中文版 | English
Title

基于多酸团簇的单壁碳纳米管组装与结构分离

Alternative Title
ASSEMBLY AND STRUCTURAL SEPARATION OF SINGLE-WALLED CARBON NANOTUBES BASED ON POLYOXOMETALATE CLUSTERS
Author
Name pinyin
YANG Xusheng
School number
11930097
Degree
硕士
Discipline
070301 无机化学
Subject category of dissertation
07 理学
Supervisor
杨烽
Mentor unit
化学系
Publication Years
2022-05-10
Submission date
2022-07-06
University
南方科技大学
Place of Publication
深圳
Abstract

单壁碳纳米管因其独特结构和优异性质而受到广泛关注。然而商业化碳纳米管粉末样品是由各种不同手性的碳纳米管组合形成的管束状混合物,难以将其运用于高端碳纳米管应用当中。因此,纯半导体性或单一手性碳纳米管的制备具有重要意义。当前实现该目标的主要方法分别为在基底上生长单壁碳纳米管的化学气相沉积法和在溶液相中进行的选择性分离。相比较而言,溶液相中分离获得的碳纳米管量更多,可以实现分离的手性种类也更多。
本文主要以实现碳纳米管的选择性分离为目标,使用多金属氧酸盐团簇作为客体分子调控碳纳米管电子性质,基于共轭聚合物的分散作用进行选择性分离。主要研究内容及结论如下:

选择了一种尺寸约为1 nm的多金属氧酸盐团簇作为客体分子来封装到单壁碳纳米管的内腔中,以改变单壁碳纳米管的电子密度。通过这种策略,我们利用聚芴类化合物,实现了直径约3 nm、纯度约98%的半导体性单壁碳纳米管的选择性分离;在水相中,利用表面活性剂成功实现了直径的选择性分离。通过吸收光谱和拉曼光谱以及电学测量结果进行验证,并利用拉曼光谱、X射线光电子能谱、循环伏安法、原位透射电子显微镜和理论计算对实验机理进行研究。
选择多金属氧酸盐团簇作为空间位阻吸附在亚纳米级的单壁碳纳米管上,在超声处理过程中,团簇从某些仅与其具有弱相互作用的单壁碳纳米管分离,从而使聚合物能够选择性地包裹和分离该种单壁碳纳米管,而与团簇有着强相互作用的其他单壁碳纳米管管束则难以被聚合物包裹。通过这种策略,实现了亚纳米级(6,5)手性单壁碳纳米管的选择性分离,并利用吸收光谱和荧光光谱进行表征。通过理论计算、光谱学、透射电镜和X射线光电子能谱揭示碳纳米管和团簇之间的相互作用与纳米管直径相关。并且进一步证明这种分离策略在一系列具有合适氧化能力的多金属氧酸盐团簇中被是有效的。


 

Other Abstract

 

 
Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-06
References List

[1] IIJIMA S, ICHIHASHI T. Single-Shell Carbon Nanotubes of 1-nm Diameter[J]. Nature, 1993, 363(6430): 603-605.
[2] YANG F, WANG M, ZHANG D, et al. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization[J]. Chemical Reviews, 2020, 120(5): 2693-2758.
[3] LI M, LIU X, ZHAO X, et al. Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes[J]. Topics in Current Chemistry, 2017, 375(2): 29.
[4] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical Conductivity of Individual Carbon Nanotubes[J]. Nature, 1996, 382(6586): 54-56.
[5] DRESSELHAUS M S, DRESSELHAUS G, SAITO R, et al. Raman Spectroscopy of Carbon Nanotubes[J]. Physics Reports, 2005, 409(2): 47-99.
[6] KANE C L, MELE E J. Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes[J]. Physical Review Letters, 1997, 78(10): 1932-1935.
[7] FRANKLIN A D. Device Technology. Nanomaterials in Transistors: From High-Performance to Thin-Film Applications[J]. Science, 2015, 349(6249): aab2750.
[8] SCHROEDER V, SAVAGATRUP S, HE M, et al. Carbon Nanotube Chemical Sensors[J]. Chemical Reviews, 2019, 119(1): 599-663.
[9] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Carbon Nanomaterials for Electronics, Optoelectronics, Photovoltaics, and Sensing[J]. Chemical Society Reviews, 2013, 42(7): 2824-2860.
[10] LEFEBVRE J, DING J, LI Z, et al. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics[J]. Accounts of Chemical Research, 2017, 50(10): 2479-2486.
[11] LEI T, POCHOROVSKI I, BAO Z. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method[J]. Accounts of Chemical Research, 2017, 50(4): 1096-1104.
[12] RAO R, PINT C L, ISLAM A E, et al. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications[J]. ACS Nano, 2018, 12(12): 11756-11784.
[13] GAVIRIA ROJAS W A, HERSAM M C. Chirality-Enriched Carbon Nanotubes for Next-Generation Computing[J]. Advanced Materials, 2020, 32(41): e1905654.
[14] QIU S, WU K, GAO B, et al. Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices[J]. Advanced Materials, 2019, 31(9): e1800750.
[15] SHULAKER M M, HILLS G, PATIL N, et al. Carbon Nanotube Computer[J]. Nature, 2013, 501(7468): 526-530.
[16] LIU L, HAN J, XU L, et al. Aligned, High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Electronics[J]. Science, 2020, 368(6493): 850-856.
[17] SHULAKER M M, HILLS G, PARK R S, et al. Three-Dimensional Integration of Nanotechnologies for Computing and Data Storage on a Single Chip[J]. Nature, 2017, 547(7661): 74-78.
[18] TULEVSKI G S, FRANKLIN A D, FRANK D, et al. Toward High-Performance Digital Logic Technology with Carbon Nanotubes[J]. ACS Nano, 2014, 8(9): 8730-8745.
[19] ZHAO M, CHEN Y, WANG K, et al. DNA-Directed Nanofabrication of High-Performance Carbon Nanotube Field-Effect Transistors[J]. Science, 2020, 368(6493): 878-881.
[20] BROHMANN M, BERGER F J, MATTHIESEN M, et al. Charge Transport in Mixed Semiconducting Carbon Nanotube Networks with Tailored Mixing Ratios[J]. ACS Nano, 2019, 13(6): 7323-7332.
[21] ZAKHARKO Y, GRAF A, SCHIESSL S P, et al. Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals[J]. Nano Letters, 2016, 16(5): 3278-3284.
[22] CAMPO J, CAMBRE S, BOTKA B, et al. Optical Property Tuning of Single-Wall Carbon Nanotubes by Endohedral Encapsulation of a Wide Variety of Dielectric Molecules[J]. ACS Nano, 2021, 15(2): 2301-2317.
[23] YANG L, WANG S, ZENG Q, et al. Carbon Nanotube Photoelectronic and Photovoltaic Devices and Their Applications in Infrared Detection[J]. Small, 2013, 9(8): 1225-1236.
[24] PARK S, KIM S J, NAM J H, et al. Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Single-Walled Carbon Nanotube/C60 Phototransistor[J]. Advanced Materials, 2015, 27(4): 759-765.
[25] BEZDEK M J, LUO S L, LIU R Y, et al. Trace Hydrogen Sulfide Sensing Inspired by Polyoxometalate-Mediated Aerobic Oxidation[J]. ACS Central Science, 2021, 7(9): 1572-1580.
[26] GRAF A, HELD M, ZAKHARKO Y, et al. Electrical Pumping and Tuning of Exciton-Polaritons in Carbon Nanotube Microcavities[J]. Nature Materials, 2017, 16(9): 911-917.
[27] YANG F, WANG X, ZHANG D, et al. Chirality-Specific Growth of Single-Walled Carbon Nanotubes on Solid Alloy Catalysts[J]. Nature, 2014, 510(7506): 522-524.
[28] HASHIMOTO A, SUENAGA K, GLOTER A, et al. Direct Evidence for Atomic Defects in Graphene Layers[J]. Nature, 2004, 430(7002): 870-873.
[29] ZHANG D, YANG J, LI Y. Spectroscopic Characterization of the Chiral Structure of Individual Single-Walled Carbon Nanotubes and the Edge Structure of Isolated Graphene Nanoribbons[J]. Small, 2013, 9(8): 1284-1304.
[30] TORRENS O N, ZHENG M, KIKKAWA J M. Energy of K-Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy[J]. Physical Review Letters, 2008, 101(15): 157401.
[31] O'CONNELL M J, BACHILO S M, HUFFMAN C B, et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes[J]. Science, 2002, 297(5581): 593-596.
[32] KATAURA H, KUMAZAWA Y, MANIWA Y, et al. Optical Properties of Single-Wall Carbon Nanotubes[J]. Synthetic Metals, 1999, 103(1): 2555-2558.
[33] WEI X, TANAKA T, YOMOGIDA Y, et al. Experimental Determination of Excitonic Band Structures of Single-Walled Carbon Nanotubes Using Circular Dichroism Spectra[J]. Nature Communications, 2016, 7: 12899.
[34] FURTADO C A, KIM U J, GUTIERREZ H R, et al. Debundling and Dissolution of Single-Walled Carbon Nanotubes in Amide Solvents[J]. Journal of the American Chemical Society, 2004, 126(19): 6095-6105.
[35] WANG J, CHU H, LI Y. Why Single-Walled Carbon Nanotubes Can Be Dispersed in Imidazolium-Based Ionic Liquids[J]. ACS Nano, 2008, 2(12): 2540-2546.
[36] BELLAYER S, GILMAN J W, EIDELMAN N, et al. Preparation of Homogeneously Dispersed Multiwalled Carbon Nanotube/Polystyrene Nanocomposites Via Melt Extrusion Using Trialkyl Imidazolium Compatibilizer[J]. Advanced Functional Materials, 2005, 15(6): 910-916.
[37] ARNOLD M S, STUPP S I, HERSAM M C. Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients[J]. Nano Letters, 2005, 5(4): 713-718.
[38] ARNOLD M S, GREEN A A, HULVAT J F, et al. Sorting Carbon Nanotubes by Electronic Structure Using Density Differentiation[J]. Nature Nanotechnology, 2006, 1(1): 60-65.
[39] GHOSH S, BACHILO S M, WEISMAN R B. Advanced Sorting of Single-Walled Carbon Nanotubes by Nonlinear Density-Gradient Ultracentrifugation[J]. Nature Nanotechnology, 2010, 5(6): 443-450.
[40] FLAVEL B S, KAPPES M M, KRUPKE R, et al. Separation of Single-Walled Carbon Nanotubes by 1-Dodecanol-Mediated Size-Exclusion Chromatography[J]. ACS Nano, 2013, 7(4): 3557-3564.
[41] KHRIPIN C Y, TU X, HOWARTER J, et al. Concentration Measurement of Length-Fractionated Colloidal Single-Wall Carbon Nanotubes[J]. Analytical Chemistry, 2012, 84(20): 8733-8739.
[42] DUESBERG G S, MUSTER J, KRSTIC V, et al. Chromatographic Size Separation of Single-Wall Carbon Nanotubes[J]. Applied Physics A, 1998, 67(1): 117-119.
[43] HELLER D A, MAYRHOFER R M, BAIK S, et al. Concomitant Length and Diameter Separation of Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2004, 126(44): 14567-14573.
[44] STRANO M S, ZHENG M, JAGOTA A, et al. Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy[J]. Nano Letters, 2004, 4(4): 543-550.
[45] TU X, MANOHAR S, JAGOTA A, et al. DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes[J]. Nature, 2009, 460(7252): 250-253.
[46] ZHENG M, JAGOTA A, SEMKE E D, et al. DNA-Assisted Dispersion and Separation of Carbon Nanotubes[J]. Nature Materials, 2003, 2(5): 338-342.
[47] ZHENG M, JAGOTA A, STRANO M S, et al. Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly[J]. Science, 2003, 302(5650): 1545-1548.
[48] LI H B, JIN H H, ZHANG J, et al. Understanding the Electrophoretic Separation of Single-Walled Carbon Nanotubes Assisted by Thionine as a Probe[J]. Journal of Physical Chemistry C, 2010, 114(45): 19234-19238.
[49] TANAKA T, JIN H, MIYATA Y, et al. Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes[J]. Nano Letters, 2009, 9(4): 1497-1500.
[50] TANAKA T, JIN H H, MIYATA Y, et al. High-Yield Separation of Metallic and Semiconducting Single-Wall Carbon Nanotubes by Agarose Gel Electrophoresis[J]. Applied Physics Express, 2008, 1(11): 114001.
[51] LIU H, FENG Y, TANAKA T, et al. Diameter-Selective Metal/Semiconductor Separation of Single-Wall Carbon Nanotubes by Agarose Gel[J]. Journal of Physical Chemistry C, 2010, 114(20): 9270-9276.
[52] LIU H, NISHIDE D, TANAKA T, et al. Large-Scale Single-Chirality Separation of Single-Wall Carbon Nanotubes by Simple Gel Chromatography[J]. Nature Communications, 2011, 2(1): 309.
[53] YOMOGIDA Y, TANAKA T, ZHANG M, et al. Industrial-Scale Separation of High-Purity Single-Chirality Single-Wall Carbon Nanotubes for Biological Imaging[J]. Nature Communications, 2016, 7: 12056.
[54] YANG D, LI L, WEI X, et al. Submilligram-Scale Separation of near-Zigzag Single-Chirality Carbon Nanotubes by Temperature Controlling a Binary Surfactant System[J]. Science Advances, 2021, 7(8): eabe0084.
[55] LI H, GORDEEV G, WASSERROTH S, et al. Inner- and Outer-Wall Sorting of Double-Walled Carbon Nanotubes[J]. Nature Nanotechnology, 2017, 12(12): 1176-1182.
[56] MACE C R, AKBULUT O, KUMAR A A, et al. Aqueous Multiphase Systems of Polymers and Surfactants Provide Self-Assembling Step-Gradients in Density[J]. Journal of the American Chemical Society, 2012, 134(22): 9094-9097.
[57] LI H, GORDEEV G, GARRITY O, et al. Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime[J]. ACS Nano, 2020, 14(1): 948-963.
[58] PODLESNY B, OLSZEWSKA B, YAARI Z, et al. En Route to Single-Step, Two-Phase Purification of Carbon Nanotubes Facilitated by High-Throughput Spectroscopy[J]. Scientific Reports, 2021, 11(1): 10618.
[59] FAGAN J A, KHRIPIN C Y, SILVERA BATISTA C A, et al. Isolation of Specific Small-Diameter Single-Wall Carbon Nanotube Species Via Aqueous Two-Phase Extraction[J]. Advanced Materials, 2014, 26(18): 2800-2804.
[60] AO G, KHRIPIN C Y, ZHENG M. DNA-Controlled Partition of Carbon Nanotubes in Polymer Aqueous Two-Phase Systems[J]. Journal of the American Chemical Society, 2014, 136(29): 10383-10392.
[61] AO G, STREIT J K, FAGAN J A, et al. Differentiating Left- and Right-Handed Carbon Nanotubes by DNA[J]. Journal of the American Chemical Society, 2016, 138(51): 16677-16685.
[62] LYU M, MEANY B, YANG J, et al. Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems[J]. Journal of the American Chemical Society, 2019, 141(51): 20177-20186.
[63] KHRIPIN C Y, FAGAN J A, ZHENG M. Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases[J]. Journal of the American Chemical Society, 2013, 135(18): 6822-6825.
[64] GUI H, STREIT J K, FAGAN J A, et al. Redox Sorting of Carbon Nanotubes[J]. Nano Letters, 2015, 15(3): 1642-1646.
[65] SAMANTA S K, FRITSCH M, SCHERF U, et al. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping[J]. Accounts of Chemical Research, 2014, 47(8): 2446-2456.
[66] DING J, LI Z, LEFEBVRE J, et al. Enrichment of Large-Diameter Semiconducting Swcnts by Polyfluorene Extraction for High Network Density Thin Film Transistors[J]. Nanoscale, 2014, 6(4): 2328-2339.
[67] WANG J, LEI T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping[J]. Polymers, 2020, 12(7)
[68] NISH A, HWANG J Y, DOIG J, et al. Highly Selective Dispersion of Single-Walled Carbon Nanotubes Using Aromatic Polymers[J]. Nature Nanotechnology, 2007, 2(10): 640-646.
[69] MISTRY K S, LARSEN B A, BLACKBURN J L. High-Yield Dispersions of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes with Tunable Narrow Chirality Distributions[J]. ACS Nano, 2013, 7(3): 2231-2239.
[70] WANG H, BAO Z. Conjugated Polymer Sorting of Semiconducting Carbon Nanotubes and Their Electronic Applications[J]. Nano Today, 2015, 10(6): 737-758.
[71] GU J, HAN J, LIU D, et al. Solution-Processable High-Purity Semiconducting Swcnts for Large-Area Fabrication of High-Performance Thin-Film Transistors[J]. Small, 2016, 12(36): 4993-4999.
[72] CHORTOS A, POCHOROVSKI I, LIN P, et al. Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer[J]. ACS Nano, 2017, 11(6): 5660-5669.
[73] WANG H, KOLEILAT G I, LIU P, et al. High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors[J]. ACS Nano, 2014, 8(3): 2609-2617.
[74] LEE H W, YOON Y, PARK S, et al. Selective Dispersion of High Purity Semiconducting Single-Walled Carbon Nanotubes with Regioregular Poly(3-Alkylthiophene)S[J]. Nature Communications, 2011, 2: 541.
[75] HWANG J-Y, NISH A, DOIG J, et al. Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2008, 130(11): 3543-3553.
[76] STRANKS S D, HABISREUTINGER S N, DIRKS B, et al. Novel Carbon Nanotube-Conjugated Polymer Nanohybrids Produced by Multiple Polymer Processing[J]. Advanced Materials, 2013, 25(31): 4365-4371.
[77] LIU D, LI P, YU X, et al. A Mixed-Extractor Strategy for Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes[J]. Advanced Materials, 2017, 29(8)
[78] LI Y H, ZHENG M M, YAO J, et al. High-Purity Monochiral Carbon Nanotubes with a 1.2 Nm Diameter for High-Performance Field-Effect Transistors[J]. Advanced Functional Materials, 2022, 32(1)
[79] POUDEL Y R, LI W Z. Synthesis, Properties, and Applications of Carbon Nanotubes Filled with Foreign Materials: A Review[J]. Materials Today Physics, 2018, 7: 7-34.
[80] SLOAN J, KIRKLAND A I, HUTCHISON J L, et al. Structural Characterization of Atomically Regulated Nanocrystals Formed within Single-Walled Carbon Nanotubes Using Electron Microscopy[J]. Accounts of Chemical Research, 2002, 35(12): 1054-1062.
[81] KHLOBYSTOV A N, BRITZ D A, BRIGGS G A. Molecules in Carbon Nanotubes[J]. Accounts of Chemical Research, 2005, 38(12): 901-909.
[82] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in Carbon Nanotubes[J]. Nature, 1998, 396(6709): 323-324.
[83] SMITH B W, MONTHIOUX M, LUZZI D E. Carbon Nanotube Encapsulated Fullerenes: A Unique Class of Hybrid Materials[J]. Chemical Physics Letters, 1999, 315(1-2): 31-36.
[84] BANDOW S, TAKIZAWA M, HIRAHARA K, et al. Raman Scattering Study of Double-Wall Carbon Nanotubes Derived from the Chains of Fullerenes in Single-Wall Carbon Nanotubes[J]. Chemical Physics Letters, 2001, 337(1-3): 48-54.
[85] LIM H E, MIYATA Y, KITAURA R, et al. Growth of Carbon Nanotubes Via Twisted Graphene Nanoribbons[J]. Nature Communications, 2013, 4: 2548.
[86] ZHANG J, ZHU Z, FENG Y, et al. Evidence of Diamond Nanowires Formed inside Carbon Nanotubes from Diamantane Dicarboxylic Acid[J]. Angewandte Chemie International Edition, 2013, 52(13): 3717−3721.
[87] WANG S S, YANG G Y. Recent Advances in Polyoxometalate-Catalyzed Reactions[J]. Chemical Reviews, 2015, 115(11): 4893-4962.
[88] KABA M S, SONG I K, DUNCAN D C, et al. Molecular Shapes, Orientation, and Packing of Polyoxometalate Arrays Imaged by Scanning Tunneling Microscopy[J]. Inorganic Chemistry, 1998, 37(3): 398-406.
[89] FEI B, LU H F, CHEN W, et al. Ionic Peapods from Carbon Nanotubes and Phosphotungstic Acid[J]. Carbon, 2006, 44(11): 2261-2264.
[90] GUAN W, WU Z, SU Z. Dft Study of Ionic Peapod Structures from Single-Walled Carbon Nanotubes and Lindqvist Tungstates[J]. Dalton Transactions, 2012, 41(9): 2798-2803.
[91] LIU Z, JOUNG S K, OKAZAKI T, et al. Self-Assembled Double Ladder Structure Formed inside Carbon Nanotubes by Encapsulation of H8si8o12[J]. ACS Nano, 2009, 3(5): 1160-1166.
[92] HASANI-SADRABADI M M, DASHTIMOGHADAM E, MAJEDI F S, et al. Ionic Nanopeapods: Next-Generation Proton Conducting Membranes Based on Phosphotungstic Acid Filled Carbon Nanotube[J]. Nano Energy, 2016, 23: 114-121.
[93] JORDAN J W, LOWE G A, MCSWEENEY R L, et al. Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes[J]. Advanced Materials, 2019, 31(41): e1904182.
[94] XU Z, QIU L, DING F. The Kinetics of Chirality Assignment in Catalytic Single-Walled Carbon Nanotube Growth and the Routes Towards Selective Growth[J]. Chemical Science, 2018, 9(11): 3056–3061.
[95] JORDAN J W, CAMERON J M, LOWE G A, et al. Stabilization of Polyoxometalate Charge Carriers Via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes[J]. Angewandte Chemie International Edition, 2022, 61(8): e202115619.
[96] JORDAN J W, TOWNSEND W J V, JOHNSON L R, et al. Electrochemistry of Redox-Active Molecules Confined within Narrow Carbon Nanotubes[J]. Chemical Society Reviews, 2021, 50(19): 10895-10916.
[97] CAMBRE S, WENSELEERS W. Separation and Diameter-Sorting of Empty (End-Capped) and Water-Filled (Open) Carbon Nanotubes by Density Gradient Ultracentrifugation[J]. Angewandte Chemie International Edition, 2011, 50(12): 2764-2768.
[98] CAMPO J, PIAO Y, LAM S, et al. Enhancing Single-Wall Carbon Nanotube Properties through Controlled Endohedral Filling[J]. Nanoscale Horizons, 2016, 1(4): 317-324.
[99] STREIT J, SNYDER C R, CAMPO J, et al. Alkane Encapsulation Induces Strain in Small-Diameter Single-Wall Carbon Nanotubes[J]. Journal of Physical Chemistry C, 2018, 122(21): 11577-11585.
[100] LI H, GORDEEV G, GARRITY O, et al. Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction[J]. ACS Nano, 2019, 13(2): 2567-2578.
[101] LI H, GORDEEV G, TOROZ D, et al. Endohedral Filling Effects in Sorted and Polymer-Wrapped Single-Wall Carbon Nanotubes[J]. Journal of Physical Chemistry C, 2021, 125(13): 7476-7487.
[102] CAO Q, TERSOFF J, FARMER D B, et al. Carbon Nanotube Transistors Scaled to a 40-Nanometer Footprint[J]. Science, 2017, 356(6345): 1369-1372.
[103] HILLS G, LAU C, WRIGHT A, et al. Modern Microprocessor Built from Complementary Carbon Nanotube Transistors[J]. Nature, 2019, 572(7771): 595-602.
[104] LIPOMI D J, VOSGUERITCHIAN M, TEE B C, et al. Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes[J]. Nature Nanotechnology, 2011, 6(12): 788-792.
[105] HU Y F, PENG L M, XIANG L, et al. Flexible Integrated Circuits Based on Carbon Nanotubes[J]. Accounts of Materials Research, 2020, 1(1): 88-99.
[106] PIAO Y, MEANY B, POWELL L R, et al. Brightening of Carbon Nanotube Photoluminescence through the Incorporation of Sp3 Defects[J]. Nature Chemistry, 2013, 5(10): 840-845.
[107] HE X, HTOON H, DOORN S K, et al. Carbon Nanotubes as Emerging Quantum-Light Sources[J]. Nature Materials, 2018, 17(8): 663-670.
[108] SAHA A, GIFFORD B J, HE X, et al. Narrow-Band Single-Photon Emission through Selective Aryl Functionalization of Zigzag Carbon Nanotubes[J]. Nature Chemistry, 2018, 10(11): 1089-1095.
[109] KOSWATTA S O, VALDES-GARCIA A, STEINER M B, et al. Ultimate Rf Performance Potential of Carbon Electronics[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(10): 2739-2750.
[110] ZHENG M. Sorting Carbon Nanotubes[J]. Topics in Current Chemistry, 2017, 375(1): 13.
[111] HERSAM M C. Progress Towards Monodisperse Single-Walled Carbon Nanotubes[J]. Nature Nanotechnology, 2008, 3(7): 387-394.
[112] KRUPKE R, HENNRICH F, LOHNEYSEN H, et al. Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes[J]. Science, 2003, 301(5631): 344-347.
[113] LEI T, CHEN X, PITNER G, et al. Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes[J]. Journal of the American Chemical Society, 2016, 138(3): 802-805.
[114] WANG H L, BAO Z N. Conjugated Polymer Sorting of Semiconducting Carbon Nanotubes and Their Electronic Applications[J]. Nano Today, 2015, 10(6): 737-758.
[115] HIRANO A, TANAKA T, URABE Y, et al. Ph- and Solute-Dependent Adsorption of Single-Wall Carbon Nanotubes onto Hydrogels: Mechanistic Insights into the Metal/Semiconductor Separation[J]. ACS Nano, 2013, 7(11): 10285-10295.
[116] ZHENG M, DINER B A. Solution Redox Chemistry of Carbon Nanotubes[J]. Journal of the American Chemical Society, 2004, 126(47): 15490-15494.
[117] ANTARIS A L, SEO J W T, BROCK R E, et al. Probing and Tailoring Ph-Dependent Interactions between Block Copolymers and Single-Walled Carbon Nanotubes for Density Gradient Sorting[J]. Journal of Physical Chemistry C, 2012, 116(37): 20103-20108.
[118] FONG D, BODNARYK W J, RICE N A, et al. Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2016, 22(41): 14560-14566.
[119] WANG P, KIM M, PENG Z, et al. Superacid-Surfactant Exchange: Enabling Nondestructive Dispersion of Full-Length Carbon Nanotubes in Water[J]. ACS Nano, 2017, 11(9): 9231-9238.
[120] WANG J, NGUYEN T D, CAO Q, et al. Selective Surface Charge Sign Reversal on Metallic Carbon Nanotubes for Facile Ultrahigh Purity Nanotube Sorting[J]. ACS Nano, 2016, 10(3): 3222-3232.
[121] LIU J, SHI W, NI B, et al. Incorporation of Clusters within Inorganic Materials through Their Addition During Nucleation Steps[J]. Nature Chemistry, 2019, 11(9): 839-845.
[122] KLEMPERER W G. Introduction to Early Transition Metal Polyoxoanions[M]. 1990.
[123] POPE M T, VARGA G M. Heteropoly Blues .I. Reduction Stoichiometries and Reduction Potentials of Some 12-Tungstates[J]. Inorganic Chemistry, 1966, 5(7): 1249-&.
[124] NAIR N, USREY M L, KIM W J, et al. Estimation of the (N,M) Concentration Distribution of Single-Walled Carbon Nanotubes from Photoabsorption Spectra[J]. Analytical Chemistry, 2006, 78(22): 7689-7696.
[125] NAUMOV A V, GHOSH S, TSYBOULSKI D A, et al. Analyzing Absorption Backgrounds in Single-Walled Carbon Nanotube Spectra[J]. ACS Nano, 2011, 5(3): 1639-1648.
[126] ITKIS M E, PEREA D E, NIYOGI S, et al. Purity Evaluation of as-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase near-Ir Spectroscopy[J]. Nano Letters, 2003, 3(3): 309-314.
[127] ZHANG D, YANG J, YANG F, et al. (N,M) Assignments and Quantification for Single-Walled Carbon Nanotubes on Sio2/Si Substrates by Resonant Raman Spectroscopy[J]. Nanoscale, 2015, 7(24): 10719-10727.
[128] HOMENICK C M, ROUSINA-WEBB A, CHENG F Y, et al. High-Yield, Single-Step Separation of Metallic and Semiconducting Swcnts Using Block Copolymers at Low Temperatures[J]. Journal of Physical Chemistry C, 2014, 118(29): 16156-16164.
[129] YU M, TRINKLE D R. Accurate and Efficient Algorithm for Bader Charge Integration[J]. Journal of Chemical Physics, 2011, 134(6): 064111.
[130] ZHENG S T, YANG G Y. Recent Advances in Paramagnetic-Tm-Substituted Polyoxometalates (Tm = Mn, Fe, Co, Ni, Cu)[J]. Chemical Society Reviews, 2012, 41(22): 7623-7646.
[131] KIM K K, BAE J J, PARK H K, et al. Fermi Level Engineering of Single-Walled Carbon Nanotubes by Aucl3 Doping[J]. Journal of the American Chemical Society, 2008, 130(38): 12757-12761.
[132] YANG X, LIU T, LI R, et al. Host-Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2021, 143(27): 10120-10130.
[133] LEBEDKIN S, ARNOLD K, KIOWSKI O, et al. Raman Study of Individually Dispersed Single-Walled Carbon Nanotubes under Pressure[J]. Physical Review B, 2006, 73(9): 094109.
[134] KAWAI M, KYAKUNO H, SUZUKI T, et al. Single Chirality Extraction of Single-Wall Carbon Nanotubes for the Encapsulation of Organic Molecules[J]. Journal of the American Chemical Society, 2012, 134(23): 9545-9548.
[135] FAGAN J A, HUH J Y, SIMPSON J R, et al. Separation of Empty and Water-Filled Single-Wall Carbon Nanotubes[J]. ACS Nano, 2011, 5(5): 3943-3953.
[136] HELLER D A, MAYRHOFER R M, BAIK S, et al. Concomitant Length and Diameter Separation of Single-Walled Carbon Nanotubes[J]. Journal of the American Chemical Society, 2004, 126(44): 14567-14573.
[137] FLAVEL B S, MOORE K E, PFOHL M, et al. Separation of Single-Walled Carbon Nanotubes with a Gel Permeation Chromatography System[J]. ACS Nano, 2014, 8(2): 1817-1826.
[138] ZHU A, YANG X, ZHANG L, et al. Selective Separation of Single-Walled Carbon Nanotubes in Aqueous Solution by Assembling Redox Nanoclusters[J]. Nanoscale, 2022, 14(3): 953-961.
[139] TSIGDINOS G A, HALLADA C J. Molybdovanadophosphoric Acids and Their Salts .I. Investigation of Methods of Preparation and Characterization[J]. Inorganic Chemistry, 1968, 7(3): 437-+.
[140] OKAZAKI T, OKUBO S, NAKANISHI T, et al. Optical Band Gap Modification of Single-Walled Carbon Nanotubes by Encapsulated Fullerenes[J]. Journal of the American Chemical Society, 2008, 130(12): 4122-4128.
[141] KOZHEVNIKOV I V, MATVEEV K I. Homogeneous Catalysts Based on Heteropoly Acids (Review)[J]. Applied Catalysis, 1983, 5(2): 135-150.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
TB383
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/352519
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
杨旭升. 基于多酸团簇的单壁碳纳米管组装与结构分离[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930097-杨旭升-化学系.pdf(9699KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[杨旭升]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[杨旭升]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[杨旭升]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.