新的思路。

Other Abstract

The piezoelectric device is fabricated by subtractive manufacturing traditionally. This process is not only high manufacturing cost, long production cycle, process complicated and low utilization rate of materials, but it also mainly employs cutting technology such as scribing, broaching, sawing, or etching for piezoelectric devices with complex geometric shapes, which greatly limits operating conditions. As an emerging cutting-edge manufacturing method, additive manufacturing technology has promoted the development of piezoelectric devices, implementing the progress from one-step micro-devices to large-scale device fabrication. It changes the processability of the device and improves the performance of the device. The production of piezoelectric materials combining with additive manufacturing technique is becoming a mainstream trend in device fabrication. This thesis focuses on expanding the development of additive manufacturing of piezoelectric devices, and wishes to obtain next-generation multifunctional piezoelectric devices with low cost, high efficiency, large-scale manufacturing and excellent performance. The thesis mainly includes the following four parts:

Part 1, we report the design of flexible ceramic-polymer composite made of polydimethylsiloxane (PDMS) elastomeric matrix doped with 0.55Pb(Ni1/3Nb2/3)O3-0.135PbZrO3-0.315PbTiO3 ceramic heterojunction particles, and the 3D printing method for fabricating complex three-dimensional architectures. We found that the non-stereolithographic direct-write-printed grid composites exhibited greater flexibility after doped with Ag coated ceramic particles, and the piezoelectric voltage coefficient g33 was as high as 400 × 10-3 m V N-1, which is one order of magnitude higher than that of PZT based ceramics. This work demonstrates the potential of direct-writing 3D printed flexible ceramic-polymer composites to replace brittle piezoelectric ceramics for electromechanical energy conversion and applications of sensor such as soft robotics, artificial muscles, and bio-recognition.

Part 2, we introduce a facile and scalable approach combining additive manufacturing and dielectrophoresis technology to obtain a new class of high-performance piezoelectric polymer composites. Compared to a 3D-printed composite with randomly dispersed nanoparticles, both the piezoelectric coefficient and the piezoelectric voltage coefficient of the aligned 1-3 structured 3D-printed piezoelectric composites dramatically increases. The peak output power density of the optimized dielectrophoretic 3D printed composite is as high as 242 mW cm-2, which is 9 times higher than that of a randomly dispersed nanoparticle 3D-printed composite. We believe that this work opens an avenue for developing high-performance fexible piezoelectric composites for electromechanical devices, which could possibly contribute to the proliferation of wearable electronic devices.

Part 3, we introduce a facile and scalable approach to a high-performance lead-free piezoelectric composite by using a metamaterial as a template. We first constructed a three-dimensional continuous metamaterial structure by projection micro-stereolithography 3D printing technology printer, and then prepared a lead-free piezoelectric ceramic framework by sol-gel method. We achieved a rationally designed three-dimensional metamaterial framework for effective stress transfer in the polymer composites to greatly improve the electromechanical efficiency and piezoelectric performance compared with the random BaTiO3-polymer composite. The as-obtained piezoelectric composite was demonstrated as wearable sensor and harvest energy harvester. We expect that this strategy may potentially open promising avenues for fabrication of high-performance additive manufactured electronics with complex shwapes and enhanced piezoelectric responses.

Part 4, we creatively propose a method to fabricate piezoelectric ceramics using a direct-write printer inspired by kirigami/origami approaches in the first time. The direct writing printing process is similar to the kirigami process to design the topology, and the calcination process places a high temperature resistant alumina ceramic on the green embryo to obtain a curved BaTiO3 ceramic process similar to origami. The piezoelectric constant of the sintered BaTiO3 piezoelectric ceramics after polarization can reach 275 pC N-1, which is 45% higher than that of ordinary BaTiO3 sheet ceramics. Its curved structure fits well with the human body and can also detect pulse signals. This work provides a new idea for the preparation of complex-shaped ceramics.

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-06
References List

[1] Cady W. Nature and use of piezoelectricity[J]. Electrical Engineering, 1947, 66(8):758-762.

[2] Klickstein HS. Pierre Curie-An appreciation of his scientific achievements[J]. Journal of Chemical Education, 1947, 24(6):278.

[3] Jean-Mistral C, Basrour S, Chaillout J. Comparison of electroactive polymers for energy scavenging applications[J]. Smart Materials and Structures, 2010, 19(8):085012.

[4] Kochervinskii V. Piezoelectricity in crystallizing ferroelectric polymers: Poly (vinylidene fluoride) and its copolymers (A review) [J]. Crystallography Reports, 2003, 48(4):649-675.

[5] Mahapatra SD, Mohapatra PC, Aria AI, Christie G, Mishra YK, Hofmann S, et al. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Advanced Science, 2021, 8(17):2100864.

[6] Greaves R, Fowler E, Goodings A, Lamb D. The direct piezoelectric effect in extruded polyethylene[J]. Journal of Materials Science, 1974, 9(10):1602-1608.

[7] 杨绪军, 陈箫, 刘岗, 等. 铌酸锂晶片的键合减薄及热释电性能研究[J]. 电子元件与材料, 2011, 30(10):31-34.

[8] Curie J, Curie P. Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées[J]. Bulletin de minéralogie, 1880, 3(4):90-93.

[9] Moore R. A Method of growing large perfect crystals from solution[J]. Journal of the American Chemical Society, 1919, 41(7):1060-1066.

[10] Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790):350-354.

[11] 曲远方. 功能陶瓷材料[J]. 北京: 化学 I, Il. 2003:28-66.

[12] Kuwata J, Uchino K, Nomura S. Phase transitions in the Pb(Zn1/3Nb2/3)O3-PbTiO3 system[J]. Ferroelectrics, 1981, 37(1):579-582.

[13] Li F, Cabral MJ, Xu B, Cheng Z, Dickey EC, LeBeau JM, et al. Giant piezoelectricity of Sm-doped Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437):264-268.

[14] Valasek, J. Piezo-Electric and Allied Phenomena in Rochelle Salt[J]. Physical Review, 1920, 17(4):475-481.

[15] Valasek J. The early history of ferroelectricity[J]. Ferroelectrics, 1971, 2(1):239-244.

[16] You Y-M, Liao W-Q, Zhao D, Ye H-Y, Zhang Y, Zhou Q, et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response[J]. Science, 2017, 357(6348):306-309.

[17] 刘世清, 麻磊磊. 径向振动压电超声换能器的发展及应用[J]. 陕西师范大学学报(自然科学版), 2020, 48(3):60-66.

[18] Takaishi K, Kubota Y, Kurita H, Wang Z, Narita F. Fabrication and electromechanical characterization of mullite ceramic fiber/thermoplastic polymer piezoelectric composites[J]. Journal of the American Ceramic Society, 2022, 105(1): 308-316.

[19] Haertling GH. Ferroelectric ceramics: history and technology[J]. Journal of the American Ceramic Society, 1999, 82(4):797-818.

[20] Shah S, Rao MR. Preparation and dielectric study of high-quality PLZT x/65/35 (x= 6, 7, 8) ferroelectric ceramics[J]. Applied Physics A, 2000, 71(1):65-69.

[21] Klissurska RD, Brooks KG, Reaney IM, Pawlaczyk C, Kosec M, Setter N. Effect of Nb doping on the microstructure of sol-gel-derived PZT thin films[J]. Journal of the American Ceramic Society, 1995, 78(6):1513-1520.

[22] Park HY, Seo IT, Choi JH, Nahm S, Lee HG. Low‐temperature sintering and piezoelectric properties of (Na0.5K0.5) NbO3 lead‐free piezoelectric ceramics[J]. Journal of the American Ceramic Society, 2010, 93(1):36-39.

[23] Zhilun G, Longtu L, Suhua G, Xiaowen Z. Low-temperature sintering of lead-based piezoelectric ceramics[J]. Journal of the American Ceramic Society, 1989, 72(3):486-491.

[24] Tressler JF, Alkoy S, Newnham RE. Piezoelectric sensors and sensor materials[J]. Journal of Electroceramics, 1998, 2(4):257-272.

[25] 盖学周. 压电材料的研究发展方向和现状[J]. 中国陶瓷, 2008, 44(5):9-13.

[26] Li Z, Thong HC, Zhang YF, Xu Z, Zhou Z, Liu YX, et al. Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency[J]. Advanced Functional Materials, 2021, 31(1):2005012.

[27] Zheng T, Wu J, Xiao D, Zhu J. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Progress in Materials Science, 2018, 98:552-624.

[28] Von Hippel A, Breckenridge R, Chesley F, Tisza L. High dielectric constant ceramics[J]. Industrial & Engineering Chemistry, 1946, 38(11):1097-109.

[29] Matthias B, Remeika J. Dielectric properties of sodium and potassium niobates[J]. Physical Review, 1951, 82(5):727.

[30] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013):84-87.

[31] Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective[J]. Cheminform, 2013, 44(25):71-93.

[32] Rdel J, Webber KG, Dittmer R, Jo W, Damjanovic D. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6):1659-1681.

[33] Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries[J]. Chemical Reviews, 2015, 115(7):2559.

[34] Katsouras I, Asadi K, Li M, Van Driel TB, Kjaer KS, Zhao D, et al. The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride) [J]. Nature Materials, 2016, 15(1):78-84.

[35] Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene) [J]. Nature Communications, 2013, 4(1):1-10.

[36] Kim J, Yun S, Ounaies Z. Discovery of cellulose as a smart material[J]. Macromolecules, 2006, 39(16): 4202-4206.

[37] Rajala S, Siponkoski T, Sarlin E, Mettänen M, Vuoriluoto M, Pammo A, et al. Cellulose nanofibril film as a piezoelectric sensor material[J]. ACS Applied Materials & Interfaces, 2016, 8(24):15607-15614.

[38] Hassan S, Voon LH, Velayutham T, Zhai L, Kim HC, Kim J. Review of cellulose smart material: biomass conversion process and progress on cellulose-based electroactive paper[J]. Journal of Renewable Materials, 2018, 6(1):1-25.

[39] Park C, Ounaies Z, Wise KE, Harrison JS. In situ poling and imidization of amorphous piezoelectric polyimides[J]. Polymer, 2004, 45(16):5417-5425.

[40] Frübing P, Kremmer A, Gerhard-Multhaupt R, Spanoudaki A, Pissis P. Relaxation processes at the glass transition in polyamide 11: From rigidity to viscoelasticity[J]. The Journal of Chemical Physics, 2006, 125(21):214701.

[41] Fukada E. Recent developments of polar piezoelectric polymers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(5):1110-1119.

[42] Gomes J, Nunes JS, Sencadas V, Lanceros-Méndez S. Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly (vinylidene fluoride) [J]. Smart Materials and Structures, 2010, 19(6):065010.

[43] Kaura T, Nath R, Perlman M. Simultaneous stretching and corona poling of PVDF films[J]. Journal of Physics D: Applied Physics, 1991, 24(10):1848.

[44] Koga K, Ohigashi H. Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers[J]. Journal of Applied Physics, 1986, 59(6):2142-2150.

[45] Harrison J, Ounaies Z. Polymers, piezoelectric[M]. Encyclopedia of Smart Materials, 2002.

[46] Martins P, Nunes JS, Hungerford G, Miranda D, Ferreira A, Sencadas V, et al. Local variation of the dielectric properties of poly (vinylidene fluoride) during the α-to β-phase transformation[J]. Physics Letters A, 2009, 373(2):177-180.

[47] Lutkenhaus JL, McEnnis K, Serghei A, Russell TP. Confinement effects on crystallization and curie transitions of poly (vinylidene fluoride-co-trifluoroethylene) [J]. Macromolecules, 2010, 43(8):3844-3850.

[48] Lovinger AJ. Ferroelectric polymers[J]. Science, 1983, 220(4602):1115-1121.

[49] Fukada E. New piezoelectric polymers[J]. Japanese Journal of Applied Physics, 1998, 37(5S):2775.

[50] Xu H. Dielectric properties and ferroelectric behavior of poly (vinylidene fluoride‐trifluoroethylene) 50/50 copolymer ultrathin films[J]. Journal of Applied Polymer Science, 2001, 80(12):2259-2266.

[51] Kim J, Yun S, Mahadeva SK, Yun K, Yang SY, Maniruzzaman M. Paper actuators made with cellulose and hybrid materials[J]. Sensors, 2010, 10(3):1473-1485.

[52] Ramadan KS, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers[J]. Smart Materials and Structures, 2014, 23(3):033001.

[53] Takase Y, Lee J, Scheinbeim J, Newman B. High-temperature characteristics of nylon-11 and nylon-7 piezoelectrics[J]. Macromolecules, 1991, 24(25):6644-6652.

[54] Lebrun L, Guyomar D, Guiffard B, Cottinet P-J, Putson C. The Characterisation of the harvesting capabilities of an electrostrictive polymer composite[J]. Sensors and Actuators A: Physical, 2009, 153(2):251-257.

[55] Kawai H. The piezoelectricity of poly (vinylidene fluoride) [J]. Japanese Journal of Applied Physics, 1969, 8(7):975.

[56] Wu J, Shi H, Zhao T, Yu Y, Dong S. High‐Temperature BiScO3‐PbTiO3 Piezoelectric Vibration Energy Harvester[J]. Advanced Functional Materials, 2016, 26(39):7186-7194.

[57] Li H, Tian C, Deng ZD. Energy harvesting from low frequency applications using piezoelectric materials[J]. Applied Physics Reviews, 2014, 1(4):041301.

[58] Gong F, Li H, Huang J, Jing Y, Hu Z, Xia D, et al. Low-grade energy harvesting from dispersed exhaust steam for power generation using a soft biomimetic actuator[J]. Nano Energy, 2022, 91:106677.

[59] Su H, Wang X, Li C, Wang Z, Wu Y, Zhang J, et al. Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application[J]. Nano Energy, 2021, 83:105809.

[60] Yan M, Zhong J, Liu S, Xiao Z, Yuan X, Zhai D, et al. Flexible pillar-base structured piezocomposite with aligned porosity for piezoelectric energy harvesting[J]. Nano Energy, 2021, 88:106278.

[61] Gao J, Xue D, Liu W, Zhou C, Ren X. Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications[J]. Actuators, 2017, 6(3):24;

[62] 王树昕, 董蜀湘, 桂治轮, 等. 压电陶瓷材料对超声马达性能的影响[J]. 压电与声光, 2000, 22(1):23-26.

[63] 董蜀湘, 李龙土. 压电陶瓷为动力源的压电马达与驱动器[J]. 材料导报, 1999, 13(4):24-27.

[64] Mohith S, Upadhya AR, Karanth N, Kulkarni S, Rao M. Recent trends in piezoelectric actuators for precision motion and their applications: A review. Smart Materials and Structures[J]. 2020, 30(1): 013002.

[65] Li Z, Gao X, Yang J, Xin X, Yi X, Bian L, et al. Designing ordered structure with piezoceramic actuation units (OSPAU) for generating continual nanostep motion[J]. Advanced Science, 2020, 7(16):2001155.

[66] Bai F, Saalbach K-A, Twiefel J, Wallaschek J. Effect of different standoff distance and driving current on transducer during ultrasonic cavitation peening[J]. Sensors and Actuators A: Physical, 2017, 261:274-279.

[67] Lin S. Study on the Langevin piezoelectric ceramic ultrasonic transducer of longitudinal–flexural composite vibrational mode[J]. Ultrasonics, 2006, 44(1):109-114.

[68] Karafi MR, Khorasani F. Evaluation of mechanical and electric power losses in a typical piezoelectric ultrasonic transducer[J]. Sensors and Actuators A: Physical, 2019, 288:156-164.

[69] Pérez-Sánchez A, Segura J, Rubio-Gonzalez C, Baldenegro-Perez LA, Soto-Cajiga J. Numerical design and analysis of a langevin power ultrasonic transducer for acoustic cavitation generation[J]. Sensors and Actuators A: Physical, 2020, 311:112035.

[70] Tian J, Li X, Liang Z, Ding W, Li X, Tao C, et al. Fabrication of 1–3 piezoelectric composites via modified soft mold process for 40 MHz ultrasonic medical transducers[J]. Ceramics International, 2022, 48(3): 3841-3848.

[71] Liu T, Dangi A, Kim JN, Kothapalli S-R, Choi K, Trolier-McKinstry S, et al. Flexible Thin-film PZT ultrasonic transducers on polyimide substrates[J]. Sensors, 2021, 21(3):1014.

[72] Chen C, Wang X, Wang Y, Yang D, Yao F, Zhang W, et al. Additive manufacturing of piezoelectric materials[J]. Advanced Functional Materials, 2020, 30(52):2005141.

[73] Dave HK, Patadiya NH, Prajapati AR, Rajpurohit SR. Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(10):1811-1827.

[74] Kim H, Torres F, Wu Y, Villagran D, Lin Y, Tseng T-LB. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application[J]. Smart Materials and Structures, 2017, 26(8):085027.

[75] Dave HK, Prajapati AR, Rajpurohit SR, Patadiya NH, Raval HK. Investigation on tensile strength and failure modes of FDM printed part using in-house fabricated PLA filament[J]. Advances in Materials and Processing Technologies, 2020, 1(1): 22.

[76] Liu J, Shang Y, Shao Z, Liu X, Zhang C. Three-dimensional printing to translate simulation to architecting for three-dimensional high performance piezoelectric energy harvester[J]. Industrial & Engineering Chemistry Research, 2022, 61(1):433-440

[77] Bach M, Sebastian T, Melnykowycz M, Lusiola T, Scharf D, Clemens F. Additive manufacturing of piezoelectric 3-3 composite structures[J]. International Conference on Additive Manufacturing in Products and Applications: Springer, 2017. 3(1):93-103.

[78] Kim H, Renteria‐Marquez A, Islam MD, Chavez LA, Garcia Rosales CA, Ahsan MA, et al. Fabrication of bulk piezoelectric and dielectric BaTiO3 ceramics using paste extrusion 3D printing technique[J]. Journal of the American Ceramic Society, 2019, 102(6):3685-3694.

[79] Hall SE, Regis JE, Renteria A, Chavez LA, Delfin L, Vargas S, et al. Paste extrusion 3D printing and characterization of lead zirconate titanate piezoelectric ceramics[J]. Ceramics International, 2021, 47(15): 22042-22048.

[80] Nan B, Olhero S, Pinho R, Vilarinho PM, Button TW, Ferreira JM. Direct ink writing of macroporous lead‐free piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3[J]. Journal of the American Ceramic Society, 2019, 102(6):3191-3203.

[81] Luo J, Zhang L, Wu T, Song H, Tang C, Huang F, et al. Flexible electronic skin with high performance pressure sensing based on PVDF/rGO/BaTiO3 composite thin film[J]. Organic Electronics, 2021, 98:106296.

[82] Bodkhe S, Rajesh PS, Gosselin FP, Therriault D. Simultaneous 3D printing and poling of PVDF and its nanocomposites[J]. ACS Applied Energy Materials, 2018, 1(6):2474-2482.

[83] Zhou X, Parida K, Halevi O, Liu Y, Xiong J, Magdassi S, et al. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure[J]. Nano Energy, 2020, 72:104676.

[84] Yuan X, Gao X, Yang J, Shen X, Li Z, You S, et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester[J]. Energy & Environmental Science, 2020, 13(1):152-161.

[85] Maines EM, Porwal MK, Ellison CJ, Reineke TM. Sustainable advances in SLA/DLP 3D printing materials and processes[J]. Green Chemistry, 2021, 24(2):6863-6897

[86] Borrello J, Nasser P, Iatridis JC, Costa KD. 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer[J]. Additive Manufacturing, 2018, 23:374-380.

[87] Yun JS, Park T-W, Jeong YH, Cho JH. Development of ceramic-reinforced photopolymers for SLA 3D printing technology[J]. Applied Physics A, 2016, 122(6):1-6.

[88] Song X, Chen Z, Lei L, Shung K, Zhou Q, Chen Y. Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions[J]. Rapid Prototyping Journal, 2017, 23(1):1-6.

[89] Wang W, Sun J, Guo B, Chen X, Ananth KP, Bai J. Fabrication of piezoelectric nano-ceramics via stereolithography of low viscous and non-aqueous suspensions[J]. Journal of the European Ceramic Society, 2020, 40(3):682-688.

[90] Chen Z, Song X, Lei L, Chen X, Fei C, Chiu CT, et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing[J]. Nano Energy, 2016, 27:78-86.

[91] Song H, Li H, Lim S. Fast 3D digital light process printing of PVDF‐HFP composite with electric in situ poling system for piezoelectric applications[J]. Macromolecular Materials and Engineering, 2021, 306(10): 2100266.

[92] Zhang J, Ye S, Liu H, Chen X, Chen X, Li B, et al. 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors[J]. Nano Energy, 2020, 77:105300.

[93] Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: Alternatives for PZT[J]. Journal of Electroceramics, 2007, 19(1):113-26.

[94] Chorsi MT, Curry EJ, Chorsi HT, Das R, Baroody J, Purohit PK, et al. Piezoelectric biomaterials for sensors and actuators[J]. Advanced Materials, 2019, 31(1):1802084.

[95] Park DY, Joe DJ, Kim DH, Park H, Han JH, Jeong CK, et al. Self‐powered real‐time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors[J]. Advanced Materials, 2017, 29(37):1702308.

[96] Chen X, Xu S, Yao N, Shi Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers[J]. Nano Letters, 2010, 10(6):2133-2137.

[97] Chen G, Li Y, Bick M, Smart textiles for electricity generation[J]. Chemical Reviews, 2020, 120(8): 3668-3720.

[98] Chen Y, Zhang Y, Yuan F, Ding F, Schmidt OG. A flexible PMN‐PT ribbon‐based piezoelectric‐pyroelectric hybrid generator for human‐activity energy harvesting and monitoring[J]. Advanced Electronic Materials, 2017, 3(3):1600540.

[99] Gao X, Wu J, Yu Y, Chu Z, Shi H, Dong S. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN‐PZT for vibration energy harvesting[J]. Advanced Functional Materials, 2018, 28(30):1706895.

[100] Bian L, Qi X, Li K, Yu Y, Liu L, Chang Y, et al. High‐performance

[001] c‐textured PNN‐PZT relaxor ferroelectric ceramics for electromechanical coupling devices[J]. Advanced Functional Materials, 2020, 30(25):2001846.

[101] Xie M, Zhang Y, Kraśny MJ, Bowen C, Khanbareh H, Gathercole N. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic–polymer composites[J]. Energy & Environmental Science, 2018, 11(10):2919-2927.

[102] Newnham R, Skinner D, Cross L. Connectivity and piezoelectric-pyroelectric composites[J]. Materials Research Bulletin, 1978, 13(5):525-536.

[103] Park KI, Jeong CK, Ryu J, Hwang GT, Lee KJ. Flexible and large‐area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes[J]. Advanced Energy Materials, 2013,3(12):1539-1544.

[104] Jeong CK, Lee J, Han S, Ryu J, Hwang GT, Park DY, et al. A hyper‐stretchable elastic‐composite energy harvester[J]. Advanced Materials, 2015, 27(18):2866-2875.

[105] Jeong CK, Park KI, Ryu J, Hwang GT, Lee KJ. Large‐area and flexible lead‐free nanocomposite generator using alkaline niobate particles and metal nanorod filler[J]. Advanced Functional Materials, 2014, 24(18):2620-2629.

[106] Baek C, Yun JH, Wang JE, Jeong CK, Lee KJ, Park K-I, et al. A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle–polymer composite[J]. Nanoscale, 2016, 8(40):17632-17638.

[107] Huan Y, Zhang X, Song J, Zhao Y, Wei T, Zhang G, et al. High-performance piezoelectric composite nanogenerator based on Ag/(K, Na) NbO3 heterostructure[J]. Nano Energy, 2018, 50:62-69.

[108] Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371-378.

[109] Gantenbein S, Masania K, Woigk W, Sesseg JP, Tervoort TA, Studart AR. Three-dimensional printing of hierarchical liquid-crystal-polymer structures[J]. Nature, 2018, 561(7722):226-230.

[110] Wu L, Dong Z, Du H, Li C, Fang N, Song Y. Bioinspired ultra-low adhesive energy interface for continuous 3D printing: reducing curing induced adhesion[J]. Research, 2018, 2018:10.

[111] Liu G, Zhao Y, Wu G, Lu J. Origami and 4D printing of elastomer-derived ceramic structures[J]. Science Advances, 2018, 4(8):eaat0641.

[112] Yao D, Cui H, Hensleigh R, Smith P, Alford S, Bernero D, et al. Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites[J]. Advanced Functional Materials, 2019, 29(42):1903866.

[113] Buyanova E, Strelets P, Serova I, Isupov V. Ferroelectric properties of PbTiO3-PbZrO3-PbNi1/3Nb2/3O3 solid solutions[J]. Bull Acad Sci USSR Phys Ser, 1965, 29:2042-2045.

[114] Ozbolat V, Dey M, Ayan B, Povilianskas A, Demirel MC, Ozbolat IT. 3D printing of PDMS improves its mechanical and cell adhesion properties[J]. ACS Biomaterials Science & Engineering, 2018, 4(2):682-693.

[115] Du K, Basuki J, Glattauer V, Mesnard C, Nguyen AT, Alexander DL, et al. Digital light processing 3D printing of PDMS-based soft and elastic materials with tunable mechanical properties[J]. ACS Applied Polymer Materials. 2021, 3(6): 3049-3059..

[116] Ji Z, Jiang D, Zhang X, Guo Y, Wang X. Facile photo and thermal two‐stage curing for high‐performance 3D printing of poly (dimethylsiloxane) [J]. Macromolecular Rapid Communications, 2020, 41(10):2000064.

[117] Lv J, Gong Z, He Z, Yang J, Chen Y, Tang C, et al. 3D printing of a mechanically durable superhydrophobic porous membrane for oil–water separation[J]. Journal of Materials Chemistry A, 2017, 5(24):12435-12444.

[118] Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature, 2019, 575(7782):330-335.

[119] Racles C, Bele A, Dascalu M, Musteata V, Varganici C, Ionita D, et al. Polar–nonpolar interconnected elastic networks with increased permittivity and high breakdown fields for dielectric elastomer transducers[J]. RSC Advances, 2015, 5(72):58428-58438.

[120] Cui H, Hensleigh R, Yao D, Maurya D, Kumar P, Kang MG, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response[J]. Nature Materials, 2019, 18(3):234-241.

[121] Priya S, Song H-C, Zhou Y, Varghese R, Chopra A, Kim S-G, et al. A review on piezoelectric energy harvesting: materials, methods, and circuits[J]. Energy Harvesting and Systems, 2017, 4(1):3-39.

[122] Tian X, Jin J, Yuan S, Chua CK, Tor SB, Zhou K. Emerging 3D‐printed electrochemical energy storage devices: a critical review[J]. Advanced Energy Materials, 2017, 7(17):1700127.

[123] Yang Y, Song X, Li X, Chen Z, Zhou C, Zhou Q, et al. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures[J]. Advanced Materials, 2018, 30(36):1706539.

[124] Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S. Highly stretchable and UV curable elastomers for digital light processing based 3D printing[J]. Advanced Materials, 2017, 29(15):1606000.

[125] Chang P, Mei H, Zhou S, Dassios KG, Cheng L. 3D printed electrochemical energy storage devices[J]. Journal of Materials Chemistry A, 2019, 7(9):4230-4258.

[126] Heo YJ, Lee JW, Son YR, Lee JH, Yeo CS, Lam TD, et al. Large‐Scale Conductive Yarns Based on Twistable Korean Traditional Paper (Hanji) for Supercapacitor Applications: Toward High‐Performance Paper Supercapacitors[J]. Advanced Energy Materials, 2018, 8(27):1801854.

[127] Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, et al. Paper‐based electronics: flexible electronics based on micro/nanostructured paper[J]. Advanced Materials, 2018, 30(51):1870394.

[128] Bu L, Chen Z, Chen Z, Qin L, Yang F, Xu K, et al. Impact induced compound method for triboelectric-piezoelectric hybrid nanogenerators to achieve Watt level average power in low frequency rotations[J]. Nano Energy, 2020, 70:104500.

[129] Bai P, Zhu G, Lin Z-H, Jing Q, Chen J, Zhang G, et al. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions[J]. ACS Nano, 2013, 7(4):3713-3719.

[130] Yang Y, Zhang H, Lin Z-H, Zhou YS, Jing Q, Su Y, et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system[J]. ACS Nano, 2013, 7(10):9213-9222.

[131] Yang R, Qin Y, Li C, Zhu G, Wang ZL. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator[J]. Nano Letters, 2009, 9(3):1201-1205.

[132] Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771):242-246.

[133] Park KI, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, et al. Highly‐efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26(16):2514-2520.

[134] Richter T, Denneler S, Schuh C, Suvaci E, Moos R. Textured PMN-PT and PMN-PZT[J]. Journal of the American Ceramic Society, 2008, 91(3):929-933.

[135] Peng G, Chen C, Zhang J, Zheng D, Hu S, Zhang H. Effects of PNN/PZT ratios on phase structure, electric properties and relaxation behavior of PZN-PNN-PZT ceramics[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4):3145-3151.

[136] Dingquan X. Environmentally conscious ferroelectrics research—present and prospect[J]. Ferroelectrics, 1999, 231(1):133-141.

[137] Lu L, Ding W, Liu J, Yang B. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.

[138] Stuber VL, Deutz DB, Bennett J, Cannel D, de Leeuw DM, van der Zwaag S, et al. Flexible lead‐free piezoelectric composite materials for energy harvesting applications[J]. Energy Technology, 2019, 7(1):177-185.

[139] Yang W, Li P, Wu S, Li F, Shen B, Zhai J. Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics[J]. Ceramics International, 2020, 46(2):1390-1395.

[140] Park KI, Lee M, Liu Y, Moon S, Hwang GT, Zhu G, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Advanced Materials, 2012, 24(22):2999-3004.

[141] Lim J, Jung H, Baek C, Hwang G-T, Ryu J, Yoon D, et al. All-inkjet-printed flexible piezoelectric generator made of solvent evaporation assisted BaTiO3 hybrid material[J]. Nano Energy, 2017, 41:337-343.

[142] Park H, Hyeon DY, Jung M, Park K-I, Park J. Piezoelectric BaTiO3 microclusters and embossed ZnSnO3 microspheres-based monolayer for highly-efficient and flexible composite generator[J]. Composites Part B: Engineering, 2020, 203:108476.

[143] Kim Y-g, Kim H, Lee G-J, Lee H-U, Lee SG, Baek C, et al. Flexoelectric-boosted piezoelectricity of BaTiO3@ SrTiO3 core-shell nanostructure determined by multiscale simulations for flexible energy harvesters[J]. Nano Energy, 2021, 89:106469.

[144] Lin Z-H, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL. BaTiO3 nanotubes-based flexible and transparent nanogenerators[J]. The Journal of Physical Chemistry Letters, 2012, 3(23):3599-3604.

[145] Park K-I, Bae SB, Yang SH, Lee HI, Lee K, Lee SJ. Lead-free BaTiO3 nanowires-based flexible nanocomposite generator[J]. Nanoscale, 2014, 6(15):8962-8968.

[146] Jeong CK, Baek C, Kingon AI, Park KI, Kim SH. Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester[J]. Small, 2018, 14(19):1704022.

[147] Shi K, Huang X, Sun B, Wu Z, He J, Jiang P. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity[J]. Nano Energy, 2019, 57:450-458.

[148] Newnham RE. Composite electroceramics[J]. Ferroelectrics, 1986, 68(1):1-32.

[149] Zhang X, Le M-Q, Zahhaf O, Capsal J-F, Cottinet P-J, Petit L. Enhancing dielectric and piezoelectric properties of micro-ZnO/PDMS composite-based dielectrophoresis[J]. Materials & Design, 2020, 192:108783.

[150] d'Ambrogio G, Zahhaf O, Hebrard Y, Le MQ, Cottinet PJ, Capsal JF. Micro‐structuration of piezoelectric composites using dielectrophoresis: toward application in condition monitoring of bearings[J]. Advanced Engineering Materials, 2021, 23(1):2000773.

[151] Randall CA, Miller D, Adair JH, Bhalla A. Processing of electroceramic-polymer composites using the electrorheological effect[J]. Journal of Materials Research, 1993, 8(4):899-904.

[152] Van den Ende D, Bory B, Groen W, Van Der Zwaag S. Properties of quasi 1-3 piezoelectric PZT-epoxy composites obtained by dielectrophoresis[J]. Integrated Ferroelectrics, 2010, 114(1):108-18.

[153] Deutz DB, Mascarenhas NT, Schelen JBJ, de Leeuw DM, van der Zwaag S, Groen P. Flexible Piezoelectric Touch Sensor by Alignment of Lead‐Free Alkaline Niobate Microcubes in PDMS[J]. Advanced Functional Materials, 2017, 27(24):1700728.

[154] Lu S, Liao Q, Qi J, Liu S, Liu Y, Liang Q, et al. The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction[J]. Nano Research, 2016, 9(2):372-9.

[155] Hospodiuk-Karwowski M, Bokhari SM, Chi K, Moncal KK, Ozbolat V, Ozbolat IT, et al. Dual-charge bacterial cellulose as a potential 3D printable material for soft tissue engineering[J]. Composites Part B: Engineering, 2022, 231: 109598.

[156] Burgos GR, Alexandrou AN, Entov V. On the determination of yield surfaces in Herschel-Bulkley fluids[J]. Journal of Rheology, 1999, 43(3):463-483.

[157] Bowen C, Shrout T, Newnham R, Randall C. A study of the frequency dependence of the dielectrophoretic effect in thermoset polymers[J]. Journal of Materials Research, 1997, 12(9):2345-2356.

[158] Tomer V, Randall C, Polizos G, Kostelnick J, Manias E. High-and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites[J]. Journal of Applied Physics, 2008, 103(3):034115.

[159] Frenzel T, Kadic M, Wegener M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366):1072-1074.

[160] Bertoldi K, Vitelli V, Christensen J, Van Hecke M. Flexible mechanical metamaterials[J]. Nature Reviews Materials, 2017, 2(11):1-11.

[161] Meza LR, Das S, Greer JR. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 2014, 345(6202):1322-1326.

[162] Meza LR, Zelhofer AJ, Clarke N, Mateos AJ, Kochmann DM, Greer JR. Resilient 3D hierarchical architected metamaterials[J]. Proceedings of the National Academy of Sciences, 2015,112(37):11502-11507.

[163] Sing SL, An J, Yeong WY, Wiria FE. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34(3):369-385.

[164] Martorelli M, Gerbino S, Giudice M, Ausiello P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques[J]. Dental Materials. 2013;29(2):1-10.

[165] Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery[J]. Annals of Biomedical Engineering, 2017, 45(1):23-44.

[166] Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: A preliminary experience in digital workflow[J]. The Journal of Prosthetic Dentistry, 2018, 120(2):303-308.

[167] Pattinson SW, Huber ME, Kim S, Lee J, Grunsfeld S, Roberts R, et al. Additive manufacturing of biomechanically tailored meshes for compliant wearable and implantable devices[J]. Advanced Functional Materials, 2019, 29(32):1901815.

[168] Wang Z, Yuan X, Yang J, Huan Y, Gao X, Li Z, et al. 3D-printed flexible, Ag-coated PNN-PZT ceramic-polymer grid-composite for electromechanical energy conversion[J]. Nano Energy, 2020, 73:104737.

[169] Babu I, de With G. Highly flexible piezoelectric 0–3 PZT–PDMS composites with high filler content[J]. Composites Science and Technology, 2014, 91:91-97.

[170] Malakooti MH, Julé F, Sodano HA. Printed nanocomposite energy harvesters with controlled alignment of barium titanate nanowires[J]. ACS Applied Materials & Interfaces, 2018, 10(44):38359-38367.

[171] Yan J, Jeong YG. High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes[J]. ACS Applied Materials & Interfaces, 2016, 8(24):15700-15709.

[172] Alluri NR, Saravanakumar B, Kim S-J. Flexible, hybrid piezoelectric film (BaTi(1–x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor[J]. ACS Applied Materials & Interfaces, 2015, 7(18):9831-9840.

[173] Singh HH, Khare N. Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator[J]. Nano Energy, 2018, 51:216-222.

[174] Zhang G, Liao Q, Zhang Z, Liang Q, Zhao Y, Zheng X, et al. Novel piezoelectric paper‐based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose[J]. Advanced Science, 2016, 3(2):1500257.

[175] Shi K, Sun B, Huang X, Jiang P. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators[J]. Nano Energy, 2018, 52:153-162.

[176] Fu J, Hou Y, Gao X, Zheng M, Zhu M. Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density[J]. Nano Energy, 2018, 52:391-401.

[177] Ye S, Cheng C, Chen X, Chen X, Shao J, Zhang J, et al. High-performance piezoelectric nanogenerator based on microstructured P (VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space[J]. Nano Energy, 2019, 60:701-714.

[178] Zhou Z, Du X, Zhang Z, Luo J, Niu S, Shen D, et al. Interface modulated 0-D piezoceramic nanoparticles/PDMS based piezoelectric composites for highly efficient energy harvesting application[J]. Nano Energy, 2021, 82:105709.

[179] Zhang Y, Jeong CK, Yang T, Sun H, Chen L-Q, Zhang S, et al. Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting[J]. Journal of Materials Chemistry A, 2018, 6(30):14546-14552.

[180] Wang X, He X, Zhu H, Sun L, Fu W, Wang X, et al. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films[J]. Science Advances, 2016, 2(7):e1600209.

[181] Masmanidis SC, Karabalin RB, De Vlaminck I, Borghs G, Freeman MR, Roukes ML. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation[J]. Science, 2007, 317(5839):780-783.

[182] Egusa S, Wang Z, Chocat N, Ruff Z, Stolyarov A, Shemuly D, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8):643-648.

[183] Lu X, Qu H, Skorobogatiy M. Piezoelectric micro-and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications[J]. ACS Nano, 2017, 11(2):2103-2114.

[184] Buscaglia V, Viviani M, Buscaglia M, Nanni P, Mitoseriu L, Testino A, et al. Nanostructured barium titanate ceramics[J]. Powder Technology, 2004, 148(1):24-27.

[185] Maison W, Ananta S, Tunkasiri T, Thavornyutikarn P, Phanichphant S. Effect of calcination temperature on phase transformation and particle size of barium titanate fine powders synthesized by the catecholate process[J]. Science Asia, 2001, 27(4):239-243.

[186] Gaytan S, Cadena M, Karim H, Delfin D, Lin Y, Espalin D, et al. Fabrication of barium titanate by binder jetting additive manufacturing technology[J]. Ceramics International, 2015, 41(5):6610-6619.

[187] Goat C, Whatmore R. The effect of grinding conditions on lead zirconate titanate machinability[J]. Journal of the European Ceramic Society, 1999,19(6-7):1311-1313.

[188] Guo B, Zhang J, Ananth KP, Zhao S, Ji X, Bai J. Stretchable, self-healing and biodegradable water-based heater produced by 3D printing[J]. Composites Part A: Applied Science and Manufacturing, 2020,133:105863.

[189] Guo B, Liang G, Yu S, Wang Y, Zhi C, Bai J. 3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications[J]. Energy Storage Materials, 2021,39:146-165.

[190] Rengarajan S, Walser R. High-speed fiber-optic sensor for magnetic-field mapping[J]. Journal of Applied Physics, 1997, 81(8):4278-4280.

[191] Walser RM. Electromagnetic metamaterials[M]. Complex Mediums II: beyond linear isotropic dielectrics: International Society for Optics and Photonics, 2001.

[192] Deng G, Lv K, Sun H, Yang J, Yin Z, Chi B, et al. An ultra-broadband and optically transparent metamaterial absorber based on multilayer indium-tin-oxide structure[J]. Journal of Physics D: Applied Physics, 2021, 54(16):165301.

[193] Schurig D, Mock JJ, Justice B, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980.

[194] Ziolkowski RW. Propagation in and scattering from a matched metamaterial having a zero index of refraction[J]. Physical Review E, 2004, 70(4):046608.

[195] Yang J, Li Z, Xin X, Gao X, Yuan X, Wang Z, et al. Designing electromechanical metamaterial with full nonzero piezoelectric coefficients[J]. Science Advances, 2019,5(11):eaax1782.

[196] Yang J, Huan Q, Yu Y, Wu J, Chu Z, PourhosseiniAsl M, et al. Tailoring Artificial Mode to Enable Cofired Integration of Shear‐type Piezoelectric Devices[J]. Advanced Science, 2020, 7(17):2001368.

[197] Hansen C, Amirkhizi A, Shah D, Morris J, Wang W, Plaisted T, et al[M]. Mechanical metamaterials by DLP printing, 2020.

[198] Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190):1373-1377.

[199] Griffith ML, Halloran JW. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79(10):2601-2608.

[200] Xu S, Shi Y. Power generation from piezoelectric lead zirconate titanate nanotubes[J]. Journal of Physics D: Applied Physics, 2009, 42(8):085301.

[201] Xu Y, Liu D, Lai F, Zhen Y, Li JF. Fabrication of (K, Na) NbO3 Lead‐Free Piezoceramic Microrod Arrays by Sol–Gel Processing with Micromachined Silicon Templates[J]. Journal of the American Ceramic Society, 2008, 91(9):2844-2847.

[202] Ou C, Sanchez-Jimenez PE, Datta A, Boughey FL, Whiter RA, Sahonta S-L, et al. Template-assisted hydrothermal growth of aligned zinc oxide nanowires for piezoelectric energy harvesting applications[J]. ACS Applied Materials & Interfaces, 2016, 8(22):13678-13683.

[203] Zhang G, Zhao P, Zhang X, Han K, Zhao T, Zhang Y, et al. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting[J]. Energy & Environmental Science, 2018, 11(8):2046-2056.

[204] Li W, Li C, Zhang G, Li L, Huang K, Gong X, et al. Molecular Ferroelectric‐Based Flexible Sensors Exhibiting Supersensitivity and Multimodal Capability for Detection[J]. Advanced Materials, 2021, 33(44):2104107.

[205] Lee HA, Park E, Lee H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST[J]. Advanced Materials, 2020, 32(35):1907505.

[206] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426-430.

[207] Jiang C, Wang Y, Wang J, Song W, Lu L. Achieving ultrasensitive in vivo detection of bone crack with polydopamine-capsulated surface-enhanced Raman nanoparticle[J]. Biomaterials, 2017, 114:54-61.

[208] Wang C, Li Z, Chen J, Yin Y, Wu H. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating[J]. Applied Surface Science, 2018, 427:1092-1098.

[209] Yuk J, Troczynski T. Sol–gel BaTiO3 thin film for humidity sensors[J]. Sensors and Actuators B: Chemical, 2003, 94(3):290-293.

[210] Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018,17(4):349-354.

[211] Wang D, Fan Z, Rao G, Wang G, Liu Y, Yuan C, et al. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design[J]. Nano Energy, 2020, 76:104944.

[212] Gao X, Yang J, Wu J, Xin X, Li Z, Yuan X, et al. Piezoelectric actuators and motors: materials, designs, and applications[J]. Advanced Materials Technologies, 2020, 5(1):1900716.

[213] Gao X, Liu J, Xin B, Jin H, Luo L, Guo J, et al. A bending-bending mode piezoelectric actuator based on PIN-PMN-PT crystal stacks[J]. Sensors and Actuators A: Physical, 2021, 331:113052.

[214] Zhou C, Ke X, Yao Y, Yang S, Ji Y, Liu W, et al. Evolution from successive phase transitions to “morphotropic phase boundary” in BaTiO3-based ferroelectrics[J]. Applied Physics Letters, 2018, 112(18):182903.

[215] Zhu L-F, Zhang B-P, Duan J-Q, Xun B-W, Wang N, Tang Y-C, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time[J]. Journal of the European Ceramic Society, 2018, 38(10):3463-3471.

[216] Ruan W, Li G, Zeng J, Kamzina LS, Zeng H, Zheng L, et al. Fabrication of PMN–PZT transparent ceramics by two‐stage sintering[J]. Journal of the American Ceramic Society, 2012, 95(7):2103-2106.

[217] Yan K, Chen X, Wang F, Zhu K. Large piezoelectricity and high transparency in fine-grained BaTiO3 ceramics[J]. Applied Physics Letters, 2020,116(8):082902.

[218] Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, et al. High‐performance lead‐free piezoceramics with high curie temperatures[J]. Advanced Materials, 2015, 27(43):6976-6982.

[219] Yu Z, Zeng J, Zheng L, Liu W, Li G, Kassiba A. Large piezoelectricity and high Curie temperature in novel bismuth ferrite‐based ferroelectric ceramics[J]. Journal of the American Ceramic Society, 2020, 103(11):6435-6444.

[220] Franks GV, Tallon C, Studart AR, Sesso ML, Leo S. Colloidal processing: enabling complex shaped ceramics with unique multiscale structures[J]. Journal of the American Ceramic Society, 2017, 100(2):458-490.

[221] Cho J, Li Q, Wang H, Fan Z, Li J, Xue S, et al. High temperature deformability of ductile flash-sintered ceramics via in-situ compression[J]. Nature Communications, 2018, 9(1):1-9.

[222] Su X, Fu F, Yan Y, Zheng G, Liang T, Zhang Q, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing[J]. Nature Communications, 2014, 5(1):1-7.

[223] Olevsky E, German R. Effect of gravity on dimensional change during sintering—I. Shrinkage anisotropy[J]. Acta Materialia, 2000, 48(5):1153-1166.

[224] Olevsky E, German R, Upadhyaya A. Effect of gravity on dimensional change during sintering—II. Shape distortion[J]. Acta Materialia, 2000, 48(5):1167-1180.

[225] Cui J, Poblete FR, Zhu Y. Origami/Kirigami‐Guided Morphing of Composite Sheets[J]. Advanced Functional Materials, 2018, 28(44):1802768.

[226] Callens SJ, Zadpoor AA. From flat sheets to curved geometries: Origami and kirigami approaches[J]. Materials Today, 2018, 21(3):241-264.

[227] Zirbel SA, Lang RJ, Thomson MW, Sigel DA, Walkemeyer PE, Trease BP, et al. Accommodating thickness in origami-based deployable arrays[J]. Journal of Mechanical Design, 2013, 135(11): 111005.

[228] Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science, 2014, 345(6197):647-650.

[229] Overvelde JT, Weaver JC, Hoberman C, Bertoldi K. Rational design of reconfigurable prismatic architected materials[J]. Nature, 2017, 541(7637):347-352.

[230] Felton S, Tolley M, Demaine E, Rus D, Wood R. A method for building self-folding machines[J]. Science, 2014,345(6197):644-646.

[231] Felton SM, Tolley MT, Shin B, Onal CD, Demaine ED, Rus D, et al. Self-folding with shape memory composites[J]. Soft Matter, 2013, 9(32):7688-7694.

[232] Kuribayashi K, Tsuchiya K, You Z, Tomus D, Umemoto M, Ito T, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil[J]. Materials Science and Engineering: A, 2006, 419(1-2):131-137.

[233] Shyu TC, Damasceno PF, Dodd PM, Lamoureux A, Xu L, Shlian M, et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects[J]. Nature Materials, 2015, 14(8):785-789.

[234] Cho Y, Shin J-H, Costa A, Kim TA, Kunin V, Li J, et al. Engineering the shape and structure of materials by fractal cut[J]. Proceedings of the National Academy of Sciences, 2014, 111(49):17390-17395.

[235] Maurya D, Zhou Y, Wang Y, Yan Y, Li J, Viehland D, et al. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials[J]. Scientific Reports, 2015, 5(2) :131-135.

[236] Kawashima T, Suzuki Y. High-temperature X-ray diffraction analysis and reactive sintering of BaTiO3 piezoelectric ceramics[J]. Journal of the Ceramic Society of Japan, 2015, 123(1434):83-85.

[237] Takahashi H, Numamoto Y, Tani J, Tsurekawa S. Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering[J]. Japanese Journal of Applied Physics, 2006, 45(9S):7405.

Academic Degree Assessment Sub committee
材料科学与工程系
Domestic book classification number
TB1
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343177
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
王泽环. 聚合物/陶瓷复合压电材料的增材制造与应用研究[D]. 北京. 北京大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11866005-王泽环-材料科学与工程(22389KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[王泽环]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[王泽环]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王泽环]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.