中文版 | English
Title

新型嗜碱产水型NADH氧化酶的基因挖掘及功能性质研究

Alternative Title
GENE MINING AND FUNCTIONAL PROPERTIES OF A NOVEL ALKALOPHILIC WATER-PRODUCING NADH OXIDAS
Author
Name pinyin
ZHANG Weidie
School number
12032108
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
钟龙华
Mentor unit
化学系
Publication Years
2022-05-14
Submission date
2022-07-01
University
南方科技大学
Place of Publication
深圳
Abstract

90%的工业反应过程中需要催化剂来促进反应,而作为生物催化剂的酶催化剂因为其绿色、高效等特性逐步成为催化剂发展的方向,氧化还原酶就是其中运用最广泛的一种类型。目前大部分氧化还原酶催化过程都需要NADH/NAD+(还原性辅酶Ⅰ)作为辅酶促进电子转移,而辅酶会在反应中逐渐消耗且不可逆,于是辅酶的再生成为氧化还原酶应用的关键。NADH氧化酶可以在氧气的作用下将NADH催化脱氢形成NAD+,可以与消耗NAD+的氧化还原反应形成循环促进反应。NADH氧化酶作为一种酶,需要在合适的温度与pH下才能发挥作用,目前大多数NADH氧化酶最适pH值都在中性或酸性范围,在碱性条件下的反应NADH氧化酶的活性就会大大降低,影响反应效率。本课题希望通过基因挖掘与蛋白质工程等手段获取一种碱性NADH氧化酶,其在碱性条件也能保持较高的活性,开拓NADH/NAD+辅酶在工业上的应用前景。

论文通过基因挖掘在嗜碱盐乳杆菌属微生物体内挖掘到一种新型的NADH氧化酶基因(HaNOX),利用蛋白质工程与基因工程体外克隆表达这种NADH氧化酶。纯化后酶学性质研究发现HaNOX的最适pH值为8.5左右,且在碱性条件下的比活力也保持在较高水平。并对HaNOX进行同源建模和分子对接,分析结合口袋中心关键氨基酸的相互作用。之后通过半理性设计对HaNOX进行定点突变改造,希望获得综合性能更优异的碱性NADH氧化酶。结果显示,通过构建F242AF242VF242S3个突变体,发现F242SF242A突变体的最适pH依旧保持在碱性范围,且F242S在碱性条件pH8.0下的比活力相较HaNOX有显著提高,特别是Kcat/Km 相比野生型提高了1.2倍,是性能更优异的突变体。HaNOXF242S突变体在碱性条件下的高活力拓展了NADH氧化酶在碱性条件的应用,为更多利用氧化还原酶的工业生产提供了可能。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[HARDEN A, YOUNG W J. The alcoholic ferment of yeast-juice[J]. Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character, 1906, 77(519): 405-420.
[2] ZAPATA-PEREZ R, WANDERS R J A, VAN KARNEBEEK C D M, et al. NAD(+) homeostasis in human health and disease[J]. Embo Molecular Medicine, 2021, 13(7)
[3] WARBURG O, CHRISTIAN W. Pyridine, the hydrogen transfusing component of fermentative enzymes[J]. Helvetica Chimica Acta, 1936, 19: 79-88.
[4] DEKKER W J C, JURGENS H, ORTIZ-MERINO R A, et al. Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha[J]. Fems Yeast Research, 2022, 22(1)
[5] FARD P T, KIM K, LEE S, et al. Ligand effects in rhodium complexes for chemical NADH regeneration[J]. Bulletin of the Korean Chemical Society,
[6] ZHOU J H, YU S S, KANG H L, et al. Construction of multi-enzyme cascade biomimetic carbon sequestration system based on photocatalytic coenzyme NADH regeneration[J]. Renewable Energy, 2020, 156: 107-116.
[7] IMMANUEL S, SIVASUBRAMANIAN R, GUL R, et al. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH)[J]. Chemistry-an Asian Journal, 2020, 15(24): 4256-4270.
[8] ZHU C Y, ZHU Y H, ZHOU H P, et al. Cloning, expression, and characterization of an arabitol dehydrogenase and coupled with NADH oxidase for effective production of L-xylulose[J]. Preparative Biochemistry & Biotechnology,
[9] LI X Y, XU M Q, LIU H, et al. Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for l-tagatose synthesis via in situ cofactor regeneration[J]. Bioprocess and Biosystems Engineering, 2022, 45(2): 353-364.
[10] WECKBECKER A, GROGER H, HUMMEL W. Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds[M]//WITTMANN C, KRULL W R. Biosystems Engineering I: Creating Superior Biocatalysts. 2010: 195-242.
[11] WANG Y P, PENG Y H, LIU X Y, et al. Efficient 2,3-Butanediol/Acetoin Production Using Whole-Cell Biocatalyst with a New Nadh/Nad(+) Regeneration System[J]. Catalysts, 2021, 11(12)
[12] TOOMEY D, MAYHEW S G. Purification and characterisation of NADH oxidase from Thermus aquaticus YT-1 and evidence that it functions in a peroxide-reduction system[J]. European Journal of Biochemistry, 1998, 251(3): 935-945.
[13] HRITZ J, ZOLDAK G, SEDLAK E. Cofactor assisted Gating mechanism in the active site of NADH oxidase from Thermus thermophilus[J]. Proteins-Structure Function and Bioinformatics, 2006, 64(2): 465-476.
[14] SCHMIDT H L, STOCKLEIN W, DANZER J, et al. ISOLATION AND PROPERTIES OF AN H2O-FORMING NADH OXIDASE FROM STREPTOCOCCUS-FAECALIS[J]. European Journal of Biochemistry, 1986, 156(1): 149-155.
[15] WALLEN J R, MALLETT T C, OKUNO T, et al. Structural Analysis of Streptococcus pyogenes NADH Oxidase: Conformational Dynamics Involved in Formation of the C(4a)-Peroxyflavin Intermediate[J]. Biochemistry, 2015, 54(45): 6815-6829.
[16] HIGUCHI M, YAMAMOTO Y, KAMIO Y. Molecular biology of oxygen tolerance in lactic acid bacteria: Functions of NADH oxidases and Dpr in oxidative stress[J]. Journal of Bioscience and Bioengineering, 2000, 90(5): 484-493.
[17] YAMAMOTO Y, PARGADE V, LAMBERET G, et al. The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence[J]. Molecular Microbiology, 2006, 62(3): 772-785.
[18] SUDAR M, FINDRIK Z, DOMANOVAC M V, et al. Coenzyme regeneration catalyzed by NADH oxidase from Lactococcus lactis[J]. Biochemical Engineering Journal, 2014, 88: 12-18.
[19] GEUEKE B, RIEBEL B, HUMMEL W. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD[J]. Enzyme and Microbial Technology, 2003, 32(2): 205-211.
[20] DE ANGELIS M, DI CAGNO R, GALLO G, et al. Molecular and functional characterization of Lactobacillus sanfranciscensis strains isolated from sourdoughs[J]. International Journal of Food Microbiology, 2007, 114(1): 69-82.
[21] LI F L, SHI Y, ZHANG J X, et al. Cloning, expression, characterization and homology modeling of a novel water-forming NADH oxidase from Streptococcus mutans ATCC 25175[J]. International Journal of Biological Macromolecules, 2018, 113: 1073-1079.
[22] NIIMURA Y, OHNISHI K, YARITA Y, et al. A FLAVOPROTEIN FUNCTIONAL AS NADH OXIDASE FROM AMPHIBACILLUS-XYLANUS EP01 - PURIFICATION AND CHARACTERIZATION OF THE ENZYME AND STRUCTURAL-ANALYSIS OF ITS GENE[J]. Journal of Bacteriology, 1993, 175(24): 7945-7950.
[23] NISHIYAMA Y, MASSEY V, ANZAI Y, et al. Purification and characterization of Sporolactobacillus inulinus NADH oxidase and its physiological role in aerobic metabolism of the bacterium[J]. Journal of Fermentation and Bioengineering, 1997, 84(1): 22-27.
[24] YI X W, KOT E, BEZKOROVAINY A. Properties of NADH oxidase from Lactobacillus delbrueckii ssp bulgaricus[J]. Journal of the Science of Food and Agriculture, 1998, 78(4): 527-534.
[25] REINARDS R, KUBICKI J, OHLENBUSCH H D. PURIFICATION AND CHARACTERIZATION OF NADH OXIDASE FROM MEMBRANES OF ACHOLEPLASMA-LAIDLAWII, A COPPER-CONTAINING IRON-SULFUR FLAVOPROTEIN[J]. European Journal of Biochemistry, 1981, 120(2): 329-337.
[26] MAEDA K, TRUSCOTT K, LIU X L, et al. A THERMOSTABLE NADH OXIDASE FROM ANAEROBIC EXTREME THERMOPHILES[J]. Biochemical Journal, 1992, 284: 551-555.
[27] PARK H J, REISER C O A, KONDRUWEIT S, et al. PURIFICATION AND CHARACTERIZATION OF A NADH OXIDASE FROM THE THERMOPHILE THERMUS-THERMOPHILUS HB8[J]. European Journal of Biochemistry, 1992, 205(3): 881-885.
[28] SAEKI Y, NOZAKI M, MATSUMOTO K. PURIFICATION AND PROPERTIES OF NADH OXIDASE FROM BACILLUS-MEGATERIUM[J]. Journal of Biochemistry, 1985, 98(6): 1433-1440.
[29] POOLE L B, CLAIBORNE A. THE NON-FLAVIN REDOX CENTER OF THE STREPTOCOCCAL NADH PEROXIDASE .1. THIOL REACTIVITY AND REDOX BEHAVIOR IN THE PRESENCE OF UREA[J]. Journal of Biological Chemistry, 1989, 264(21): 12322-12329.
[30] HUMMEL W, RIEBEL B. Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis[J]. Biotechnology Letters, 2003, 25(1): 51-54.
[31] RIEBEL B R, GIBBS P R, WELLBORN W B, et al. Cofactor regeneration of both NAD(+) from NADH and NADP(+) from NADPH : NADH oxidase from Lactobacillus sanfranciscensis[J]. Advanced Synthesis & Catalysis, 2003, 345(6-7): 707-712.
[32] KAWASAKI S, ISHIKURA J, CHIBA D, et al. Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria[J]. Archives of Microbiology, 2004, 181(4): 324-330.
[33] KOIKE K, KOBAYASHI T, ITO S, et al. PURIFICATION AND CHARACTERIZATION OF NADH OXIDASE FROM A STRAIN OF LEUCONOSTOC-MESENTEROIDES[J]. Journal of Biochemistry, 1985, 97(5): 1279-1288.
[34] STANTON T B, JENSEN N S. PURIFICATION AND CHARACTERIZATION OF NADH OXIDASE FROM SERPULINA-(TREPONEMA)-HYODYSENTERIAE[J]. Journal of Bacteriology, 1993, 175(10): 2980-2987.
[35] DE FELIPE F L, HUGENHOLTZ J. Purification and characterisation of the water forming NADH-oxidase from Lactococcus lactis[J]. International Dairy Journal, 2001, 11(1-2): 37-44.
[36] 卿三红, 方柏山. NADH氧化酶的研究进展[J]. 华侨大学学报(自然科学版), 2011, 32(05): 554-559.
[37] LOUNTOS G T, JIANG R R, WELLBORN W B, et al. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: Insights into the conversion of O-2 into two water molecules by the flavoenzyme[J]. Biochemistry, 2006, 45(32): 9648-9659.
[38] WU H, CHEN Q M, ZHANG W L, et al. Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges[J]. Critical Reviews in Food Science and Nutrition,
[39] KHARE S. Green Bio-processes: Enzymes in Industrial Food Processing[J]. Journal of Cleaner Production, 2021, 315
[40] MUKHERJEE S, STAMATIS D, BERTSCH J, et al. Genomes OnLine Database (GOLD) v.8: overview and updates[J]. Nucleic Acids Research, 2021, 49(D1): D723-D733.
[41] 郁惠蕾, 张志钧, 李春秀, et al. 大数据时代工业酶的发掘、改造和利用[J]. 生物产业技术, 2016(02): 48-55.
[42] HOHNE M, SCHATZLE S, JOCHENS H, et al. Rational assignment of key motifs for function guides in silico enzyme identification[J]. Nature Chemical Biology, 2010, 6(11): 807-813.
[43] ARAúJO R, CASAL M, CAVACO-PAULO A. 1 - Design and engineering of novel enzymes for textile applications[M]//NIERSTRASZ V A, CAVACO-PAULO A. Advances in Textile Biotechnology. Woodhead Publishing. 2010: 3-31.
[44] CASTILLO-VILLANUEVA A, REYES-VIVAS H, ORIA-HERNANDEZ J. Kinetic stability of the water-forming NADH oxidase from Giardia lamblia: implications for biotechnological processes[J]. Biotechnology & Biotechnological Equipment, 2021, 35(1): 1401-1408.
[45] ZHANG J D, CUI Z M, FAN X J, et al. Cloning and characterization of two distinct water-forming NADH oxidases from Lactobacillus pentosus for the regeneration of NAD[J]. Bioprocess and Biosystems Engineering, 2016, 39(4): 603-611.
[46] YAN M G, YIN N B, FANG X, et al. Characteristics of a water-forming NADH oxidase from Methanobrevibacter smithii, an archaeon in the human gut[J]. Bioscience Reports, 2016, 36
[47] BETTI M, CIACCI C, ABRAMOVICH S, et al. Protein Extractions from Amphistegina lobifera: Protocol Development and Optimization[J]. Life-Basel, 2021, 11(5)
[48] LIANG B, LIU Y H, ZHAO Y K, et al. Development of bacterial biosensor for sensitive and selective detection of acetaldehyde[J]. Biosensors & Bioelectronics, 2021, 193

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
Q814
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/343301
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
章伟轶. 新型嗜碱产水型NADH氧化酶的基因挖掘及功能性质研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032108-章伟轶-化学系.pdf(4644KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[章伟轶]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[章伟轶]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[章伟轶]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.