[1] HUANG Y, ELDER D L, KWIRAM A L, et al. Organic Semiconductors at the University of Washington: Advancements in Materials Design and Synthesis and toward Industrial Scale Production[J]. Advanced Materials, 2021, 33(22): 1904239.
[2] KLEEMANN H, GUTIERREZ R, LINDNER F, et al. Organic Zener Diodes: Tunneling across the Gap in Organic Semiconductor Materials[J]. Nano Letters, 2010, 10(12): 4929-4934.
[3] FRIEDERICH P, FEDIAI A, KAISER S, et al. Organic Semiconductors: Toward Design of Novel Materials for Organic Electronics (Adv. Mater. 26/2019)[J]. Advanced Materials, 2019, 31(26): 1970188.
[4] PARK S, KANG Y J, MAJD S. Patterned Materials: A Review of Patterned Organic Bioelectronic Materials and their Biomedical Applications (Adv. Mater. 46/2015)[J]. Advanced Materials, 2015, 27(46): 7486-7486.
[5] TIAN B, ZHENG X, KEMPA T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007, 449(7164): 885-889.
[6] LI G, ZHU R, YANG Y. Polymer solar cells[J]. Nature Photonics, 2012, 6(3): 153-161.
[7] INGANäS O. Organic Photovoltaics over Three Decades[J]. Advanced Materials, 2018, 30(35): 1800388.
[8] KANG M G, KIM C, LEE Y J, et al. Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility[J]. Optics & Laser Technology, 2016, 82: 183-190.
[9] LIN Y, WANG J, ZHANG Z-G, et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[10] YUAN J, ZHANG Y, ZHOU L, et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core[J]. Joule, 2019, 3(4): 1140-1151.
[11] ZHU Y, LAI H, GUO H, et al. Side-Chain-Tuned Molecular Packing Allows Concurrently Boosted Photoacoustic Imaging and NIR-II Fluorescence[J]. Angewandte Chemie International Edition, 2022, n/a(n/a): e202117433.
[12] HAN J, LI H, YOON J. Activated supramolecular nano-agents: From diagnosis to imaging-guided tumor treatment[J]. Nano Today, 2022, 43: 101392.
[13] HE J, LI C, DING L, et al. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment[J]. Advanced Materials, 2019, 31(40): 1902409.
[14] ELEY D D. Organic Semiconductors[J]. Nature, 1963, 197(4871): 932-932.
[15] CHIANG C K, FINCHER C R, PARK Y W, et al. Electrical Conductivity in Doped Polyacetylene[J]. Physical Review Letters, 1977, 39(17): 1098-1101.
[16] FACCHETTI A. Semiconductors for organic transistors[J]. Materials Today, 2007, 10(3): 28-37.
[17] QIN Z, GAO H, DONG H, et al. Organic Light-Emitting Transistors Entering a New Development Stage[J]. Advanced Materials, 2021, 33(31): 2007149.
[18] SIMON D T, GABRIELSSON E O, TYBRANDT K, et al. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology[J]. Chemical Reviews, 2016, 116(21): 13009-13041.
[19] QIAN Y, ZHANG X, XIE L, et al. Stretchable Organic Semiconductor Devices[J]. Advanced Materials, 2016, 28(42): 9243-9265.
[20] LIAO C, ZHANG M, YAO M Y, et al. Organic Electronics: Flexible Organic Electronics in Biology: Materials and Devices (Adv. Mater. 46/2015)[J]. Advanced Materials, 2015, 27(46): 7679-7679.
[21] MALLIARAS G, MCCULLOCH I. Introduction: Organic Bioelectronics[J]. Chemical Reviews, 2022, 122(4): 4323-4324.
[22] SCHNERMANN M J. Organic dyes for deep bioimaging[J]. Nature, 2017, 551(7679): 176-177.
[23] CAI Y, WEI Z, SONG C, et al. Novel acceptor–donor–acceptor structured small molecule-based nanoparticles for highly efficient photothermal therapy[J]. Chemical Communications, 2019, 55(61): 8967-8970.
[24] YUAN L, LIANG S, XIAO C, et al. Near-Infrared Nonfullerene Acceptors Based on 4H-Cyclopenta
[1,2-b:5,4-b′]dithiophene for Organic Solar Cells and Organic Field-Effect Transistors[J]. Chemistry – An Asian Journal, 2021, 16(24): 4171-4178.
[25] CAO J, LIU S, HU W, et al. Small-molecule acceptors based on 4H-cyclopenta
[1,2-b:5,4-b′]dithiophene units with near-infrared absorption for nonfullerene polymer solar cells[J]. Synthetic Metals, 2018, 240: 15-20.
[26] HE Z, ZHAO L, ZHANG Q, et al. An Acceptor–Donor–Acceptor Structured Small Molecule for Effective NIR Triggered Dual Phototherapy of Cancer[J]. Advanced Functional Materials, 2020, 30(16): 1910301.
[27] XIE D, LIU T, GAO W, et al. A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency[J]. Solar RRL, 2017, 1(6): 1700044.
[28] XIAO Y-F, XIANG C, LI S, et al. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation[J]. Small, 2020, 16(34): 2002672.
[29] CAI Y, TANG C, WEI Z, et al. Fused-Ring Small-Molecule-Based Bathochromic Nano-agents for Tumor NIR-II Fluorescence Imaging-Guided Photothermal/Photodynamic Therapy[J]. ACS Applied Bio Materials, 2021, 4(2): 1942-1949.
[30] GŁOWACKI E D, SARICIFTCI N S, TANG C W. Organic Solar Cellsorganicsolar cell[M]//RICHTER C, LINCOT D, GUEYMARD C A. Solar Energy. New York, NY; Springer New York. 2013: 97-128.
[31] LI C, MüLLEN K. Perylenes in Organic Photovoltaics[M]//ZHOU Y. Eco- and Renewable Energy Materials. Berlin, Heidelberg; Springer Berlin Heidelberg. 2013: 25-52.
[32] BACH U, LUPO D, COMTE P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395(6702): 583-585.
[33] ZHENG Z, JIANQIU W, BI P-Q, et al. Tandem Organic Solar Cell with 20.2% Efficiency[J]. Joule, 2021, 6
[34] LU L, ZHENG T, WU Q, et al. Recent Advances in Bulk Heterojunction Polymer Solar Cells[J]. Chemical Reviews, 2015, 115(23): 12666-12731.
[35] SARICIFTCI N S, WUDL F, HEEGER A J, et al. Photoinduced electron transfer and long lived charge separation in a donor-bridge-acceptor supramolecular ‘diad’ consisting of ruthenium(II) tris(bipyridine) functionalized C60[J]. Chemical Physics Letters, 1995, 247(4): 510-514.
[36] WIENK M M, KROON J M, VERHEES W J H, et al. Efficient Methano
[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells[J]. Angewandte Chemie International Edition, 2003, 42(29): 3371-3375.
[37] GLENIS S, TOURILLON G, GARNIER F. Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene[J]. Thin Solid Films, 1986, 139(3): 221-231.
[38] KIM Y, COOK S, KIRKPATRICK J, et al. Effect of the End Group of Regioregular Poly(3-hexylthiophene) Polymers on the Performance of Polymer/Fullerene Solar Cells[J]. The Journal of Physical Chemistry C, 2007, 111(23): 8137-8141.
[39] BRABEC C J. Organic photovoltaics: technology and market[J]. Solar Energy Materials and Solar Cells, 2004, 83(2): 273-292.
[40] LIANG Y, XU Z, XIA J, et al. For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%[J]. Advanced Materials, 2010, 22(20): E135-E138.
[41] LIAO S-H, JHUO H-J, YEH P-N, et al. Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer[J]. Scientific Reports, 2014, 4(1): 6813.
[42] IE Y, HUANG J, UETANI Y, et al. Synthesis, Properties, and Photovoltaic Performances of Donor–Acceptor Copolymers Having Dioxocycloalkene-Annelated Thiophenes As Acceptor Monomer Units[J]. Macromolecules, 2012, 45: 4564-4571.
[43] QIAN D, YE L, ZHANG M, et al. Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State[J]. Macromolecules, 2012, 45(24): 9611-9617.
[44] ZHANG M, GUO X, MA W, et al. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance[J]. Advanced Materials, 2015, 27(31): 4655-4660.
[45] LIU Q, JIANG Y, JIN K, et al. 18% Efficiency organic solar cells[J]. Science Bulletin, 2020, 65(4): 272-275.
[46] GüNES S. Organic Solar Cells and Their Nanostructural Improvement[M]//ZANG L. Energy Efficiency and Renewable Energy Through Nanotechnology. London; Springer London. 2011: 171-225.
[47] HUMMELEN J C, KNIGHT B W, LEPEQ F, et al. Preparation and Characterization of Fulleroid and Methanofullerene Derivatives[J]. The Journal of Organic Chemistry, 1995, 60(3): 532-538.
[48] LIANG Y, YU L. A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance[J]. Accounts of Chemical Research, 2010, 43(9): 1227-1236.
[49] ZHAO J, LI Y, LIN H, et al. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor[J]. Energy & Environmental Science, 2015, 8(2): 520-525.
[50] LIN Y, WANG Y, WANG J, et al. A Star-Shaped Perylene Diimide Electron Acceptor for High-Performance Organic Solar Cells[J]. Advanced Materials, 2014, 26(30): 5137-5142.
[51] ZHANG J, LI Y, HUANG J, et al. Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells with a Small Voltage Loss[J]. Journal of the American Chemical Society, 2017, 139(45): 16092-16095.
[52] YU X, LIU K, ZHANG H, et al. Lifetime-Engineered Phosphorescent Carbon Dots-in-Zeolite Composites for Naked-Eye Visible Multiplexing[J]. CCS Chemistry, 3(12): 252-264.
[53] ZHANG G, ZHAO J, CHOW P C Y, et al. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells[J]. Chemical Reviews, 2018, 118(7): 3447-3507.
[54] HUANG B, CHEN L, JIN X, et al. Alkylsilyl Functionalized Copolymer Donor for Annealing-Free High Performance Solar Cells with over 11% Efficiency: Crystallinity Induced Small Driving Force[J]. Advanced Functional Materials, 2018, 28(20): 1800606.
[55] WANG W, YAN C, LAU T-K, et al. Fused Hexacyclic Nonfullerene Acceptor with Strong Near-Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency[J]. Advanced Materials, 2017, 29(31): 1701308.
[56] ZHAO W, LI S, YAO H, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7148-7151.
[57] YUAN J, ZHANG Y, ZHOU L, et al. Fused Benzothiadiazole: A Building Block for n-Type Organic Acceptor to Achieve High-Performance Organic Solar Cells[J]. Advanced Materials, 2019, 31(17): 1807577.
[58] YUAN J, HUANG T, CHENG P, et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics[J]. Nature Communications, 2019, 10(1): 570.
[59] LIU Y, ZHENG Z, COROPCEANU V, et al. Lower limits for non-radiative recombination loss in organic donor/acceptor complexes[J]. Materials Horizons, 2022, 9(1): 325-333.
[60] ZE Q, KUANG X, WU S, et al. Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation[J]. Advanced Materials, 2020, 32(4): 1906657.
[61] ZHU C, YUAN J, CAI F, et al. Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell[J]. Energy & Environmental Science, 2020, 13(8): 2459-2466.
[62] CHEN H, LAI H, CHEN Z, et al. 17.1 %-Efficient Eco-Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor[J]. Angewandte Chemie International Edition, 2021, 60(6): 3238-3246.
[63] HE C, PAN Y, OUYANG Y, et al. Manipulating the D:A Interfacial Energetics and Intermolecular Packing for 19.2% Efficiency Organic Photovoltaics[J]. Energy & Environmental Science, 2022
[64] CHONG H, NIE C, ZHU C, et al. Conjugated Polymer Nanoparticles for Light-Activated Anticancer and Antibacterial Activity with Imaging Capability[J]. Langmuir, 2012, 28(4): 2091-2098.
[65] MCQUADE D T, PULLEN A E, SWAGER T M. Conjugated Polymer-Based Chemical Sensors[J]. Chemical Reviews, 2000, 100(7): 2537-2574.
[66] NEDERBERG F, ZHANG Y, TAN J P K, et al. Biodegradable nanostructures with selective lysis of microbial membranes[J]. Nature Chemistry, 2011, 3(5): 409-414.
[67] HORNIG S, HEINZE T, BECER C R, et al. Synthetic polymeric nanoparticles by nanoprecipitation[J]. Journal of Materials Chemistry, 2009, 19(23): 3838-3840.
[68] CHEN J, WEN K, CHEN H, et al. Achieving High-Performance Photothermal and Photodynamic Effects upon Combining D–A Structure and Nonplanar Conformation[J]. Small, 2020, 16(17): 2000909.
[69] WEN K, XU X, CHEN J, et al. Triplet Tellurophene-Based Semiconducting Polymer Nanoparticles for Near-Infrared-Mediated Cancer Theranostics[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17884-17893.
[70] WANG Q, XIA B, XU J, et al. Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy[J]. Materials Chemistry Frontiers, 2019, 3(4): 650-655.
[71] ZHU X, LIU C, HU Z, et al. High brightness NIR-II nanofluorophores based on fused-ring acceptor molecules[J]. Nano Research, 2020, 13(9): 2570-2575.
[72] GORKA A P, NANI R R, SCHNERMANN M J. Cyanine polyene reactivity: scope and biomedical applications[J]. Organic & Biomolecular Chemistry, 2015, 13(28): 7584-7598.
[73] KIM S, LIM Y T, SOLTESZ E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J]. Nature Biotechnology, 2004, 22(1): 93-97.
[74] SMITH A M, MANCINI M C, NIE S. Second window for in vivo imaging[J]. Nature Nanotechnology, 2009, 4(11): 710-711.
[75] BRUNS O T, BISCHOF T S, HARRIS D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 2017, 1(4): 0056.
[76] KUANG S, WEI F, KARGES J, et al. Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia[J]. Journal of the American Chemical Society, 2022, 144(9): 4091-4101.
[77] WANG C, TAO H, CHENG L, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J]. Biomaterials, 2011, 32(26): 6145-6154.
[78] MISHRA A, BEHERA R K, BEHERA P K, et al. Cyanines during the 1990s: A Review[J]. Chemical Reviews, 2000, 100(6): 1973-2012.
[79] YIN X, CAI Y, CAI S, et al. A deep-red fluorescent molecular rotor based on donor-two-acceptor modular system for imaging mitochondrial viscosity[J]. RSC Advances, 2020, 10(51): 30825-30831.
[80] DESMETTRE T, DEVOISSELLE J M, MORDON S. Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography[J]. Survey of Ophthalmology, 2000, 45(1): 15-27.
[81] NIU S L, MASSIF C, ULRICH G, et al. Water-solubilisation and bio-conjugation of a red-emitting BODIPY marker[J]. Organic & Biomolecular Chemistry, 2011, 9(1): 66-69.
[82] ALESSI A, SALVALAGGIO M, RUZZON G. Rhodamine 800 as reference substance for fluorescence quantum yield measurements in deep red emission range[J]. Journal of Luminescence, 2013, 134: 385-389.
[83] FU M, XIAO Y, QIAN X, et al. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom[J]. Chemical Communications, 2008(15): 1780-1782.
[84] BOENS N, LEEN V, DEHAEN W. Fluorescent indicators based on BODIPY[J]. Chemical Society Reviews, 2012, 41(3): 1130-1172.
[85] ZHU L, XIE W, ZHAO L, et al. Tetraphenylethylene- and fluorene-functionalized near-infrared aza-BODIPY dyes for living cell imaging[J]. RSC Advances, 2017, 7(88): 55839-55845.
[86] CHEN J, BURGHART A, DERECSKEI-KOVACS A, et al. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) Dyes Modified for Extended Conjugation and Restricted Bond Rotations[J]. The Journal of Organic Chemistry, 2000, 65(10): 2900-2906.
[87] WU Q, WU Y, ZHANG M, et al. Visible light excitable 3-formylBODIPYs for selective fluorescent and colorimetric sensing of cysteine[J]. Journal of Porphyrins and Phthalocyanines, 2016, 20(01n04): 444-455.
[88] STRASSEL K, HU W-H, OSBILD S, et al. Shortwave infrared-absorbing squaraine dyes for all-organic optical upconversion devices[J]. Science and Technology of Advanced Materials, 2021, 22(1): 194-204.
[89] POVROZIN Y A, KOLOSOVA O S, OBUKHOVA O M, et al. Seta-633 - A NIR Fluorescence Lifetime Label for Low-Molecular-Weight Analytes[J]. Bioconjugate Chemistry, 2009, 20(9): 1807-1812.
[90] LI M, XIA J, TIAN R, et al. Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors[J]. Journal of the American Chemical Society, 2018, 140(44): 14851-14859.
[91] HE T, QIN X, JIANG C, et al. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy[J]. Theranostics, 2020, 10(6): 2453-2462.
[92] CELLI J P, SPRING B Q, RIZVI I, et al. Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization[J]. Chemical Reviews, 2010, 110(5): 2795-2838.
[93] LI L, SHAO C, LIU T, et al. An NIR-II-Emissive Photosensitizer for Hypoxia-Tolerant Photodynamic Theranostics[J]. Advanced Materials, 2020, 32(45): 2003471.
[94] MEN X, WANG F, CHEN H, et al. Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Near-Infrared Photoacoustic Imaging and Photothermal Cancer Therapy[J]. Advanced Functional Materials, 2020, 30(24): 1909673.
[95] LI S-H, YANG W, LIU Y, et al. Engineering of tungsten carbide nanoparticles for imaging-guided single 1,064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer[J]. Nano Research, 2018, 11(9): 4859-4873.
[96] WANG S, HU T, WANG G, et al. Ultrathin CuFe2S3 nanosheets derived from CuFe-layered double hydroxide as an efficient nanoagent for synergistic chemodynamic and NIR-II photothermal therapy[J]. Chemical Engineering Journal, 2021, 419: 129458.
[97] QI J, FANG Y, KWOK R T K, et al. Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice[J]. ACS Nano, 2017, 11(7): 7177-7188.
[98] CAO Y, DOU J-H, ZHAO N-J, et al. Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer[J]. Chemistry of Materials, 2017, 29(2): 718-725.
[99] GUO B, SHENG Z, KENRY, et al. Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window[J]. Materials Horizons, 2017, 4(6): 1151-1156.
[100] PU K-Y, ZHAN R, LIU B. Conjugated polyelectrolyte blend as perturbable energy donor–acceptor assembly with multicolor fluorescence response to proteins[J]. Chemical Communications, 2010, 46(9): 1470-1472.
[101] ZHOU Y, YAN Q, ZHENG Y-Q, et al. New polymer acceptors for organic solar cells: the effect of regio-regularity and device configuration[J]. Journal of Materials Chemistry A, 2013, 1(22): 6609-6613.
[102] FUNAHASHI M. Anisotropic electrical conductivity of n-doped thin films of polymerizable liquid-crystalline perylene bisimide bearing a triethylene oxide chain and cyclotetrasiloxane rings[J]. Materials Chemistry Frontiers, 2017, 1(6): 1137-1146.
[103] YANG Y, ZHANG Z-G, BIN H, et al. Side-Chain Isomerization on an n-type Organic Semiconductor ITIC Acceptor Makes 11.77% High Efficiency Polymer Solar Cells[J]. Journal of the American Chemical Society, 2016, 138(45): 15011-15018.
[104] WANG J, ZHANG J, XIAO Y, et al. Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors[J]. Journal of the American Chemical Society, 2018, 140(29): 9140-9147.
[105] GAO W, AN Q, ZHONG C, et al. Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency[J]. Chemical Science, 2018, 9(42): 8142-8149.
[106] WU J, CHEN Y, HU B, et al. Isomers of Dithienocyclopentapyrene-Based Non-Fullerene Electron Acceptors: Configuration Effect on Photoelectronic Properties[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(25): 6385-6391.
[107] LU B, ZHANG Z, JIN D, et al. A–DA′D–A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer[J]. Chemical Communications, 2021, 57(90): 12020-12023.
Edit Comment