[1] Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics[J]. ACS Nano, 2020, 14(6):6436-6448.3
[2] Frfa B , Zqt B , Zhong L . Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2):328-334.
[3] Niu S , Wang Z L. Theoretical systems of triboelectric nanogenerators[J]. Nano Energy, 2015, 14:161-192.
[4] Gibney E . The inside story on wearable electronics[J]. Nature, 2015, 528(7580):26- 28.
[5] Zhang Y , Castro D C , Han Y , et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics[J]. Proceedings of the National Academy of Sciences, 2019, 116(43):201909850.
[6] Hinchet R , Kim S W . Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems[J]. Acs Nano, 2015, 9( 8):7742-7745.
[7] Dagdeviren, Canan, Zhou, et al. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.[J]. Annual Review of Biomedical Engineering, 2017.
[8] Mahmud M , Huda N , Farjana S H , et al. Recent Advances in Nanogenerator‐Driven Self‐Powered Implantable Biomedical Devices[J]. Advanced Energy Materials, 2018, 8(2):1701210.
[9] Xiao X , Xia H Q , Wu R , et al. Tackling the Challenges of Enzymatic (Bio)Fuel Cells[J]. Chemical Reviews, 2019, 119(16).
[10] Steiger C , Abramson A , Nadeau P , et al. Ingestible electronics for diagnostics and therapy[J]. Nature Materials, 2018.
[11] Zhou M , Al-Furjan M , Zou J , et al. A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives[J]. Renewable & Sustainable Energy Reviews, 2018:S1364032117314776.
[12] Shi B , Li Z , Fan Y . Implantable Energy‐Harvesting Devices[J]. Advanced Materials, 2018, 30(44):-.
[13] Parsonnet V . A cardiacpacemaker using biological energy source[J]. T.a.s.a.i.o, 1964, 9.
[14] Cinquin P , Gondran C , Giroud F , et al. A glucose biofuel cell implanted in rats.[J]. PLoS ONE, 2010, 5(5):e10476.
[15] In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator[J]. ACS Nano, 2016, 10(7):6510-6518.
[16] 张涵奇, 孙德强, 郑军卫,等. 世界工业革命与能源革命更替规律及对我国能源发 62参考文献 展的启示[J]. 中国能源, 2015.
[17]邹才能, 赵群, 张国生,等. 能源革命:从化石能源到新能源[J]. 天然气工业, 2016, 36(1):10.
[18] Niu S , Wang S , Long L , et al. Theoretical Study of the Contact-Mode Triboelectric Nanogenerators as Effective Power Source[J]. Energy Environ, 2013, 6(12):Accepted Manuscript.
[19] Mallineni S , Behlow H , Dong Y , et al. Facile and robust triboelectric nanogenerators assembled using off-the-shelf materials[J]. Nano Energy, 2017, 35:263-270.
[20] Wang S , Lin L , Xie Y , et al. Sliding-Triboelectric Nanogenerators Based on In- Plane Charge-Separation Mechanism[J]. Nano Letters, 2013
[21] Zhong L W , Long L , Chen J , et al. Triboelectric Nanogenerator: Lateral Sliding Mode[J]. Springer International Publishing, 2016.
[22] Simiao, Ying, Chen, et al. Theory of freestanding triboelectric-layer-based nanogenerators.
[23] Wang S , Lin L , Wang Z L . Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics.[J]. Nano Letters, 2012, 12(12):6339-6346.
[24] Zhu G , Pan C , Guo W , et al. Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning[J]. Nano Letters, 2012, 12(9):4960-4965.
[25] Yang Y , Zhang H , Chen J , et al. Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System[J]. Acs Nano, 2013, 7(8):7342-7351.
[26] Niu S , Ying L , Wang S , et al. Theoretical Investigation and Structural Optimization of Single ‐Electrode Triboelectric Nanogenerators[J]. Advanced Functional Materials, 2014, 24(22):3332-3340.
[27] Chen, Jing, Wang, 等 . Linear-grating triboelectric generator based on sliding electrification.
[28] Zhong L , Acw B . On the origin of contact-electrification[J]. Materials Today, 2019, 30.
[29] Zhong, Lin, Wang. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators[J]. Materials Today, 2017.
[30] Wang Z L . On the first principle theory of nanogenerators from Maxwell's equations[J]. Nano Energy, 2019, 68:104272.
[31] T Xiao, TW Kim, J Shao, et al. Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators.
[32] Zou Y , Xu J , Fang Y , et al. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics[J]. Nano Energy, 2021, 83:105845. 63
[33] Wu H , Wang Z , Y Zi. Multi ‐ Mode Water ‐ Tube ‐ Based Triboelectric Nanogenerator Designed for Low ‐ Frequency Energy Harvesting with Ultrahigh Volumetric Charge Density[J]. Advanced Energy Materials, 2021.
[34] Le C D , Vo C P , Nguyen T H , et al. Liquid-solid contact electrification based on discontinuous-conduction triboelectric nanogenerator induced by radially symmetrical structure - ScienceDirect[J]. Nano Energy, 2020, 80.
[35] Lin S , Xu L , Wang A C , et al. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer[J]. Nature Communications, 2020, 11(1):399.
[36] Cheng P , H Guo, Wen Z , et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure[J]. Nano Energy, 2018.
[37] Kim J , Lee M , Shim H J , et al. Stretchable silicon nanoribbon electronics for skin prosthesis[J]. Nature Communications, 2013, 5:5747.
[38] Lim C , Y Shin, Jung J , et al. Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics[J]. APL Materials, 2019, 7(3).
[39] Choi J , Bandodkar A J , Reeder J T , et al. Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature[J]. Acs Sensors, 2019.
[40] Zheng, Qiang, Yang, et al. Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring.
[41] Fu Y , Zhang M , Dai Y , et al. A self-powered brain multi-perception receptor for sensory-substitution application[J]. Nano energy, 2018, 44:43-52.
[42] Dai Y , Fu Y , Zeng H , et al. A Self‐Powered Brain‐Linked Vision Electronic‐ Skin Based on Triboelectric‐Photodetecing Pixel‐Addressable Matrix for Visual‐ Image Recognition and Behavior Intervention[J]. Advanced Functional Materials, 2018, 28(20):1800275.
[43] Sanghoon Lee, Hao Wang, Jiahui Wang, et al. Battery-free neuromodulator for peripheral nerve direct stimulation - ScienceDirect[J]. Nano Energy, 2018, 50:148- 158.
[44] Lee S , Wang H , Shi Q , et al. Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs)[J]. Nano Energy, 2017, 33(Complete):1-11.
[45] Hao, Wang, et al. Direct muscle stimulation using diode-amplified triboelectric nanogenerators (TENGs)[J]. Nano Energy, 2019.
[46] Zhang X S , MD Han, Wang R X , et al. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment[J]. Nano Energy, 2014, 4:123-131.
[47] Yao, G., Kang, L., Li, J., Long, Y., Wei, H., Ferreira, C.A., Jeffery, J.J., Lin, Y., Cai, W. and Wang, X., 2018. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nature communications, 9(1), pp.1-10.
[48] Lee S , Wang H , Peh W , et al. Mechano-neuromodulation of autonomic pelvic nerve for underactive bladder: A triboelectric neurostimulator integrated with flexible neural clip interface[J]. Nano Energy, 2019, 60:449-456.
[49] Wang J , Wang H , He T , et al. Investigation of Low-current Direct Stimulation for Rehabilitation Treatment Related to Muscle Function Loss Using Self ㏄ owered TENG System[J]. Advanced Science, 2019, 6(14).
[50] Wang H , Zhu J , He T , et al. Programmed-triboelectric nanogenerators— A multi- switch regulation methodology for energy manipulation[J]. Nano Energy, 2020, 78:105241.
[51] Geddes L A , Bourland J D . The Strength-Duration Curve[J]. IEEE transactions on bio-medical engineering, 1985, 32(6):458-9.
[52] Saso, Jezernik, Manfred, et al. Energy-optimal electrical excitation of nerve fibers.[J]. IEEE Transactions on Bio Medical Engineering, 2005
Edit Comment