中文版 | English
Title

基于高分辨率多波长光声微流控技术的细胞分型研究

Alternative Title
FLOW CELL TYPING BASED ON HIGH-RESOLUTION MULTI-WAVELENGTH PHOTOACOUSTIC MICROFLUIDICS TECHNOLOGY
Author
Name pinyin
SUN Aihui
School number
11849595
Degree
博士
Discipline
083100 生物医学工程
Subject category of dissertation
08 工学
Supervisor
奚磊
Mentor unit
生物医学工程系
Publication Years
2022-05-17
Submission date
2022-07-05
University
哈尔滨工业大学
Place of Publication
深圳
Abstract

癌症已成为对人类威胁最大的疾病之一,近年来癌症的发病人数与致死率迅速增长。晚期癌症致死率高的主要原因是恶性肿瘤发生了扩散与转移。因此,对肿瘤转移的早期诊断是提高治疗效果、降低死亡率的有效手段。循环肿瘤细胞作为恶性肿瘤的“标志物”之一,对其进行检测可以在较早阶段诊断肿瘤转移,因此在肿瘤检测中意义重大。传统的循环肿瘤细胞检测方法利用免疫磁珠对细胞进行特异性捕获,并借助磁场实现对肿瘤细胞的富集,然而该方法难以区分各类肿瘤细胞。传统光学成像可以在血液中直接检测循环肿瘤细胞,在肿瘤检测中具有巨大的应用潜力。然而考虑到血液对光具有很强的散射效应,因此为了提高成像精度和识别准确率,该方案仍旧需要对血液进行稀释等繁琐的预处理。此外,大部分光学成像方法依旧难以实现对肿瘤细胞的特异性识别。

光声成像作为一种新型无损的医学影像技术,融合了光学的高分辨率成像与声学的高穿透性。尤其是光学分辨率光声显微成像技术的出现,使得光声成像技术成功地应用于细胞等微观结构的观测与研究。然而,目前的光声成像技术仍然难以直接检测循环肿瘤细胞,主要存在问题是:(1)用于动态细胞成像的光声系统的分辨率普遍较低,难以直观地对循环肿瘤细胞进行观测与分辨;(2)目前高重复频率的脉冲激光器的波长数目较少,导致光声成像系统对循环肿瘤细胞的分型能力受限。因此,为了解决以上问题,本文设计并搭建了高分辨率光声微流控成像系统并开展了肿瘤细胞的检测与分型研究,证明了该系统能够对血液中循环肿瘤细胞进行检测,并为光声成像用于临床的血液检测提供重要的前期基础。本文的主要研究内容包括:

1)本文首先设计并构建了多波长光声细胞成像系统,将成像分辨率提升至1.5 μm,使得系统能够对细胞进行高分辨率成像。系统的激发光模块采用了532 nm 770 nm的脉冲激光器,重复频率为50 kHz。基于多个激发光提供的发色团信息,该光声成像系统实现了对无标记的黑色素瘤细胞与血细胞的分辨。然后,利用外源标记的方法引入了三种发色团,来进一步检验该系统的分辨能力。根据发色团之间的吸收差异,本文提出了一种基于光声信号幅值大小、光声信号的频率分布以及发色团吸收系数比等的多参数发色团识别方法。利用该方法,在两个波长激发光的情况下,成功实现了对四种不同类型细胞的分型。

2)本文随后设计并构建了多波长光声微流控细胞成像系统,实现了动态细胞的分型和血液中黑色素瘤细胞的检测。在多波长光声细胞成像系统的基础上,结合微流控通道,实现了对通道内流动细胞的高分辨率成像。此外在光声系统引入了超声驻波场以解决离焦与欠焦区域的细胞导致的成像质量与分辨能力下降的问题。在进一步优化超声波的频率、微流控通道的尺寸和激发光能量的基础上,该系统能够以极高灵敏度检测血液中黑色素瘤细胞。该工作为光声成像用于血液检测提供了重要前期基础。

3)本文之后设计并构建了光声微流控细胞消除系统,实现了对血液中肿瘤细胞的准确消除。在多波长光声微流控细胞成像系统的基础上,结合信号幅值、细胞尺寸以及光声信号比值等参数实现了对肿瘤细胞的实时识别,并通过触发高功率激光对识别的肿瘤细胞进行了实时消除。实验证明对于血细胞与黑色素瘤细胞的混合样品,光声微流控细胞消除系统对肿瘤细胞的消除效率高于95%。对于血液中的黑色素瘤细胞,该系统的消除效率为85%。该工作为肿瘤细胞的诊疗一体化提供了重要的参考。

4)本文最后设计了光声亚细胞结构成像系统,分辨率提升至0.42 μm,实现了对肿瘤细胞中亚细胞结构的观测。首先该系统对黑色素瘤细胞中的黑色素小体进行了高分辨率的成像。另外,基于纳米结构标记,系统实现了对细胞内微管、线粒体以及网格蛋白包被小窝等亚细胞结构的光声成像。最后采用多波长照明机制,完成了对同一个细胞内多种亚细胞结构的观测与成像,并定量地分析了亚细胞结构之间的内在联系,为肿瘤细胞在亚细胞结构层面上的分型提供了新的分辨手段。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-06
References List

[1] POPAT S. Systematic review of microsatellite instability and colorectal cancer prognosis[J]. Journal of Clinical Oncology, 2005, 23(3): 609-618.
[2] FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012[J]. International Journal of Cancer, 2015, 136(5): E359-E386.
[3] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global Cancer Statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries: global cancer statistics 2018[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[4] HE G, FENG J, ZHANG A, et al. Multifunctional branched nanostraw- electroporation platform for intracellular regulation and monitoring of circulating tumor cells[J]. Nano Letters, 2019, 19(10): 7201-7209.
[5] LU-NAN Q, BANG-DE X, FEI-XIANG W, et al. Circulating tumor cells undergoing emt provide a metric for diagnosis and prognosis of patients with hepatocellular carcinoma[J]. Cancer Research, 2018, 78: 4731-4744.
[6] CROMBE A, ALBERTI N, STOECKLE E, et al. Soft tissue masses with myxoid stroma: Can conventional magnetic resonance imaging differentiate benign from malignant tumors[J]. European Journal of Radiology, 2016, 5:1875-1882.
[7] CHAMBERS A F, GROOM A C, MACDONALD I C. Dissemination and growth of cancer cells in metastatic sites[J]. Nature Reviews Cancer, 2002, 2: 63-572.
[8] WEINBERG R A, CHAFFER C L. A perspective on cancer cell metastasis[J]. Science, 2011, 331(6024): 1559-1564.
[9] DOME B, TIMAR J, DOBOS J, et al. Identification and clinical significance of circulating endothelial progenitor cells in human non–small cell lung cancer[J]. Cancer Research, 2006, 66(14): 7341-7347.
[10] KLEIN C A. The metastasis cascade[J]. Science, 2008, 321(5897): 1785-1787.
[11] ASHWORTH TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death[J]. The Medical Journal of Australia, 1869, 14, 146-147.
[12] PATERLINI-BRECHOT P, BENALI N L. Circulating tumor cells (CTC) detection: clinical impact and future directions[J]. Cancer Letters, 2007, 253(2): 180-204.
[13] DE RUBIS G, KRISHNAN S R, BEBAWY M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis[J]. Trends in Pharmacological Sciences, 2019, 40(3): 172-186.
[14] GIULIANO M, SHAIKH A, LO HC, ARPINO G, DE PLACIDO S, ZHANG XH, CRISTOFANILLI M, SCHIFF R, TRIVEDI MV. Perspective on circulating tumor cell clusters: why it takes a village to metastasize[J]. Cancer Research, 2018, 78: 845-52.
[15] WOO D, YU M. Circulating tumor cells as “liquid biopsies” to understand cancer metastasis[J]. Translational Research, 2018, 201: 128-135.
[16] KOWALIK A, KOWALEWSKA M, GÓŹDŹ S. Current approaches for avoiding the limitations of circulating tumor cells detection methods—implications for diagnosis and treatment of patients with solid tumors[J]. Translational Research, 2017, 185: 58-84.
[17] RIAZ I B, WANG L, KOHLI M. Liquid biopsy approach in the management of prostate cancer[J]. Translational Research, 2018, 201: 60-70.
[18] LIN E, CAO T, NAGRATH S, et al. Circulating tumor cells: diagnostic and therapeutic applications[J]. Annual Review of Biomedical Engineering, 2018, 20: 329-352.
[19] DAWOOD S, BROGLIO K, VALERO V, et al. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system[J]. Cancer, 2008, 113(9): 2422-2430.
[20] KRALJ J G, ARYA C, TONA A, et al. A simple packed bed device for antibody labelled rare cell capture from whole blood[J]. Lab on a Chip, 2012, 12(23): 4972-4975.
[21] ZHAO W, CHENG R, JENKINS B D, et al. Label-free ferrohydrodynamic cell separation of circulating tumor cells[J]. Lab on a Chip, 2017, 17(18): 3097-3111.
[22] RIETHDORF S, FRITSCHE H, MÜLLER V, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system[J]. Clinical Cancer Research, 2007, 13(3): 920-928.
[23] NIKBAKHT H, PANDITHARATNA E, MIKAEL L G, et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma[J]. Nature Communications, 2016, 7(1): 1-8.
[24] MÜLLER C, HOLTSCHMIDT J, AUER M, et al. Hematogenous dissemination of glioblastoma multiforme[J]. Science Translational Medicine, 2014, 6(247): 247.
[25] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373.
[26] KIM T H, LIM M, PARK J, et al. FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface[J]. Analytical Chemistry, 2017, 89(2): 1155-1162.
[27] LIU Y, LI T, XU M, et al. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples[J]. Lab on a Chip, 2019, 19(1): 68-78.
[28] KIM H, LIM M, KIM J Y, et al. Circulating tumor cells enumerated by a centrifugal microfluidic device as a predictive marker for monitoring ovarian cancer treatment: A pilot study[J]. Diagnostics, 2020, 10(4): 249.
[29] LIN E, RIVERA-BÁEZ L, FOULADDEL S, et al. High-throughput microfluidic labyrinth for the label-free isolation of circulating tumor cells[J]. Cell Systems, 2017, 5(3): 295-304. e4.
[30] MONG J, TAN M H. Size-based enrichment technologies for non-cancerous tumor-derived cells in blood[J]. Trends in Biotechnology, 2018, 36(5): 511-522.
[31] CHEN H. A triplet parallelizing spiral microfluidic chip for continuous separation of tumor cells[J]. Scientific Reports, 2018, 8(1): 1-8.
[32] GUGLIELMI R, LAI Z, RABA K, et al. Technical validation of a new microfluidic device for enrichment of CTCs from large volumes of blood by using buffy coats to mimic diagnostic leukapheresis products[J]. Scientific Reports, 2020, 10(1): 1-9.
[33] ZHOU J, MUKHERJEE P, GAO H, et al. Label-free microfluidic sorting of microparticles[J]. APL Bioengineering, 2019, 3(4): 041504.
[34] HOU H W, WARKIANI M E, KHOO B L, et al. Isolation and retrieval of circulating tumor cells using centrifugal forces[J]. Scientific Reports, 2013, 3(1): 1-8.
[35] WANG S, THOMAS A, LEE E, et al. Highly efficient and selective isolation of rare tumor cells using a microfluidic chip with wavy-herringbone micro-patterned surfaces[J]. Analyst, 2016, 141(7): 2228-2237.
[36] RASTOGI N, SETH P, BHAT R, et al. Vortex chip incorporating an orthogonal turn for size-based isolation of circulating cells[J]. Analytica Chimica Acta, 2021, 1159: 338423.
[37] HUR S C, MACH A J, DI CARLO D. High-throughput size-based rare cell enrichment using microscale vortices[J]. Biomicrofluidics, 2011, 5(2): 022206.
[38] SOLLIER E, GO D E, CHE J, et al. Size-selective collection of circulating tumor cells using vortex technology[J]. Lab on a Chip, 2014, 14(1): 63-77.
[39] WANG S, ZHOU Y, QIN X, et al. Label-free detection of rare circulating tumor cells by image analysis and machine learning[J]. Scientific Reports, 2020, 10(1): 1-10.
[40] YOON J, KIM K, PARK H J, et al. Label-free characterization of white blood cells by measuring 3D refractive index maps[J]. Biomedical Optics Express, 2015, 6(10): 3865-3875.
[41] TSUJI K, LU H, TAN J K, et al. Detection of circulating tumor cells in fluorescence microscopy images based on ANN classifier[J]. Mobile Networks and Applications, 2020, 25(3): 1042-1051.
[42] CHO H Y, HOSSAIN M K, LEE J H, et al. Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging[J]. Biosensors and Bioelectronics, 2018, 102: 372-382.
[43] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects part [J]. Physica, 1942, 9(7): 686-698.
[44] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects part II [J]. Physica, 1942, 9(10): 974-986.
[45] CHANG B J, LIN S H, CHOU L J, et al. Subdiffraction scattered light imaging of gold nanoparticles using structured illumination[J]. Optics Letters, 2011, 36(24):4773-5.
[46] CHOWDHURY S, DHALLA A H, IZATT J. Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples[J]. Biomedical Optics Express, 2012, 3(8):1841.
[47] GABOR D. A new microscopic principle [J]. Nature, 1948, 161(4098): 777-778.
[48] TJAHJONO B, GUO J, HAMEIRI Z. High efficiency solar cell structures through the use of laser doping [J]. Physical Review B, 2007: 17(2): 125345.
[49] MEROLA F, MEMMOLO P, MICCIO L, et al. Phase contrast tomography at lab on chip scale by digital holography[J]. Methods, 2018, 136: 108-115.
[50] CACACE T, MEMMOLO P, VILLONE M M, et al. Assembling and rotating erythrocyte aggregates by acoustofluidic pressure enabling full phase-contrast tomography[J]. Lab on a Chip, 2019, 19(18): 3123-3132.
[51] VILLONE M M, MEMMOLO P, MEROLA F, et al. Full-angle tomographic phase microscopy of flowing quasi-spherical cells[J]. Lab on a Chip, 2018, 18(1): 126-131.
[52] MEROLA F, MEMMOLO P, MICCIO L, et al. Tomographic flow cytometry by digital holography[J]. Light: Science & Applications, 2017, 6(4): e16241-e16241.
[53] HAZLE M A, MEHICIC M, GARDINER D J, et al. Practical Raman spectroscopy[J]. Vibrational Spectroscopy, 1990, 1(1): 104-104.
[54] LAWAETZ A J, STEDMON C A. Fluorescence intensity calibration using the Raman scatter peak of water[J]. Applied Spectroscopy, 2009, 63(8): 936-940.
[55] ANDERSON M S. Locally enhanced Raman spectroscopy with an atomic force microscope[J]. Applied Physics Letters, 2000, 76(21): 3130-3132.
[56] WU H, VOLPONI J V, OLIVER A E, et al. In vivo lipidomics using single-cell Raman spectroscopy[J]. Proceedings of the National Academy of Sciences, 2011, 108(9): 3809-3814.
[57] WANG Y, HUANG W E, CUI L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy[J]. Current Opinion in Biotechnology, 2016, 41: 34-42.
[58] RAUWEL E, AL-ARAG S, SALEHI H, et al. Assessing cobalt metal nanoparticles uptake by cancer cells using live raman spectroscopy[J]. International Journal of Nanomedicine, 2020, 15: 7051..
[59] LE T T, HUFF T B, CHENG J X. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis[J]. BMC Cancer, 2009, 9(1): 1-14.
[60] CHO H Y, HOSSAIN M K, LEE J H, et al. Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging[J]. Biosensors and Bioelectronics, 2018, 102: 372-382.
[61] SCHRAIVOGEL D, KUHN T M, RAUSCHER B, et al. High-speed fluorescence image–enabled cell sorting[J]. Science, 2022, 375(6578): 315-320.
[62] LEE S, KIM S, NAM K, et al. Moxifloxacin based fluorescence imaging of intestinal goblet cells[J]. Biomedical Optics Express, 2020, 11(10): 5814-5825.
[63] ZHANG M, LI M, ZHANG W, et al. Simple and efficient delivery of cell-impermeable organic fluorescent probes into live cells for live-cell superresolution imaging[J]. Light: Science & Applications, 2019, 8(1): 1-11.
[64] PEI H, YU M, DONG D, et al. Phenotype-related drug sensitivity analysis of single CTCs for medicine evaluation[J]. Chemical Science, 2020, 11(33): 8895-8900.
[65] LIAO Z, HAN L, LI Q, et al. Gradient magnetic separation and fluorescent imaging‐based heterogeneous circulating tumor cell subpopulations assay with biomimetic multifunctional nanoprobes[J]. Advanced Functional Materials, 2021, 31(18): 2009937.
[66] WU C, LI P, FAN N, et al. A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 44999-45006.
[67] XIA W, LI H, LI Y, et al. In vivo coinstantaneous identification of hepatocellular carcinoma circulating tumor cells by dual-targeting magnetic-fluorescent nanobeads[J]. Nano Letters, 2020, 21(1): 634-641.
[68] HWANG J Y, KIM S T, HAN H S, et al. Optical aptamer probes of fluorescent imaging to rapid monitoring of circulating tumor cell[J]. Sensors, 2016, 16(11): 1909.
[69] WEST G A, BARRETT J J, SIEBERT D R, et al. Photoacoustic spectroscopy[J]. Review of Scientific Instruments, 1983, 54(7): 797-817.
[70] ROSENCWAIG A. Photoacoustic spectroscopy of biological materials[J]. Science, 1973, 181(4100): 657-658.
[71] ROSENCWAIG A. Photoacoustic spectroscopy of solids[J]. Optics Communications, 1973, 7(4): 305-308.
[72] CAI D, WONG T T W, ZHU L, et al. Dual-view photoacoustic microscopy for quantitative cell nuclear imaging[J]. Optics Letters, 2018, 43(20): 4875-4878.
[73] JIN T, QI W, LIANG X, et al. Photoacoustic imaging of brain functions: wide filed‐of‐view functional imaging with high spatiotemporal resolution[J]. Laser & Photonics Reviews, 2021: 2100304.
[74] HENG G, CHEN Q, QIN W, et al. Detachable head-mounted photoacoustic microscope in freely moving mice[J]. Optics Letters, 2021, 46(24): 6055-6058.
[75] XI L, GROBMYER S R, WU L, et al. Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging[J]. Optics Express, 2012, 20(8): 8726-8731.
[76] LIU Y, LIU J, CHEN D, et al. Fluorination enhances NIR‐II fluorescence of polymer dots for quantitative brain tumor imaging[J]. Angewandte Chemie, 2020, 132(47): 21235-21243.
[77] LI T, GUO H, LIU Y, et al. All-in-one photoacoustic theranostics using multi‐functional nanoparticles[J]. Advanced Functional Materials, 2021, 32: 2107624.
[78] WANG J, LI T, NI J S, et al. Photoacoustic force‐guided precise and fast delivery of nanomedicine with boosted therapeutic efficacy[J]. Advanced Science, 2021, 8(16): 2100228.
[79] WANG L, MENG Z, CHEN Y, et al. Engineering magnetic micro/nanorobots for versatile biomedical applications[J]. Advanced Intelligent Systems, 2021, 3(7): 2000267.
[80] LI D, LIU C, YANG Y, et al. Micro-rocket robot with all-optic actuating and tracking in blood[J]. Light: Science & Applications, 2020, 9(1): 1-10.
[81] SHELTON R L, MATTISON S P, APPLEGATE B E. Volumetric imaging of erythrocytes using label‐free multiphoton photoacoustic microscopy[J]. Journal of Biophotonics, 2014, 7(10): 834-840.
[82] ZHANG C, ZHANG Y S, YAO D K, et al. Label-free photoacoustic microscopy of cytochromes[J]. Journal of Biomedical Optics, 2013, 18(2): 020504.
[83] YAO D K, MASLOV K, SHUNG K K, et al. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA[J]. Optics Letters, 2010, 35(24): 4139-4141.
[84] WICKRAMASINGHE H K, BRAY R C, JIPSON V, et al. Photoacoustics on a microscopic scale[J]. Applied Physics Letters, 1978, 33(11): 923-925.
[85] MASLOV K, ZHANG H F, HU S, et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 2008, 33(9): 929-931.
[86] ZHANG C, MASLOV K, WANG L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Optics Letters, 2010, 35(19): 3195-3197.
[87] TAN Z, TANG Z, WU Y, et al. Multimodal subcellular imaging with microcavity photoacoustic transducer[J]. Optics Express, 2011, 19(3): 2426-2431.
[88] TAN Z, LIAO Y, WU Y, et al. Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique[J]. Optics Express, 2012, 20(5): 5802-5808.
[89] ZHANG C, ZHANG Y S, YAO D K, et al. Label-free photoacoustic microscopy of cytochromes[J]. Journal of Biomedical Optics, 2013, 18(2): 020504.
[90] DANIELLI A, MASLOV K I, GARCIA-URIBE A, et al. Label-free photoacoustic nanoscopy[J]. Journal of Biomedical Optics, 2014, 19(8): 086006.
[91] CAI C, NEDOSEKIN D A, MENYAEV Y A, et al. Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo[J]. Analytical Cellular Pathology, 2016, 2016(1): 1-11.
[92] SHI J, WONG T T W, HE Y, et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 2019, 13(9): 609-615.
[93] ZHANG Y, CAI X, WANG Y, et al. Noninvasive photoacoustic microscopy of living cells in two and three dimensions through enhancement by a metabolite dye[J]. Angewandte Chemie, 2011, 123(32): 7497-7501.
[94] ZHANG Y S, YAO J, ZHANG C, et al. Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples[J]. Angewandte Chemie, 2014, 126(31): 8237-8241.
[95] YANG S, YE F, XING D. Intracellular label-free gold nanorods imaging with photoacoustic microscopy[J]. Optics Express, 2012, 20(9): 10370-10375.
[96] ZHANG Y S, WANG Y, WANG L, et al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy[J]. Theranostics, 2013, 3(8): 532.
[97] SONG C, JIN T, YAN R, et al. Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels[J]. Lab on a Chip, 2018, 18(9): 1292-1297.
[98] LIU F, JIN T, YAN R, et al. An opto-acousto-fluidic microscopic system with a high spatiotemporal resolution for microfluidic applications[J]. Optics Express, 2019, 27(2): 1425-1432.
[99] GNYAWALI V, STROHM E M, WANG J Z, et al. Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis[J]. Scientific Reports, 2019, 9(1): 1-11.
[100] A. G. BELL, Upon the production and reproduction of sound by light[J]. Journal of the Society of Telegraph Engineers, 1880, 9(34):404-426.
[101] K. I. MASLOV, L. V. WANG. Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser[J]. Journal of Biomedical Optics, 2008, 13(2):024006.
[102] P. BEARD. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4):602-631.
[103] XU Y, WANG L V, AMBARTSOUMIAN G, et al. Reconstructions in limited‐view thermoacoustic tomography[J]. Medical Physics, 2004, 31(4): 724-733.
[104] XU M, WANG L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 2006, 77(4): 041101.
[105] NISHIYAMA M, NAMITA T, KONDO K, et al. Ring-array photoacoustic tomography for imaging human finger vasculature[J]. Journal of Biomedical Optics, 2019, 24(9): 096005.
[106] EGOLF D, BARBER Q, ZEMP R. Single laser-shot super-resolution photoacoustic tomography with fast sparsity-based reconstruction[J]. Photoacoustics, 2021, 22: 100258.
[107] HU S, MASLOV K, WANG L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 2011, 36(7): 1134-1136.
[108] WANG L, MASLOV K, YAO J, et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 2011, 36(2): 139-141.
[109] WANG L V, HU S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.
[110] YAO J, WANG L V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 2013, 7(5): 758-778.
[111] GUO H, SONG C, XIE H, et al. Photoacoustic endomicroscopy based on a MEMS scanning mirror[J]. Optics Letters, 2017, 42(22): 4615-4618.
[112] QIN W, CHEN Q, XI L. A handheld microscope integrating photoacoustic microscopy and optical coherence tomography[J]. Biomedical Optics Express, 2018, 9(5): 2205-2213.
[113] LIANG Y, JIN L, GUAN B O, et al. 2 MHz multi-wavelength pulsed laser for functional photoacoustic microscopy[J]. Optics Letters, 2017, 42(7): 1452-1455.
[114] WANG Y, LIANG G, LIU F, et al. A long-term cranial window for high-resolution photoacoustic imaging[J]. IEEE Transactions on Biomedical Engineering, 2020, 68(2): 706-711.
[115] QI W, YAO L, JIANG Y, et al. Quantitative Photoacoustic imaging of chlorophyll using a gpu-accelerated finite element method[J]. Communications in Computational Physics, 2020, 28(2): 679-690.
[116] ZHA M, LIN X, NI J S, et al. An ester‐substituted semiconducting polymer with efficient nonradiative decay enhances NIR‐II photoacoustic performance for monitoring of tumor growth[J]. Angewandte Chemie International Edition, 2020, 59(51): 23268-23276.
[117] QI W, LI T, ZHANG C, et al. Light‐controlled precise delivery of nir‐responsive semiconducting polymer nanoparticles with promoted vascular permeability[J]. Advanced Healthcare Materials, 2021, 10(19): 2100569.
[118] WU Y, RUAN H, DONG Z, et al. Fluorescent polymer dot-based multicolor stimulated emission depletion nanoscopy with a single laser beam pair for cellular tracking[J]. Analytical Chemistry, 2020, 92(17): 12088-12096.
[119] BEARD P. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1(4): 602-631.
[120] XU K, CLARK C P, POE B L, et al. Isolation of a low number of sperm cells from female DNA in a glass–PDMS–glass microchip via bead-assisted acoustic differential extraction[J]. Analytical Chemistry, 2019, 91(3): 2186-2191.
[121] HAO N, WANG Z, LIU P, et al. Acoustofluidic multimodal diagnostic system for Alzheimer's disease[J]. Biosensors and Bioelectronics, 2022, 196: 113730.
[122] REN L, YANG S, ZHANG P, et al. Standing surface acoustic wave (SSAW)‐based fluorescence‐activated cell sorter[J]. Small, 2018, 14(40): 1801996.
[123] WU M, OZCELIK A, RUFO J, et al. Acoustofluidic separation of cells and particles[J]. Microsystems & nanoengineering, 2019, 5(1): 1-18.
[124] HASEGAWA T, YOSIOKA K. Acoustic‐radiation force on a solid elastic sphere[J]. The Journal of the Acoustical Society of America, 1969, 46(5B): 1139-1143.
[125] KANG P, TIAN Z, YANG S, et al. Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects[J]. Lab on a Chip, 2020, 20(5): 987-994.
[126] XIE Y, RUFO J, ZHONG R, et al. Microfluidic isolation and enrichment of nanoparticles[J]. ACS Nano, 2020, 14(12): 16220-16240.
[127] NAMA N, HUANG P H, HUANG T J, et al. Investigation of acoustic streaming patterns around oscillating sharp edges[J]. Lab on a Chip, 2014, 14(15): 2824-2836.
[128] WU Z, JIANG H, ZHANG L, et al. The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers[J]. Lab on a Chip, 2019, 19(23): 3922-3930.
[129] LI S, SUN M, HAO C, et al. Chiral CuxCoyS nanoparticles under magnetic field and NIR light to eliminate senescent cells[J]. Angewandte Chemie International Edition, 2020, 59(33): 13915-13922.
[130] ZHANG Z, WANG L, LIU W, et al. Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst[J]. National Science Review, 2021, 8(5): 155.
[131] LI Y, LI Z, HU D, et al. Targeted NIR-II emissive nanoprobes for tumor detection in mice and rabbits[J]. Chemical Communications, 2021, 57(52): 6420-6423.
[132] LI K, QIN W, DING D, et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing[J]. Scientific Reports, 2013, 3(1): 1-10.
[133] LIU J, FANG X, LIU Z, et al. Expansion microscopy with multifunctional polymer dots[J]. Advanced Materials, 2021, 33(25): 2007854.

Academic Degree Assessment Sub committee
生物医学工程系
Domestic book classification number
R318
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/350233
DepartmentDepartment of Biomedical Engineering
Recommended Citation
GB/T 7714
孙瑷蕙. 基于高分辨率多波长光声微流控技术的细胞分型研究[D]. 深圳. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849595-孙瑷蕙-生物医学工程系(8801KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[孙瑷蕙]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[孙瑷蕙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孙瑷蕙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.