[1] PARK J M, CAO Y, WATANABLE K, et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene[J]. Nature, 2021, 590: 249-255.
[2] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645
[3] RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3: 793-796.
[4] CHENG Y F. Single-particle cryo-EM—How did it get here and where will it go[J]. Science, 2018, 361(6405): 876-880.
[5] RODENBURG J M, HURST A C, CULLIS A G. Transmission microscopy without lenses for objects of unlimited size[J]. Ultramicroscopy, 2007, 107(2-3): 227-231.
[6] RODENBURG J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging & Electron Physics, 2008, 150: 87-184.
[7] PFEIFFER F. X-ray ptychography[J]. Nature Photonics, 2017, 12: 9-17.
[8] SAYRE D. Some implications of a theorem due to Shannon[J]. Acta Crystallographica, 1952, 5(6): 843.
[9] SAYRE D. Prospects for long-wavelength X-ray microscopy and diffraction[M]//SCHLENKER M, FINK M, GOEDGEBUER J P, et al. Imaging Processes and Coherence in Physics. Berlin: Springer, 1980: 229-235.
[10] FRATZ M, SEYLER T, BERTZ A, et al. Digital holography in production: an overview[J]. Light: Advanced Manufacturing, 2021, 2(3): 283-295.
[11] BIANCO V, MEMMOLO P, LEO M, et al. Strategies for reducing speckle noise in digital holography[J]. Light: Science & Applications,2018, 7: 48.
[12] NELSON J W, KNEFELKAMP G R, BROLO A G, et al. Digital plasmonic holography[J]. Light: Science & Applications,2018, 7: 52.
[13] MIAO J W, CHARALAMBOUS P, KIRZ J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens [J]. Nature, 1999, 400: 342-344.
[14] GUREYEV T E, NUGENT K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1-6): 339-346.
[15] GERCHBERG R W. Phase determination for image and diffraction plane pictures in the electron microscope[J]. Optik (Stuttgart), 1971, 34: 275.
[16] GERCHBERG R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-246.
[17] FIENUP J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27-29.
[18] FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
[19] 杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题[J]. 物理学报, 1981, 30(3): 410-413.
[20] LUKE D R. Relaxed averaged alternating reflections for diffraction imaging[J]. Inverse Problems, 2005, 21(1): 37-50.
[21] BARBASTATHIS G, OZCAN A, SITU G. On the use of deep learning for computational imaging[J]. Optica, 2019, 6(8): 921-943.
[22] LI S, DENG M, LEE J,et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7): 803-813.
[23] RIVENSON Y, ZHANG Y B, GÜNAYDIN H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light-Science & Applications, 2018, 7(2): 17141.
[24] WANG F, BIAN Y M, WANG H C, et al. Phase imaging with an untrained neural network[J]. Light-Science & Applications, 2020, 9: 77.
[25] CHAPMAN H N, NUGENT K A. Coherent lensless X-ray imaging[J]. Nature Photonics, 2010, 4: 833-839.
[26] HOPPE W. Beugung im Inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeugungsinterferenzen[J]. Acta Crystallographica, 1969, A25: 495-501.
[27] HUANG X J, YAN H F, HARDER R, et al. Optimization of overlap uniformness for ptychography[J]. Optics Express, 2014, 22(10): 12634-12644.
[28] DIEROLF M, THIBAULT P, MENZEL A, et al. Ptychographic coherent diffractive imaging of weakly scattering specimens[J]. New Journal of Physics, 2010, 12: 035017.
[29] BUNK O, DIEROLF M, KYNDE S, et al. Influence of the overlap parameter on the convergence of the ptychographical iterative engine[J]. Ultramicroscopy, 2008, 108(5): 481-487.
[30] RODENBURG J M, BATES R H T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution[J]. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1992, 339(1655): 521-553.
[31] FAULKNER H M L, RODENBURG J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.
[32] RODENBURG J M, FAULKNER H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.
[33] ELSER V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1): 40-55.
[34] THIBAULT P, DIEROLF M, BUNK O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.
[35] MAIDEN A M, RODENBURG J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.
[36] ODSTRCIL M, BAKSH P, BODEN S A, et al. Ptychographic coherent diffractive imaging with orthogonal probe relaxation[J]. Optics Express, 2016, 24(8): 8360-8369.
[37] MCEWEN B F, DOWNING K H, GLAESER R M. The relevance of dose-fractionation in tomography of radiation-sensitive specimens[J]. Ultramicroscopy, 1995, 60(3): 357-373.
[38] SAWADA H, SASAKI T, HOSOKAWA F, et al. Atomic-resolution STEM imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle[J]. Physical Review Letters, 2015, 114(16): 166102.
[39] WANG P, ZHANG F C, GAO S, et al. Electron ptychographic diffractive imaging of boron atoms in LaB6 crystals[J]. Scientific Reports, 2017, 7: 2857.
[40] GAO S, WANG P, ZHANG F C, et al. Electron ptychographic microscopy for three-dimensional imaging[J]. Nature Communications, 2017, 8: 163.
[41] SONG J M, ALLEN C S, GAO S, et al. Atomic resolution defocused electron ptychography at low dose with a fast, direct electron detector[J]. Scientific Reports, 2019, 9: 3919.
[42] PENNYCOOK T J, LUPINI A R, YANG H, et al. Efficient phase contrast imaging in stem using a pixelated detector. Part 1: experimental demonstration at atomic resolution[J]. Ultramicroscopy, 2015, 151: 160-167.
[43] JIANG Y, CHEN Z, HAN Y M, et al. Electron ptychography of 2D materials to deep sub-ångström resolution[J]. Nature, 2018, 559: 343-349.
[44] ZHOU L Q, SONG J D, KIM J S, et al. Low-dose phase retrieval of biological specimens using cryo-electron ptychography[J]. Nature Communications, 2020, 11: 2773.
[45] DIEROLF M, MENZEL A, THIBAULT P, et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 2010, 467: 436-439.
[46] HOLLER M, GUIZAR-SICAIROS M, TSAI E H R, et al. High-resolution non-destructive three-dimensional imaging of integrated circuits[J]. Nature, 2017, 543: 402-406.
[47] HOLLER M, ODSTRČIL M, GUIZAR-SICAIROS M, et al. Three-dimensional imaging of integrated circuits with macro- to nanoscale zoom[J]. Nature Electronics, 2019, 2: 464-470.
[48] GUIZAR-SICAIROS M, FIENUP J R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach[J]. Optics Express, 2008, 16(10): 7264-7278.
[49] BECKERS M, SENKBEIL T, GORNIAK T, et al. Drift correction in ptychographyic diffractive imaging[J]. Ultramicroscopy, 2013, 126: 44-47.
[50] MAIDEN A M, HUMPHRY M J, SARAHAN M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.
[51] ZHANG F C, PETERSON I, VILA-COMAMALA J, et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11): 13592-13606.
[52] GUIZAR-SICAIROS M, THURMAN S T, FIENUP J R. Efficient subpixel image registration algorithms[J]. Optics letters, 2008, 33(2): 156-158.
[53] DWIVEDI P, KONIJNENBERG A P, PEREIRA S F, et al. Lateral position correction in ptychography using the gradient of intensity patterns[J]. Ultramicroscopy, 2018, 192: 29-36.
[54] ODSTRČIL M, MENZEL A, GUIZAR-SICAIROS M. Iterative least-squares solver for generalized maximum-likelihood ptychography[J]. Optics Express, 2018, 26(3): 3108-3123.
[55] THIBAULT P, MENZEL A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494: 68-71.
[56] SPENCE J C H, WEIERSTALL U, HOWELLS M. Coherence and sampling requirements for diffractive imaging[J]. Ultramicroscopy, 2004, 101(2-4): 149-152.
[57] BURDET N, SHI X W, PARKS D, et al. Evaluation of partial coherence correction in X-ray ptychography[J]. Optics Express, 2015, 23(5): 5452-5467.
[58] CADENAZZI G, CHEN B, GUREYEV T, et al. Partial coherence and the influence of overlap and curvature in ptychography[C]//JAMES W M C, BAOHUA J. SPIE Nanophotonics Australasia 2017. Melbourne: SPIE, 2017: 104565X.
[59] SHEN Q, BAZAROV I, THIBAULT P. Diffractive imaging of nonperiodic materials with future coherent X-ray sources[J]. Journal of Synchrotron Radiation, 2004, 11: 432-438.
[60] CLARK J N, HUANG X J, HARDER R J, et al. Continuous scanning mode for ptychography[J]. Optics Letters, 2014, 39(20): 6066-6069.
[61] HUANG X J, LAUER K, CLARK J N, et al. Fly-scan ptychography[J]. Scientific Reports, 2015, 5: 9074.
[62] PELZ P M, GUIZARSICAIROS M, THIBAULT P, et al. On-the-fly scans for X-ray ptychography[J]. Applied Physics Letters, 2014, 105(25): 251101.
[63] ODSTRCIL M, HOLLER M, GUIZAR-SICAIROS M, et al. Arbitrary-path fly-scan ptychography[J]. Optics Express, 2018, 26(10): 12585-12593.
[64] CLARK J N, HUANG X, HARDER R, et al. Dynamic imaging using ptychography[J]. Physical Review Letters, 2014, 112(11): 113901.
[65] HELFENSTEIN P, RAJEEV R, MOCHI I, et al. Beam drift and partial probe coherence effects in EUV reflective-mode coherent diffractive imaging[J]. Optics Express, 2018, 26(9): 12242-12256.
[66] CAO S H, KOK P, LI P, et al. Modal decomposition of a propagating matter wave via electron ptychography[J]. Physical Review A, 2016, 94(6): 063621.
[67] CHEN Z, ODSTRCIL M, JIANG Y, et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose[J]. Nature Communications, 2020, 11: 2994.
[68] CHEN Z, JIANG Y, SHAO Y T, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations[J]. Science, 2021, 372: 826-831.
[69] GARDNER D F, DIVITT S, WATNIK A T. Ptychographic imaging of incoherently illuminated extended objects using speckle correlations[J]. Applied optics, 2019, 58(13): 3564-3569.
[70] CHANG H, ENFEDAQUE P, LOU Y, et al. Partially coherent ptychography by gradient decomposition of the probe[J]. Acta Crystallographica Section A: Foundations and Advances, 2018, 74(3): 157-169.
[71] STACHNIK K, MOHACSI I, VARTIAINEN I, et al. Influence of finite spatial coherence on ptychographic reconstruction[J]. Applied Physics Letters, 2015, 107(1): 011105.
[72] CHEN B, DILANIAN R A, TEICHMANN S, et al. Multiple wavelength diffractive imaging[J]. Physical Review A, 2009, 79(2): 23809.
[73] Dilanian R A, Chen B, WILLIAMS G J, et al. Diffractive imaging using a polychromatic high-harmonic generation soft-x-ray source[J]. Journal of Applied Physics, 2009, 106(2): 098103-198.
[74] ABBEY B, WHITEHEAD L W, QUINEY H M, et al. Lensless imaging using broadband X-ray sources[J]. Nature Photonics, 2011, 5: 420-424.
[75] ODSTRCIL M, BAKSH P, KIM H S, et al. Ultra-broadband ptychography with self-consistent coherence estimation from a high harmonic source[C]// ANNIE K, CARMEN S M. X-ray lasers and coherent X-ray sources: development and applications XI. San Diego: SPIE, 2015: 958912.
[76] PRADIER S R R, VAN RIESSEN G A, CADENAZZI G A, et al. Broadband x-ray ptychography[C]//AIP Conference Proceedings 1696. XRM 2014: proceedings of the 12th international conference on X-ray microscopy. Melbourne: AIP Publishing LLC, 2016: 020048.
[77] BAKSH P D, ODSTRČIL M, KIM H S, et al. Wide-field broadband extreme ultraviolet transmission ptychography using a high-harmonic source[J]. Optics Letters, 2016, 41(7):1317.
[78] YAO Y D, JIANG Y, KLUG J A, et al. Broadband X-ray ptychography using multi-wavelength algorithm[J]. Journal of Synchrotron Radiation, 2021, 28(1): 309-317.
[79] HUIJTS J, FERNANDEZ S, GAUTHIER D, et al. Broadband coherent diffractive imaging, et al. Broadband coherent diffractive imaging [J]. Nature Photonics, 2020, 14: 618-622.
[80] MAIDEN A, JOHNSON D, LI P. Further improvements to the ptychographical iterative engine[J]. 2017, 4(7): 736-745.
[81] HESSE R, LUKE D R, SABACH S, et al. Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging. SIAM Journal on Imaging Sciences, 2015, 8: 426-457.
[82] COMBETTES P L, PESQUET J C. Proximal splitting methods in signal processing[M]//BAUSCHKE H H, BURACHIK R S, COMBETTES P L, et al. Fixed-point algorithms for inverse problems in science and engineering. New York: Springer, 2011: 185-212.
[83] QIAN J L, YANG C, SCHIROTZEK A, et al. Efficient algorithms for ptychographic phase retrieval[M]//STEFANOV P, VASY A, ZWORSKI M. Contemporary mathematics: inverse problems and applications. Rhode Island: American Mathematical Society, 2014: 261-280.
[84] YEH L H, DONG J, ZHONG J S, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 2015, 23(26): 33214-33240.
[85] ELSER V. Random projections and the optimization of an algorithm for phase retrieval[J]. Journal of Physics A: Mathematical and General, 2003, 36(12): 2995-3007.
[86] WOLF E. New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources[J]. Journal of the Optical Society of America, 1982, 72(3): 343-351.
[87] SMITHIES F. Integral Equations[M]. Cambridge: Cambridge U. Press, 1970: 128.
[88] QUINEY H M. Coherent diffractive imaging using short wavelength light sources[J]. Journal of Modern Optics, 2010, 57(13): 1109-1149.
[89] SIMON R, SUDARSHAN E C G, MUKUNDA N. Generalized rays in first-order optics: transformation properties of Gaussian Schell-model fields[J]. Physical Review A, 1984, 29(6): 3273-3279.
[90] FRIBERG A T, SUDOL R J. Propagation parameters of gaussian Schell-model beams[J]. Optics Communications, 1982, 41(6): 383-387.
[91] STARIKOV A, WOLF E. Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields[J]. Journal of the Optical Society of America, 1982, 72(7): 923-928.
[92] BAGINI V, FREZZA F, SANTARSIERO M, et al. Generalized Bessel-Gauss beams[J]. Journal of Modern Optics, 1996, 43(6): 1155-1166.
[93] PONOMARENKO S A. A class of partially coherent beams carrying optical vortices[J]. Journal of the Optical Society of America A, 2001, 18(1): 150-156.
[94] GORI F, GUATTARI G, PADOVANI C. Modal expansion for J0-correlated Schell-model sources[J]. Optics Communications, 1987, 64(4): 311-316.
[95] NUGENT K A. Coherent methods in the X-ray sciences[J]. Advances in Physics, 2010, 59(1):1-99.
[96] GBUR G, VISSER T D. The structure of partially coherent fields[M]//WOLF E. Progress in optics. Amsterdam: Elsevier Science & Technology, 2010, 55: 285-341.
[97] SINHA S K, TOLAN M, GIBAUD A. Effects of partial coherence on the scattering of x rays by matter[J]. Physical Review B, 1998, 57(5): 2740-2758.
[98] LIN B H, SCHLOSSMAN M L, MERON M, et al. X-ray speckles from an optical grating[J]. Physical Review B, 1998, 58(12): 8025-8037.
[99] VARTANYANTS I A, ROBINSON I K. Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction[J]. Journal of Physics: Condensed Matter, 2001, 13(47): 10593-10611.
[100] NUGENT K A. Partially coherent diffraction patterns and coherence measurement[J]. Journal of the Optical Society of America A, 1991, 8(10):1574-1579.
[101] WILLIAMS G J, QUINEY H M, PEELE A G, et al. Coherent diffractive imaging and partial coherence[J]. Physical Review B, 2007, 75(10): 104102.
[102] LIN J J A, PATERSON D, PEELE A G, et al. Measurement of the spatial coherence function of undulator radiation using a phase mask[J]. Physical Review Letters, 2003, 90(7): 074801.
[103] WHITEHEAD L W, WILLIAMS G J, QUINEY H M, et al. Diffractive imaging using partially coherent X rays[J]. Physical Review letters, 2009, 103(24): 243902.
[104] WALTON A J. The Abbe theory of imaging: an alternative derivation of the resolution limit[J]. European Journal of Physics, 1986, 7(1):62-63.
[105] CHAPMAN H N, BARTY A, MARCHESINI S, et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy[J]. Journal of the Optical Society of America A, 2006, 23(5):1179-200.
[106] HANSEN P C. Regularization tools: a matlab package for analysis and solution of discrete ill-posed problems[J]. Numerical Algorithms, 1994, 6: 1-35.
[107] HUIJTS J. Broadband coherent X-ray diffractive imaging and developments towards a high repetition rate mid-IR driven keV high harmonic source[D]. Paris: Université Paris-Saclay, 2019.
[108] MASTERS B R. Quantitative phase imaging of cells and tissues[J]. Journal of Biomedical Optics, 2012, 17(2): 029901.
[109] FERRAND P, BARONI A, ALLAIN M, et al. Quantitative imaging of anisotropic material properties with vectorial ptychography[J]. Optics Letters, 2018, 43(4): 763-766.
[110] MAIDEN A M, SARAHAN M C, STAGG M D, et al. Quantitative electron phase imaging with high sensitivity and an unlimited field of view[J]. Scientific Reports, 2015, 5: 14690.
[111] MCDERMOTT S, MAIDEN A. Near-field ptychographic microscope for quantitative phase imaging[J]. Optics Express, 2018, 26(19): 25471-25480.
[112] STOCKMAR M, CLOETENS P, ZANETTE I, et al. Near-field ptychography: phase retrieval for inline holography using a structured illumination[J]. Scientific Reports, 2013, 3: 1927.
[113] CLARE R M, STOCKMAR M, DIEROLF M, et al. Characterization of near-field ptychography[J]. Optics Express, 2015 23(15): 19728-19742.
[114] STOCKMAR M, ZANETTE I, DIEROLF M, et al. X-ray near-field ptychography for optically thick specimens[J]. Physical Review Applied, 2015, 3(1): 014005.
[115] STOCKMAR M, HUBERT M, DIEROLF M, et al. X-ray nanotomography using near-field ptychography[J]. Optics Express, 2015, 23(10): 12720-12731.
[116] SHANNON C E. Communication in the presence of noise[C]//Proceedings of the IRE: 37(1). Piscataway: IEEE, 1949: 10-21.
[117] CHEN T, CATRYSSE P B, GAMAL A E, et al. How small should pixel size be?[C]//Proceedings of SPIE 3965. Sensors and camera systems for scientific, industrial, and digital photography applications. San Jose: SPIE, 2000: 451-459.
[118] MAYO S C, MILLER P, WILKINS S W, et al. Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging[J]. Journal of Microscopy, 2002, 207(2): 79-96.
[119] GIEWEKEMEYER K, KRÜGER S P, KALBFLEISCH S, et al. X-ray propagation microscopy of biological cells using waveguides as a quasipoint source[J]. Physical Review A, 2011, 83(2): 023804.
[120] BARTELS M, PRIEBE M, WILKE R N, et al. Low-dose three-dimensional hard x-ray imaging of bacterial cells[J]. Optical Nanoscopy, 2012, 1:10.
[121] ROBISCH A-L, KRÖGER K, RACK A, et al. Near-field ptychography using lateral and longitudinal shifts[J]. New Journal of Physics, 2015, 17: 073033.
[122] BISHARA W, SU T W, COSKUN A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11): 11181-11191.
[123] ZHANG J L, CHEN Q, LI J Q, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics Letters, 2018, 43(15): 3714-3717.
[124] LUO W, ZHANG Y B, FEIZI A, et al. Pixel super-resolution using wavelength scanning[J]. Light: Science & Applications, 2016, 5, e16060.
[125] LUO W, ZHANG Y B, GÖRÖCS Z, et al. Propagation phasor approach for holographic image reconstruction[J]. Scientific Reports, 2016, 6: 22738.
[126] LUO Z, YURT A, STAHL R, et al. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks[J]. Optics Express, 2019, 27(10): 13581-13595.
[127] PAGANIN D M. Coherent X-ray optics[M]. New York: Oxford University Press, 2006: 397-400.
[128] ZHANG J L, SUN J S, CHEN Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7: 11777.
[129] MAIDEN A M, HUMPHRY M J, ZHANG F C, et al. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4): 604-612.
[130] REINHARD E, WARD G, PATTANAIK S, et al. High dynamic range imaging: acquisition, display, and image-based lighting[M]. 2nd ed. Burlington: Morgan Kaufmann, 2010.
[131] OPHUS C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond[J]. Microscopy and Microanalysis, 2019, 25: 563-582.
[132] MICÓ V, FERREIRA C, GARCÍA J, et al. Surpassing digital holography limits by lensless object scanning holography[J]. Optics Express, 2012, 20(9): 9382-9395.
[133] ČIERNY O, CAHOY K L. On-orbit beam pointing calibration for nanosatellite laser communications[J]. Optical Engineering, 2018, 58(4): 041605.
[134] HO T J, MILNER S D, DAVIS C C. Fully optical real-time pointing, acquisition, and tracking system for free space optical link[C]//Proceedings of SPIE 5712. Free-Space Laser Communication Technologies XVII. San Jose: SPIE, 2005: 81-92.
[135] ZHAO J T, ZHANG F C, WANG D Y, et al. General method for complex-wave fields registration with high fidelity[J]. Optics Express, 2020, 28(3): 4204-4215.
[136] HÜE F, RODENBURG J M, MAIDEN A M, et al. Extended ptychography in the transmission electron microscope: possibilities and limitations[J]. Ultramicroscopy, 2011, 111(8): 1117-1123.
[137] TAKAHASHI Y, SUZUKI A, YAMAUCHI K, et al. Towards high-resolution ptychographic X-ray diffraction microscopy[J]. Physical Review B, 2011, 83(21): 214109.
[138] SHENFIELD A, RODENBURG J M. Evolutionary determination of experimental parameters for ptychographical imaging[J]. Journal of Applied Physics, 2011, 109(12): 124510.
[139] FIENUP J R. Invariant error metrics for image reconstruction[J]. Applied Optics, 1997, 36(32): 8352-8357.
[140] RONG L, TANG C, WANG D Y, et al. Probe position correction based on overlapped object wavefront cross-correlation for continuous-wave terahertz ptychography[J]. Optics Express, 2019, 27(2): 938-950.
[141] THIBAULT P, DIEROLF M, MENZEL A, et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 2008, 321: 379-382.
[142] HAGEMANN J, SALDITT T. Coherence-resolution relationship in holographic and coherent diffractive imaging[J]. Optics Express, 2018, 26(1): 242-253.
[143] GOODMAN J W. Statistical optics[M]. New York: Wiley Classics Library, 1985: Chap. 5.
[144] GOODMAN J W. Introduction to Fourier optics: 4th ed[M]. New York: W. H. Freeman and Company, 2017.
[145] HANNONEN A, SAASTAMOINEN K, LEPPANEN L-P, et al. Geometric phase in beating of light waves[J]. New Journal of Physics, 2019, 21(8): 083030.
[146] SHEVCHENKO A, SETALA T. Interference and polarization beating of independent arbitrarily polarized polychromatic optical waves[J]. Physical Review A, 2019, 100(2): 023842.
[147] SCHELL A C. A technique for the determination of the radiation pattern of a partially coherent aperture[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(1): 187-188.
[148] XIAO X F, VOELZ D. Wave optics simulation approach for partial spatially coherent beams[J]. Optics Express, 2006, 14(16): 6986-6992.
[149] VOELZ D. Computational Fourier optics: a MATLAB tutorial[M]. Bellingham: SPIE, 2011.
[150] XU W H, XU H F, LUO Y, et al. Optical watermarking based on single-shot-ptychography encoding[J]. Optics Express, 2016, 24(24): 27922-27936.
[151] WANG Z, BOVIK A C, SHEIKH H R, et al. Image qualifty assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[152] MAIDEN A, MORRISON G, KAULICH B, et al. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination[J]. Nature Communications, 2013, 4: 1669.
[153] BATEY D J, ASSCHE F V, VANHEULE S, et al. X-ray ptychography with a laboratory source[J]. Physical Review Letters, 2021, 126(19): 193902.
[154] RANA A, ZHANG J H, PHAM M, et al. Potential of attosecond coherent diffractive imaging[J]. Physical Review Letters, 2020, 125(8): 086101.
[155] ESCHEN W, WANG S C, LIU C, et al. Towards attosecond imaging at the nanoscale using broadband holography-assisted coherent imaging in the extreme ultraviolet[J]. Communications Physics, 2021, 4: 154.
[156] CLARK J N, PEELE A G. Simultaneous sample and spatial coherence characterisation using diffractive imaging[J]. Applied Physics Letters, 2011, 99(15): 154103.
[157] CLARK J N, HUANG X, HARDER R, et al. High-resolution three-dimensional partially coherent diffraction imaging[J]. Nature Communications, 2012, 3: 993.
[158] CLARK J N, PUTKUNZ C T, PFEIFER M A, et al. Use of a complex constraint in coherent diffractive imaging[J]. Optics Express, 2010, 18(3): 1981-1993.
[159] ENDERS B, DIEROLF M, CLOETENS P, et al. Ptychography with broad-bandwidth radiation[J]. Applied Physics Letters, 2014, 104(17): 171104.
[160] LOETGERING L, LIU X M, BEURS A C C D, et al. Tailoring spatial entropy in extreme ultraviolet focused beams for multispectral ptychography[J]. Optica, 2021, 8(2): 130-138.
Edit Comment