中文版 | English
Title

给受体型近红外分子的合成及其光伏性能和生物诊疗研究

Alternative Title
SYNTHESIS OF DONOR-ACCEPTOR TYPE NEAR-INFRARED MOLECULES AND THEIR APPLICATIONS IN PHOTOVOLTAICS AND THERANOSTICS
Author
Name pinyin
CHEN Lin
School number
11930082
Degree
硕士
Discipline
070303 有机化学
Subject category of dissertation
07 理学
Supervisor
何凤
Mentor unit
化学系
Publication Years
2022-05-05
Submission date
2022-07-06
University
南方科技大学
Place of Publication
深圳
Abstract

 

有机半导体材料具有分子结构丰富且易于调控、光电性能优异和生物相容性好等特点,使其成为当下的研究热点。有机半导体材料的性质直接取决于其分子结构,因此可通过分子结构修改实现其性能的调控,进而使其应用于不同的领域。其中,D- A 型有机半导体同时具有给电子(D)单元和吸电子(A)单元于结构中, 该特殊结构有利于提高其电荷迁移率。并且 D- A 作用使得分子内电荷转移效应(ICT)强,使得材料的光谱红移至近红外区。因此 D- A 型有机半导体适合应用于有机太阳能电池光活性层并且满足了生物诊疗剂开发应用的条件。本论文围绕 D- A 型有机半导体分子设计、合成以及应用开展工作,具体的研究工作有以下两个方面:
首先,设计以溴, 甲基不同位置取代的 1,1-二氰亚甲基- 3-茚满酮(IC) 为末端 A 基团,稠合的苯并噻二唑七元环(BTP)作为核心 D 单元合成三个同分异构体 BTP-(Br,Me)、BTP-( Br,Me)- 1 和 BTP-( Br,Me)- 2,并应用于有机光伏器件。溴原子引入降低了轨道能级和光学带隙,而甲基引入可以 略微上调能级从而提高开路电压(VO C )。BTP-( Br,Me)- 1  在共混膜状态下结晶度最优, 并且增强了激子解离和电荷传输,提高了短路电流密度(J SC ) 和填充因子(FF),从而获得最高的光电转换效率 13.43%, 高于另外两个 分子 BTP-(Br,Me)  (11.92%)和 BTP-(Br,Me)-2  (11.08%)对应器件效率。这些结果表明, 端基取代基位置的轻微调整可以引起器件性能的变化。

其次,在上一体系的基础上,设计以溴,甲氧基取代的 IC 为末端基团, 烷基侧链长度不同的三个分子 BTP- EH-( Br,OMe)、BTP- BO-( Br,OMe)、BTP- HD-( Br,OMe)。OMe 基团的引入进一步打破了分子间的聚集,使得荧光强度增加, 而增加烷基链长度, 纳米粒子可以获得更高的光热转换能力。用生物相容性良好的 BTP- HD-( Br,OMe)分子与 DSPE- PEG 共沉淀制备的纳米粒子注射入小鼠体内,表现出良好的肿瘤成像能力与消融能力。

综上所述,通过对有机半导体分子结构的调节,可以实现对分子间堆积、相互作用力的调控, 得到不同的光谱、电荷迁移率、光热转换效率等, 从而使得有机半导体材料能够有效应用于有机太阳能电池和生物诊疗领域。

 

 
Other Abstract

 

 
Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-6
References List

[1] HUANG Y, ELDER D L, KWIRAM A L, et al. Organic Semiconductors at the University of Washington: Advancements in Materials Design and Synthesis and toward Industrial Scale Production[J]. Advanced Materials, 2021, 33(22): 1904239.
[2] KLEEMANN H, GUTIERREZ R, LINDNER F, et al. Organic Zener Diodes: Tunneling across the Gap in Organic Semiconductor Materials[J]. Nano Letters, 2010, 10(12): 4929-4934.
[3] FRIEDERICH P, FEDIAI A, KAISER S, et al. Organic Semiconductors: Toward Design of Novel Materials for Organic Electronics (Adv. Mater. 26/2019)[J]. Advanced Materials, 2019, 31(26): 1970188.
[4] PARK S, KANG Y J, MAJD S. Patterned Materials: A Review of Patterned Organic Bioelectronic Materials and their Biomedical Applications (Adv. Mater. 46/2015)[J]. Advanced Materials, 2015, 27(46): 7486-7486.
[5] TIAN B, ZHENG X, KEMPA T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007, 449(7164): 885-889.
[6] LI G, ZHU R, YANG Y. Polymer solar cells[J]. Nature Photonics, 2012, 6(3): 153-161.
[7] INGANäS O. Organic Photovoltaics over Three Decades[J]. Advanced Materials, 2018, 30(35): 1800388.
[8] KANG M G, KIM C, LEE Y J, et al. Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility[J]. Optics & Laser Technology, 2016, 82: 183-190.
[9] LIN Y, WANG J, ZHANG Z-G, et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[10] YUAN J, ZHANG Y, ZHOU L, et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core[J]. Joule, 2019, 3(4): 1140-1151.
[11] ZHU Y, LAI H, GUO H, et al. Side-Chain-Tuned Molecular Packing Allows Concurrently Boosted Photoacoustic Imaging and NIR-II Fluorescence[J]. Angewandte Chemie International Edition, 2022, n/a(n/a): e202117433.
[12] HAN J, LI H, YOON J. Activated supramolecular nano-agents: From diagnosis to imaging-guided tumor treatment[J]. Nano Today, 2022, 43: 101392.
[13] HE J, LI C, DING L, et al. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment[J]. Advanced Materials, 2019, 31(40): 1902409.
[14] ELEY D D. Organic Semiconductors[J]. Nature, 1963, 197(4871): 932-932.
[15] CHIANG C K, FINCHER C R, PARK Y W, et al. Electrical Conductivity in Doped Polyacetylene[J]. Physical Review Letters, 1977, 39(17): 1098-1101.
[16] FACCHETTI A. Semiconductors for organic transistors[J]. Materials Today, 2007, 10(3): 28-37.
[17] QIN Z, GAO H, DONG H, et al. Organic Light-Emitting Transistors Entering a New Development Stage[J]. Advanced Materials, 2021, 33(31): 2007149.
[18] SIMON D T, GABRIELSSON E O, TYBRANDT K, et al. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology[J]. Chemical Reviews, 2016, 116(21): 13009-13041.
[19] QIAN Y, ZHANG X, XIE L, et al. Stretchable Organic Semiconductor Devices[J]. Advanced Materials, 2016, 28(42): 9243-9265.
[20] LIAO C, ZHANG M, YAO M Y, et al. Organic Electronics: Flexible Organic Electronics in Biology: Materials and Devices (Adv. Mater. 46/2015)[J]. Advanced Materials, 2015, 27(46): 7679-7679.
[21] MALLIARAS G, MCCULLOCH I. Introduction: Organic Bioelectronics[J]. Chemical Reviews, 2022, 122(4): 4323-4324.
[22] SCHNERMANN M J. Organic dyes for deep bioimaging[J]. Nature, 2017, 551(7679): 176-177.
[23] CAI Y, WEI Z, SONG C, et al. Novel acceptor–donor–acceptor structured small molecule-based nanoparticles for highly efficient photothermal therapy[J]. Chemical Communications, 2019, 55(61): 8967-8970.
[24] YUAN L, LIANG S, XIAO C, et al. Near-Infrared Nonfullerene Acceptors Based on 4H-Cyclopenta
[1,2-b:5,4-b′]dithiophene for Organic Solar Cells and Organic Field-Effect Transistors[J]. Chemistry – An Asian Journal, 2021, 16(24): 4171-4178.
[25] CAO J, LIU S, HU W, et al. Small-molecule acceptors based on 4H-cyclopenta
[1,2-b:5,4-b′]dithiophene units with near-infrared absorption for nonfullerene polymer solar cells[J]. Synthetic Metals, 2018, 240: 15-20.
[26] HE Z, ZHAO L, ZHANG Q, et al. An Acceptor–Donor–Acceptor Structured Small Molecule for Effective NIR Triggered Dual Phototherapy of Cancer[J]. Advanced Functional Materials, 2020, 30(16): 1910301.
[27] XIE D, LIU T, GAO W, et al. A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency[J]. Solar RRL, 2017, 1(6): 1700044.
[28] XIAO Y-F, XIANG C, LI S, et al. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation[J]. Small, 2020, 16(34): 2002672.
[29] CAI Y, TANG C, WEI Z, et al. Fused-Ring Small-Molecule-Based Bathochromic Nano-agents for Tumor NIR-II Fluorescence Imaging-Guided Photothermal/Photodynamic Therapy[J]. ACS Applied Bio Materials, 2021, 4(2): 1942-1949.
[30] GŁOWACKI E D, SARICIFTCI N S, TANG C W. Organic Solar Cellsorganicsolar cell[M]//RICHTER C, LINCOT D, GUEYMARD C A. Solar Energy. New York, NY; Springer New York. 2013: 97-128.
[31] LI C, MüLLEN K. Perylenes in Organic Photovoltaics[M]//ZHOU Y. Eco- and Renewable Energy Materials. Berlin, Heidelberg; Springer Berlin Heidelberg. 2013: 25-52.
[32] BACH U, LUPO D, COMTE P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395(6702): 583-585.
[33] ZHENG Z, JIANQIU W, BI P-Q, et al. Tandem Organic Solar Cell with 20.2% Efficiency[J]. Joule, 2021, 6
[34] LU L, ZHENG T, WU Q, et al. Recent Advances in Bulk Heterojunction Polymer Solar Cells[J]. Chemical Reviews, 2015, 115(23): 12666-12731.
[35] SARICIFTCI N S, WUDL F, HEEGER A J, et al. Photoinduced electron transfer and long lived charge separation in a donor-bridge-acceptor supramolecular ‘diad’ consisting of ruthenium(II) tris(bipyridine) functionalized C60[J]. Chemical Physics Letters, 1995, 247(4): 510-514.
[36] WIENK M M, KROON J M, VERHEES W J H, et al. Efficient Methano
[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells[J]. Angewandte Chemie International Edition, 2003, 42(29): 3371-3375.
[37] GLENIS S, TOURILLON G, GARNIER F. Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene[J]. Thin Solid Films, 1986, 139(3): 221-231.
[38] KIM Y, COOK S, KIRKPATRICK J, et al. Effect of the End Group of Regioregular Poly(3-hexylthiophene) Polymers on the Performance of Polymer/Fullerene Solar Cells[J]. The Journal of Physical Chemistry C, 2007, 111(23): 8137-8141.
[39] BRABEC C J. Organic photovoltaics: technology and market[J]. Solar Energy Materials and Solar Cells, 2004, 83(2): 273-292.
[40] LIANG Y, XU Z, XIA J, et al. For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20): E135-E138.
[41] LIAO S-H, JHUO H-J, YEH P-N, et al. Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer[J]. Scientific Reports, 2014, 4(1): 6813.
[42] IE Y, HUANG J, UETANI Y, et al. Synthesis, Properties, and Photovoltaic Performances of Donor–Acceptor Copolymers Having Dioxocycloalkene-Annelated Thiophenes As Acceptor Monomer Units[J]. Macromolecules, 2012, 45: 4564-4571.
[43] QIAN D, YE L, ZHANG M, et al. Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State[J]. Macromolecules, 2012, 45(24): 9611-9617.
[44] ZHANG M, GUO X, MA W, et al. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance[J]. Advanced Materials, 2015, 27(31): 4655-4660.
[45] LIU Q, JIANG Y, JIN K, et al. 18% Efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4): 272-275.
[46] GüNES S. Organic Solar Cells and Their Nanostructural Improvement[M]//ZANG L. Energy Efficiency and Renewable Energy Through Nanotechnology. London; Springer London. 2011: 171-225.
[47] HUMMELEN J C, KNIGHT B W, LEPEQ F, et al. Preparation and Characterization of Fulleroid and Methanofullerene Derivatives[J]. The Journal of Organic Chemistry, 1995, 60(3): 532-538.
[48] LIANG Y, YU L. A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance[J]. Accounts of Chemical Research, 2010, 43(9): 1227-1236.
[49] ZHAO J, LI Y, LIN H, et al. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor[J]. Energy & Environmental Science, 2015, 8(2): 520-525.
[50] LIN Y, WANG Y, WANG J, et al. A Star-Shaped Perylene Diimide Electron Acceptor for High-Performance Organic Solar Cells[J]. Advanced Materials, 2014, 26(30): 5137-5142.
[51] ZHANG J, LI Y, HUANG J, et al. Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells with a Small Voltage Loss[J]. Journal of the American Chemical Society, 2017, 139(45): 16092-16095.
[52] YU X, LIU K, ZHANG H, et al. Lifetime-Engineered Phosphorescent Carbon Dots-in-Zeolite Composites for Naked-Eye Visible Multiplexing[J]. CCS Chemistry, 3(12): 252-264.
[53] ZHANG G, ZHAO J, CHOW P C Y, et al. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells[J]. Chemical Reviews, 2018, 118(7): 3447-3507.
[54] HUANG B, CHEN L, JIN X, et al. Alkylsilyl Functionalized Copolymer Donor for Annealing-Free High Performance Solar Cells with over 11% Efficiency: Crystallinity Induced Small Driving Force[J]. Advanced Functional Materials, 2018, 28(20): 1800606.
[55] WANG W, YAN C, LAU T-K, et al. Fused Hexacyclic Nonfullerene Acceptor with Strong Near-Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency[J]. Advanced Materials, 2017, 29(31): 1701308.
[56] ZHAO W, LI S, YAO H, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7148-7151.
[57] YUAN J, ZHANG Y, ZHOU L, et al. Fused Benzothiadiazole: A Building Block for n-Type Organic Acceptor to Achieve High-Performance Organic Solar Cells[J]. Advanced Materials, 2019, 31(17): 1807577.
[58] YUAN J, HUANG T, CHENG P, et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics[J]. Nature Communications, 2019, 10(1): 570.
[59] LIU Y, ZHENG Z, COROPCEANU V, et al. Lower limits for non-radiative recombination loss in organic donor/acceptor complexes[J]. Materials Horizons, 2022, 9(1): 325-333.
[60] ZE Q, KUANG X, WU S, et al. Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation[J]. Advanced Materials, 2020, 32(4): 1906657.
[61] ZHU C, YUAN J, CAI F, et al. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell[J]. Energy & Environmental Science, 2020, 13(8): 2459-2466.
[62] CHEN H, LAI H, CHEN Z, et al. 17.1 %-Efficient Eco-Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor[J]. Angewandte Chemie International Edition, 2021, 60(6): 3238-3246.
[63] HE C, PAN Y, OUYANG Y, et al. Manipulating the D:A Interfacial Energetics and Intermolecular Packing for 19.2% Efficiency Organic Photovoltaics[J]. Energy & Environmental Science, 2022
[64] CHONG H, NIE C, ZHU C, et al. Conjugated Polymer Nanoparticles for Light-Activated Anticancer and Antibacterial Activity with Imaging Capability[J]. Langmuir, 2012, 28(4): 2091-2098.
[65] MCQUADE D T, PULLEN A E, SWAGER T M. Conjugated Polymer-Based Chemical Sensors[J]. Chemical Reviews, 2000, 100(7): 2537-2574.
[66] NEDERBERG F, ZHANG Y, TAN J P K, et al. Biodegradable nanostructures with selective lysis of microbial membranes[J]. Nature Chemistry, 2011, 3(5): 409-414.
[67] HORNIG S, HEINZE T, BECER C R, et al. Synthetic polymeric nanoparticles by nanoprecipitation[J]. Journal of Materials Chemistry, 2009, 19(23): 3838-3840.
[68] CHEN J, WEN K, CHEN H, et al. Achieving High-Performance Photothermal and Photodynamic Effects upon Combining D–A Structure and Nonplanar Conformation[J]. Small, 2020, 16(17): 2000909.
[69] WEN K, XU X, CHEN J, et al. Triplet Tellurophene-Based Semiconducting Polymer Nanoparticles for Near-Infrared-Mediated Cancer Theranostics[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17884-17893.
[70] WANG Q, XIA B, XU J, et al. Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy[J]. Materials Chemistry Frontiers, 2019, 3(4): 650-655.
[71] ZHU X, LIU C, HU Z, et al. High brightness NIR-II nanofluorophores based on fused-ring acceptor molecules[J]. Nano Research, 2020, 13(9): 2570-2575.
[72] GORKA A P, NANI R R, SCHNERMANN M J. Cyanine polyene reactivity: scope and biomedical applications[J]. Organic & Biomolecular Chemistry, 2015, 13(28): 7584-7598.
[73] KIM S, LIM Y T, SOLTESZ E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J]. Nature Biotechnology, 2004, 22(1): 93-97.
[74] SMITH A M, MANCINI M C, NIE S. Second window for in vivo imaging[J]. Nature Nanotechnology, 2009, 4(11): 710-711.
[75] BRUNS O T, BISCHOF T S, HARRIS D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 2017, 1(4): 0056.
[76] KUANG S, WEI F, KARGES J, et al. Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia[J]. Journal of the American Chemical Society, 2022, 144(9): 4091-4101.
[77] WANG C, TAO H, CHENG L, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J]. Biomaterials, 2011, 32(26): 6145-6154.
[78] MISHRA A, BEHERA R K, BEHERA P K, et al. Cyanines during the 1990s: A Review[J]. Chemical Reviews, 2000, 100(6): 1973-2012.
[79] YIN X, CAI Y, CAI S, et al. A deep-red fluorescent molecular rotor based on donor-two-acceptor modular system for imaging mitochondrial viscosity[J]. RSC Advances, 2020, 10(51): 30825-30831.
[80] DESMETTRE T, DEVOISSELLE J M, MORDON S. Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography[J]. Survey of Ophthalmology, 2000, 45(1): 15-27.
[81] NIU S L, MASSIF C, ULRICH G, et al. Water-solubilisation and bio-conjugation of a red-emitting BODIPY marker[J]. Organic & Biomolecular Chemistry, 2011, 9(1): 66-69.
[82] ALESSI A, SALVALAGGIO M, RUZZON G. Rhodamine 800 as reference substance for fluorescence quantum yield measurements in deep red emission range[J]. Journal of Luminescence, 2013, 134: 385-389.
[83] FU M, XIAO Y, QIAN X, et al. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom[J]. Chemical Communications, 2008(15): 1780-1782.
[84] BOENS N, LEEN V, DEHAEN W. Fluorescent indicators based on BODIPY[J]. Chemical Society Reviews, 2012, 41(3): 1130-1172.
[85] ZHU L, XIE W, ZHAO L, et al. Tetraphenylethylene- and fluorene-functionalized near-infrared aza-BODIPY dyes for living cell imaging[J]. RSC Advances, 2017, 7(88): 55839-55845.
[86] CHEN J, BURGHART A, DERECSKEI-KOVACS A, et al. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) Dyes Modified for Extended Conjugation and Restricted Bond Rotations[J]. The Journal of Organic Chemistry, 2000, 65(10): 2900-2906.
[87] WU Q, WU Y, ZHANG M, et al. Visible light excitable 3-formylBODIPYs for selective fluorescent and colorimetric sensing of cysteine[J]. Journal of Porphyrins and Phthalocyanines, 2016, 20(01n04): 444-455.
[88] STRASSEL K, HU W-H, OSBILD S, et al. Shortwave infrared-absorbing squaraine dyes for all-organic optical upconversion devices[J]. Science and Technology of Advanced Materials, 2021, 22(1): 194-204.
[89] POVROZIN Y A, KOLOSOVA O S, OBUKHOVA O M, et al. Seta-633 - A NIR Fluorescence Lifetime Label for Low-Molecular-Weight Analytes[J]. Bioconjugate Chemistry, 2009, 20(9): 1807-1812.
[90] LI M, XIA J, TIAN R, et al. Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors[J]. Journal of the American Chemical Society, 2018, 140(44): 14851-14859.
[91] HE T, QIN X, JIANG C, et al. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy[J]. Theranostics, 2020, 10(6): 2453-2462.
[92] CELLI J P, SPRING B Q, RIZVI I, et al. Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization[J]. Chemical Reviews, 2010, 110(5): 2795-2838.
[93] LI L, SHAO C, LIU T, et al. An NIR-II-Emissive Photosensitizer for Hypoxia-Tolerant Photodynamic Theranostics[J]. Advanced Materials, 2020, 32(45): 2003471.
[94] MEN X, WANG F, CHEN H, et al. Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Near-Infrared Photoacoustic Imaging and Photothermal Cancer Therapy[J]. Advanced Functional Materials, 2020, 30(24): 1909673.
[95] LI S-H, YANG W, LIU Y, et al. Engineering of tungsten carbide nanoparticles for imaging-guided single 1,064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer[J]. Nano Research, 2018, 11(9): 4859-4873.
[96] WANG S, HU T, WANG G, et al. Ultrathin CuFe2S3 nanosheets derived from CuFe-layered double hydroxide as an efficient nanoagent for synergistic chemodynamic and NIR-II photothermal therapy[J]. Chemical Engineering Journal, 2021, 419: 129458.
[97] QI J, FANG Y, KWOK R T K, et al. Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice[J]. ACS Nano, 2017, 11(7): 7177-7188.
[98] CAO Y, DOU J-H, ZHAO N-J, et al. Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer[J]. Chemistry of Materials, 2017, 29(2): 718-725.
[99] GUO B, SHENG Z, KENRY, et al. Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window[J]. Materials Horizons, 2017, 4(6): 1151-1156.
[100] PU K-Y, ZHAN R, LIU B. Conjugated polyelectrolyte blend as perturbable energy donor–acceptor assembly with multicolor fluorescence response to proteins[J]. Chemical Communications, 2010, 46(9): 1470-1472.
[101] ZHOU Y, YAN Q, ZHENG Y-Q, et al. New polymer acceptors for organic solar cells: the effect of regio-regularity and device configuration[J]. Journal of Materials Chemistry A, 2013, 1(22): 6609-6613.
[102] FUNAHASHI M. Anisotropic electrical conductivity of n-doped thin films of polymerizable liquid-crystalline perylene bisimide bearing a triethylene oxide chain and cyclotetrasiloxane rings[J]. Materials Chemistry Frontiers, 2017, 1(6): 1137-1146.
[103] YANG Y, ZHANG Z-G, BIN H, et al. Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells[J]. Journal of the American Chemical Society, 2016, 138(45): 15011-15018.
[104] WANG J, ZHANG J, XIAO Y, et al. Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors[J]. Journal of the American Chemical Society, 2018, 140(29): 9140-9147.
[105] GAO W, AN Q, ZHONG C, et al. Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency[J]. Chemical Science, 2018, 9(42): 8142-8149.
[106] WU J, CHEN Y, HU B, et al. Isomers of Dithienocyclopentapyrene-Based Non-Fullerene Electron Acceptors: Configuration Effect on Photoelectronic Properties[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(25): 6385-6391.
[107] LU B, ZHANG Z, JIN D, et al. A–DA′D–A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer[J]. Chemical Communications, 2021, 57(90): 12020-12023.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O69
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/352520
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
陈琳. 给受体型近红外分子的合成及其光伏性能和生物诊疗研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930082-陈琳-化学系.pdf(8133KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[陈琳]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[陈琳]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[陈琳]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.