中文版 | English
Title

轴子-光子转换及轴子在黑洞下的性质

Alternative Title
AXION-PHOTON TRANSITION AND AXION’SPROPERTIES UNDER BLACK HOLE
Author
Name pinyin
FANG Xing
School number
11930024
Degree
硕士
Discipline
070201 理论物理
Subject category of dissertation
07 理学
Supervisor
俞大鹏
Mentor unit
物理系
Publication Years
2022-05
Submission date
2022-07-01
University
南方科技大学
Place of Publication
深圳
Abstract

从强 CP 破坏问题出发,本文讨论了 𝑈(1)𝑃𝑄 理论的基本概念,并推导了该理 论为何能证明 𝜃 如此之小的原因,继而引出了假想粒子——轴子的基本思想。本 文对轴子的势能和质量进行了推导计算,并说明了在天文学观测下,轴子的质量 范围和其作为暗物质粒子的可能性。特别地,太阳是天然的轴子源,我们计算了 太阳轴子的通量,也推导出轴子的质量在 10−3𝑒𝑣 左右。对轴子的实验探测有太阳 轴子实验,LSW 实验等,本文简单地介绍了实验原理,并作出了一些参数估算。 轴子-光子转换是本文的重点研究对象,本文利用中微子振荡过程中粒子之间 互相转换的基本思想和理论推导,计算了轴子-光子在给定条件下转换的概率和其 相互作用耦合强度。同时在强磁场下,光子也会转换为另一种假想粒子——引力 子,研究特定背景下轴子-光子-引力子的联合转换是必要的,本文给出了三者之间 互相转换的比例。 倘若轴子的康普顿波长和黑洞的视界半径相当,那么轴子会围绕在黑洞外形 成一个宏观量子态——引力原子。本文计算出引力原子中轴子的能级是量化的,并 以此为依据计算了黑洞旋进周期的变化和轴子的超辐射现象。我们用函数拟合的 方法和数值解析里的连续分数法推导了轴子能量量化的必然性和轴子在不同能级 下的跃迁率。正在建立的 eLISA 和 AGIS 实验室将对超大质量黑洞周围的湮灭信 号进行测量,到时物理学家们测量轴子湮灭的信号就如测量引力波信号一样,具 有跨时代的意义。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] DI LUZIO L, GIANNOTTI M, NARDI E, et al. The landscape of QCD axion models[J/OL].Phys. Rept., 2020, 870: 1-117. DOI: 10.1016/j.physrep.2020.06.002.

[2] LANDINI G, MEGGIOLARO E. Study of the interactions of the axion with mesons and photonsusing a chiral effective Lagrangian model[J/OL]. The European Physical Journal C, 2020, 80(4). https://doi.org/10.1140%2Fepjc%2Fs10052-020-7849-2. DOI: 10.1140/epjc/s10052-020-7849-2.

[3] MARSH D J E. Axion Cosmology[J/OL]. Phys. Rept., 2016, 643: 1-79. DOI: 10.1016/j.physrep.2016.06.005.

[4] NAEGELS D. Goldstone Boson Physics and Effective Field Theories[J/OL]. PoS, 2022, Modave2021: 004. DOI: 10.22323/1.404.0004.

[5] PECCEI R D. The Strong CP Problem and Axions[M/OL]//Lecture Notes in Physics. SpringerBerlin Heidelberg, 2008: 3-17. https://doi.org/10.1007%2F978-3-540-73518-2_1. DOI: 10.1007/978-3-540-73518-2_1.

[6] ZYLA P A, et al. Review of Particle Physics[J/OL]. PTEP, 2020, 2020(8): 083C01. DOI:10.1093/ptep/ptaa104.

[7] BRITO R, CARDOSO V, PANI P. Superradiance[M/OL]. Springer International Publishing,2020. https://doi.org/10.1007%2F978-3-030-46622-0. DOI: 10.1007/978-3-030-46622-0.

[8] ARVANITAKI A, DUBOVSKY S. Exploring the String Axiverse with Precision Black HolePhysics[J/OL]. Phys. Rev. D, 2011, 83: 044026. DOI: 10.1103/PhysRevD.83.044026.

[9] HERDEIRO C A, RADU E. Kerr Black Holes with Scalar Hair[J/OL]. Physical Review Letters,2014, 112(22). https://doi.org/10.1103%2Fphysrevlett.112.221101. DOI: 10.1103/physrevlett.112.221101.

[10] JOHN A J, GHOSH S G, MAHARAJ S D. Accretion onto a higher dimensional black hole[J/OL]. Phys. Rev. D, 2013, 88(10): 104005. DOI: 10.1103/PhysRevD.88.104005.

[11] CREWTHER R J, DI VECCHIA P, VENEZIANO G, et al. Chiral Estimate of the ElectricDipole Moment of the Neutron in Quantum Chromodynamics[J/OL]. Phys. Lett. B, 1979, 88:123. DOI: 10.1016/0370-2693(79)90128-X.

[12] DEMIRTAS M, GENDLER N, LONG C, et al. PQ Axiverse[J]. 2021.

[13] REDI M, SATO R. Composite accidental axions[J/OL]. Journal of High Energy Physics, 2016,2016(5). https://doi.org/10.1007%2Fjhep05%282016%29104. DOI: 10.1007/jhep05(2016)104.

[14] HARIGAYA K, IBE M, SCHMITZ K, et al. Peccei-Quinn symmetry from a gauged discreteRsymmetry[J/OL]. Physical Review D, 2013, 88(7). https://doi.org/10.1103%2Fphysrevd.88.075022. DOI: 10.1103/physrevd.88.075022.

[15] DIAS A G, PLEITEZ V, TONASSE M D. Naturally light invisible axion in models with largelocal discrete symmetries[J/OL]. Physical Review D, 2003, 67(9). https://doi.org/10.1103%2Fphysrevd.67.095008. DOI: 10.1103/physrevd.67.095008.

[16] DIAS A G, MACHADO A C B, NISHI C C, et al. The quest for an intermediate-scale accidentalaxion and further ALPs[J/OL]. Journal of High Energy Physics, 2014, 2014(6). https://doi.org/10.1007%2Fjhep06%282014%29037. DOI: 10.1007/jhep06(2014)037.

[17] HARIGAYA K, IBE M, SCHMITZ K, et al. Peccei-Quinn symmetry from dynamical supersymmetry breaking[J/OL]. Physical Review D, 2015, 92(7). https://doi.org/10.1103%2Fphysrevd.92.075003. DOI: 10.1103/physrevd.92.075003.

[18] DI LUZIO L, NARDI E, UBALDI L. Accidental Peccei-Quinn symmetry protected to arbitraryorder[J/OL]. Phys. Rev. Lett., 2017, 119(1): 011801. DOI: 10.1103/PhysRevLett.119.011801.

[19] BONNEFOY Q, DUDAS E, POKORSKI S. Axions in a highly protected gauge symmetrymodel[J/OL]. Eur. Phys. J. C, 2019, 79(1): 31. DOI: 10.1140/epjc/s10052-018-6528-z.

[20] LILLARD B, TAIT T M P. A high quality composite axion[J/OL]. Journal of High EnergyPhysics, 2018, 2018(11). https://doi.org/10.1007%2Fjhep11%282018%29199. DOI: 10.1007/jhep11(2018)199.

[21] CHOI K. QCD Axion from a Higher Dimensional Gauge Field Theory[J/OL]. Physical ReviewLetters, 2004, 92(10). https://doi.org/10.1103%2Fphysrevlett.92.101602. DOI: 10.1103/physrevlett.92.101602.

[22] DAIDO R, TAKAHASHI F, YIN W. The ALP miracle revisited[J/OL]. JHEP, 2018, 02: 104.DOI: 10.1007/JHEP02(2018)104.

[23] LARSEN R N, SHARMA S, SHURYAK E. Correlating confinement to topological fluctuationsnear the crossover transition in QCD[J]. 2021.

[24] LINDE A D. Generation of Isothermal Density Perturbations in the Inflationary Universe[J/OL].Phys. Lett. B, 1985, 158: 375-380. DOI: 10.1016/0370-2693(85)90436-8.

[25] ARVANITAKI A, DIMOPOULOS S, GALANIS M, et al. Large-misalignment mechanism forthe formation of compact axion structures: Signatures from the QCD axion to fuzzy dark matter[J/OL]. Phys. Rev. D, 2020, 101(8): 083014. DOI: 10.1103/PhysRevD.101.083014.

[26] WANTZ O, SHELLARD E P S. Axion Cosmology Revisited[J/OL]. Phys. Rev. D, 2010, 82:123508. DOI: 10.1103/PhysRevD.82.123508.

[27] CROTTY P, GARCIA-BELLIDO J, LESGOURGUES J, et al. Bounds on isocurvature perturbations from CMB and LSS data[J/OL]. Phys. Rev. Lett., 2003, 91: 171301. DOI:10.1103/PhysRevLett.91.171301.

[28] HOOF S, KAHLHOEFER F, SCOTT P, et al. Axion global fits with Peccei-Quinn symmetrybreaking before inflation using GAMBIT[J/OL]. Journal of High Energy Physics, 2019, 2019(3). https://doi.org/10.1007%2Fjhep03%282019%29191. DOI: 10.1007/jhep03(2019)191.

[29] GAVELA M, NO J, SANZ V, et al. Nonresonant Searches for Axionlike Particles at the LHC[J/OL]. Physical Review Letters, 2020, 124(5). https://doi.org/10.1103%2Fphysrevlett.124.051802. DOI: 10.1103/physrevlett.124.051802.

[30] IRASTORZA I G, REDONDO J. New experimental approaches in the search for axion-likeparticles[J/OL]. Prog. Part. Nucl. Phys., 2018, 102: 89-159. DOI: 10.1016/j.ppnp.2018.05.003.

[31] ARCHIDIACONO M, BASSE T, HAMANN J, et al. Future cosmological sensitivity for hotdark matter axions[J/OL]. Journal of Cosmology and Astroparticle Physics, 2015, 2015(05):050-050. https://doi.org/10.1088%2F1475-7516%2F2015%2F05%2F050. DOI: 10.1088/1475-7516/2015/05/050.

[32] PRESKILL J, WISE M B, WILCZEK F. Cosmology of the Invisible Axion[J/OL]. Phys. Lett.B, 1983, 120: 127-132. DOI: 10.1016/0370-2693(83)90637-8.

[33] GRAHAM P W, IRASTORZA I G, LAMOREAUX S K, et al. Experimental Searches for theAxion and Axion-Like Particles[J/OL]. Ann. Rev. Nucl. Part. Sci., 2015, 65: 485-514. DOI:10.1146/annurev-nucl-102014-022120.

[34] DöBRICH B, JAECKEL J, SPADARO T. Erratum to: Light in the beam dump. Axion-LikeParticle production from decay photons in proton beam-dumps[J/OL]. Journal of High EnergyPhysics, 2020, 2020(10). https://doi.org/10.1007%2Fjhep10%282020%29046. DOI: 10.1007/jhep10(2020)046.

[35] FOLKERTS S, GERMANI C, REDONDO J. Axion dark matter and Planck favor non-minimalcouplings to gravity[J/OL]. Physics Letters B, 2014, 728: 532-536. https://doi.org/10.1016%2Fj.physletb.2013.12.026. DOI: 10.1016/j.physletb.2013.12.026.

[36] ABBOTT B P, et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J/OL]. Phys. Rev. Lett., 2016, 116(6): 061102. DOI: 10.1103/PhysRevLett.116.061102.

[37] DIAS Ó J C, HOROWITZ G T, SANTOS J E. Black holes with only one Killing field[J/OL].Journal of High Energy Physics, 2011, 2011(7). https://doi.org/10.1007%2Fjhep07%282011%29115. DOI: 10.1007/jhep07(2011)115.

[38] BRITO R, CARDOSO V, PANI P. Superradiance: New Frontiers in Black Hole Physics[J/OL].Lect. Notes Phys., 2015, 906: pp.1-237. DOI: 10.1007/978-3-319-19000-6.

[39] HERDEIRO C, RADU E, RÚNARSSON H. Kerr black holes with Proca hair[J/OL]. Class.Quant. Grav., 2016, 33(15): 154001. DOI: 10.1088/0264-9381/33/15/154001.

[40] YOSHINO H, KODAMA H. Bosenova collapse of axion cloud around a rotating black hole[J/OL]. Prog. Theor. Phys., 2012, 128: 153-190. DOI: 10.1143/PTP.128.153.

[41] PRESS W H, TEUKOLSKY S A. Floating Orbits, Superradiant Scattering and the Black-holeBomb[J/OL]. Nature, 1972, 238: 211-212. DOI: 10.1038/238211a0.

[42] ROSA J G. The Extremal black hole bomb[J/OL]. JHEP, 2010, 06: 015. DOI: 10.1007/JHEP06(2010)015.

[43] 付立鲁. 轴子–克尔黑洞系统的超辐射过程[J]. 2021.

[44] HERDEIRO C A R, DEGOLLADO J C, RÚNARSSON H F. Rapid growth of superradiantinstabilities for charged black holes in a cavity[J/OL]. Phys. Rev. D, 2013, 88: 063003. DOI:10.1103/PhysRevD.88.063003.

[45] DOLAN S R. Instability of the massive Klein-Gordon field on the Kerr spacetime[J/OL].Physical Review D, 2007, 76(8). https://doi.org/10.1103%2Fphysrevd.76.084001. DOI:10.1103/physrevd.76.084001.

[46] CARDOSO V, DIAS O J C, HARTNETT G S, et al. Constraining the mass of dark photonsand axion-like particles through black-hole superradiance[J/OL]. JCAP, 2018, 03: 043. DOI:10.1088/1475-7516/2018/03/043.

[47] AAD G, et al. Observation of a new particle in the search for the Standard Model Higgs bosonwith the ATLAS detector at the LHC[J/OL]. Phys. Lett. B, 2012, 716: 1-29. DOI: 10.1016/j.physletb.2012.08.020.

[48] ARVANITAKI A, BARYAKHTAR M, DIMOPOULOS S, et al. Black Hole Mergers and theQCD Axion at Advanced LIGO[J/OL]. Phys. Rev. D, 2017, 95(4): 043001. DOI: 10.1103/PhysRevD.95.043001.

[49] DIAS O J C, HOROWITZ G T, SANTOS J E. Black holes with only one Killing field[J/OL].JHEP, 2011, 07: 115. DOI: 10.1007/JHEP07(2011)115.

[50] HERDEIRO C A R, RADU E. Kerr black holes with scalar hair[J/OL]. Phys. Rev. Lett., 2014,112: 221101. DOI: 10.1103/PhysRevLett.112.221101.

[51] BABICHEV E O. The Accretion of Dark Energy onto a Black Hole[J/OL]. Journal of Experimental and Theoretical Physics, 2005, 100(3): 528. https://doi.org/10.1134%2F1.1901765.DOI: 10.1134/1.1901765.

[52] ARVANITAKI A, BARYAKHTAR M, HUANG X. Discovering the QCD Axion with BlackHoles and Gravitational Waves[J/OL]. Phys. Rev. D, 2015, 91(8): 084011. DOI: 10.1103/PhysRevD.91.084011.

Academic Degree Assessment Sub committee
量子科学与工程研究院
Domestic book classification number
O572.2
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343181
DepartmentInstitute for Quantum Science and Engineering
Recommended Citation
GB/T 7714
方星. 轴子-光子转换及轴子在黑洞下的性质[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930024-方星-量子科学与工程研(1624KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[方星]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[方星]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[方星]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.