中文版 | English
Title

过渡金属团簇成键特征的理论研究

Alternative Title
THEORETICAL STUDIES ON THE BONDING NATURE OF TRANSITION METAL CLUTERS
Author
Name pinyin
CUI Yunshu
School number
11930497
Degree
硕士
Discipline
070101 基础数学
Subject category of dissertation
07 理学
Supervisor
李隽
Mentor unit
化学系
Publication Years
2022-05-09
Submission date
2022-07-07
University
南方科技大学
Place of Publication
深圳
Abstract

过渡金属原子拥有活性的、五重简并的 d 轨道,在它们形成团簇的时候呈现 了相对主族元素更加丰富的结构与反应性质。这使得其团簇在生命过程里(如在 辅酶中)起到至关重要的作用,尤其表现在对惰性小分子(如氮气,甲烷)的温和 条件转化中。 由于 d 轨道的能量、占据数和轨道半径的区别,不同过渡金属的成键特性迥 异,形成团簇的倾向与稳定性也有很大不同。本论文首先分析不同过渡金属原子 的 d 轨道特征和简单的成键情况。接下来选取了不同组分、结构的过渡金属团簇 进行密度泛函理论(Density Functional Theory, DFT)计算研究,包括实验上已经 成功合成分离的:由三个稀土金属(Ln3)形成的离子卡宾化合物(IonicCarbenes) 和由含钨,硫配体稳定的Fe13团簇。通过对DFT计算得到的平均场的基态波函数 和能量进行成键分析,导出具有化学意义的图像,并阐明金属团簇内禀的稳定化 效应和配体对过渡金属团簇支持和稳定作用。进一步地,研究团簇的成键特征与 组分金属的 d 轨道性质的关联性,总结构效关系。 基于过渡金属 d 轨道特征的认识与理解,团簇形成规律的理解,我们预测了 呈正二十面构型的 PtHf12的存在并给出了支持其稳定存在的理论依据,对设计合 成具有新型结构与性质的过渡团簇可以起到一定理论指导作用

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-7
References List

[1] SCHRÖDINGERE. AnUndulatoryTheoryoftheMechanicsofAtomsandMolecules[J/OL]. Phys.Rev.,1926,28(6): 1049-1070. https://link.aps.org/doi/10.1103/PhysRev.28.1049.
[2] HOHENBERGP,KOHNW. InhomogeneousElectronGas[J/OL]. Phys.Rev.,1964,136(3B): B864-B871. https://link.aps.org/doi/10.1103/PhysRev.136.B864.
[3] KOHNW,SHAMLJ. Self-ConsistentEquationsIncludingExchangeandCorrelationEffects [J/OL]. Phys.Rev.,1965,140(4A):A1133-A1138. https://link.aps.org/doi/10.1103/PhysRev.1 40.A1133.
[4] LEWISGN. THEATOMANDTHEMOLECULE.[J/OL]. JournaloftheAmericanChemical Society,1916,38(4): 762-785. https://doi.org/10.1021/ja02261a002.
[5] LANGMUIRI. TypesofValence[J/OL]. Science,1921,54(1386): 59-67. https://www.scienc e.org/doi/abs/10.1126/science.54.1386.59.
[6] PYYKKÖP.Understandingtheeighteen-electronrule[J/OL].JournalofOrganometallicChemistry,2006,691: 4336-4340. DOI:10.1016/j.jorganchem.2006.01.064.
[7] MINGOSDMP,SLEET,ZHENYANGL.Bondingmodelsforligatedandbareclusters[J/OL]. ChemicalReviews,1990,90(2): 383-402. https://doi.org/10.1021/cr00100a003.
[8] GILBS,WEISP,FURCHEF,etal. Structuresofsmallgoldclustercations(Au+ n,n<14): Ion mobilitymeasurementsversusdensityfunctionalcalculations[J/OL]. TheJournalofChemical Physics,2002,116(10): 4094-4101. https://doi.org/10.1063/1.1445121.
[9] CUI P, HU H S, ZHAO B, et al. A multicentre-bonded [ZnI]8 cluster with cubic aromaticity [J/OL]. NatureCommunications,2015,6(1): 6331. https://doi.org/10.1038/ncomms7331.
[10] HUHC,HUHS,ZHAOB,etal.Metal–OrganicFrameworks(MOFs)ofaCubicMetalCluster withMulticenteredMnI−−MnIBonds[J/OL].AngewandteChemieInternationalEdition,2015, 54(40): 11681-11685. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201504758. DOI: https://doi.org/10.1002/anie.201504758.
[11] PYYKKÖ P, RUNEBERG N. Icosahedral WAu12: A Predicted Closed-Shell Species, Stabilized by Aurophilic Attraction and Relativity and in Accord with the 18-Electron Rule[J/OL]. Angewandte Chemie International Edition, 2002, 41(12): 2174-2176. https://doi.org/10.1 002/1521-3773(20020617)41:12{%}3C2174::AID-ANIE2174{%}3E3.0.COhttp://2-8. DOI: https://doi.org/10.1002/1521-3773(20020617)41:12<2174::AID-ANIE2174>3.0.CO;2-8.
[12] LI X, KIRAN B, LI J, et al. Experimental Observation and Confirmation of Icosahedral W@Au12andMo@Au12Molecules[J/OL]. AngewandteChemieInternationalEdition,2002, 41(24): 4786-4789. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200290048. DOI: https://doi.org/10.1002/anie.200290048.
[13] GAOY,LIUX,WANGZ. Ce@Au14: ABimetallicSuperatomClusterwith18-ElectronRule [J/OL]. JournalofElectronicMaterials,2017,46(7): 3899-3903. https://doi.org/10.1007/s116 64-016-4934-2. 60参考文献
[14] KNIGHT W D, CLEMENGER K, DE HEER W A, et al. Electronic Shell Structure and Abundances of Sodium Clusters[J/OL]. Phys. Rev. Lett., 1984, 52(24): 2141-2143. https: //link.aps.org/doi/10.1103/PhysRevLett.52.2141.
[15] JENA P, SUN Q. Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials[J/OL]. Chemical Reviews, 2018, 118(11): 5755-5870. https://doi.org/10.1021/acs. chemrev.7b00524.
[16] HÜCKELE. QuantentheoretischeBeiträgezumBenzolproblem[J/OL]. ZeitschriftfürPhysik, 1931,70(3): 204-286. https://doi.org/10.1007/BF01339530.
[17] HIRSCH A, CHEN Z, JIAO H. Spherical Aromaticity in𝐼ℎSymmetrical Fullerenes: The 2(N+1)2Rule[J/OL].AngewandteChemieInternationalEdition,2000,39(21): 3915-3917.http s://doi.org/10.1002/1521-3773(20001103)39:21{%}3C3915::AID-ANIE3915{%}3E3.0.COh ttp://2-o. DOI: https://doi.org/10.1002/1521-3773(20001103)39:21<3915::AID-ANIE3915> 3.0.CO;2-O.
[18] DÖTZ K H. Metal Carbenes in Organic Synthesis[M]//Topics in Organometallic Chemistry. Berlin: Springer-Verlag,2004.
[19] BERGSTROM B D, NICKERSON L A, SHAW J T, et al. Transition Metal Catalyzed InsertionReactionswithDonor/DonorCarbenes[J/OL]. AngewandteChemieInternationalEdition, 2021, 60(13): 6864-6878. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202007001. DOI:https://doi.org/10.1002/anie.202007001.
[20] OGBAOM,WARNERNC,O’LEARYDJ,etal. Recentadvancesinruthenium-basedolefin metathesis[J/OL]. Chem.Soc.Rev., 2018, 47(12): 4510-4544. http://dx.doi.org/10.1039/C8C S00027A.
[21] FEICHTNERKS,GESSNERVH. Cooperativebondactivationreactionswithcarbenecomplexes[J/OL]. ChemicalCommunications,2018,54(50): 6540-6553. DOI:10.1039/c8cc0219 8h.
[22] DIETRICHHM,TÖRNROOSKW,ANWANDERR. ”Ioniccarbenes”: Synthesis,structural characterization, and reactivity of rare-earth metal methylidene complexes[J/OL]. Journal of theAmericanChemicalSociety,2006,128(29): 9298-9299. DOI:10.1021/ja062523y.
[23] ZIMMERMANN M, RAUSCHMAIER D, EICHELE K, et al. Amido-stabilized rare-earth metalmixedmethylmethylidenecomplexes[J/OL]. ChemicalCommunications,2010,46(29): 5346-5348. DOI:10.1039/c003206a.
[24] ZHANGWX,WANGZ,NISHIURAM,etal. Ln4(CH2)4cubane-typerare-earthmethylidene complexesconsistingof”(C5Me4SiMe3)LnCH2”Units(Ln=Tm,Lu)[J/OL]. Journalofthe AmericanChemicalSociety,2011,133(15): 5712-5715. DOI:10.1021/ja200540b.
[25] HONG J, ZHANG L, YU X, et al. Syntheses, structures, and reactivities of homometallic rare-earth-metalmultimethylmethylideneandoxocomplexes[J/OL]. Chemistry-AEuropean Journal,2011,17(7): 2130-2137. DOI:10.1002/chem.201002670.
[26] LIT,NISHIURAM,CHENGJ,etal. M4(CH2)4cubane-typerare-earthmethylidenecomplexes: UniquereactivitytowardunsaturatedC-O,C-N,andC-Sbonds[J/OL]. Chemistry-A EuropeanJournal,2012,18(47): 15079-15085. DOI:10.1002/chem.201202796. 61参考文献
[27] SCHÄDLE D, MEERMANN-ZIMMERMANN M, MAICHLE-MÖSSMER C, et al. Rareearth metal methylidene complexes with Ln3(𝜇3-CH2)(𝜇3-Me)(𝜇2-Me)3core structure[J/OL]. DaltonTransactions,2015,44(41): 18101-18110. DOI:10.1039/c5dt02936h.
[28] HONG J, LI Z, CHEN Z, et al. Small molecule activation by mixed methyl/methylidene rare earth metal complexes[J/OL]. Dalton Transactions, 2016, 45(15): 6641-6649. DOI: 10.1039/ c6dt00314a.
[29] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function[J/OL]. Theoretical Chemistry Accounts, 2008, 120(1-3): 215-241. DOI: 10.1007/s00214-007-0310-x.
[30] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: Design and assessment of accuracy[J/OL]. Phys. Chem.Chem.Phys.,2005,7: 3297-3305. http://dx.doi.org/10.1039/B508541A.
[31] GLENDENING E D, WEINHOLD F. Natural resonance theory: II. Natural bond order and valency[J/OL]. JournalofComputationalChemistry,1998,19(6): 610-627. DOI:10.1002/(SI CI)1096-987X(19980430)19:6<610::AID-JCC4>3.0.CO;2-U.
[32] GLENDENING E D, WEINHOLD F. Natural resonance theory: I. General formalism[J/OL]. Journal of Computational Chemistry, 1998, 19(6): 593-609. DOI: 10.1002/(SICI)1096-987 X(19980430)19:6<593::AID-JCC3>3.0.CO;2-M.
[33] WEINHOLDF. NaturalResonanceTheory:[J]. JournalofComputationalChemistry,1997,19 (6): 628-646.
[34] BADER R F W. Atoms in Molecules: A Quantum Theory[M]. Oxford: Oxford University Press,1990.
[35] TE VELDE G, BICKELHAUPT F M, BAERENDS E J, et al. Chemistry with ADF[J/OL]. JournalofComputationalChemistry,2001,22(9): 931-967. DOI:10.1002/jcc.1056.
[36] VanLentheE,BAERENDSEJ. OptimizedSlater-typebasissetsfortheelements1-118[J/OL]. JournalofComputationalChemistry,2003,24(9): 1142-1156. DOI:10.1002/jcc.10255.
[37] Van Lenthe E, Van Leeuwen R, BAERENDS E J, et al. Relativistic regular two-component hamiltonians[J/OL]. InternationalJournalofQuantumChemistry,1996,57(3): 281-293. DOI: 10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U.
[38] MITORAJMP,MICHALAKA,ZIEGLERT. Acombinedchargeandenergydecomposition scheme for bond analysis[J/OL]. Journal of Chemical Theory and Computation, 2009, 5(4): 962-975. DOI:10.1021/ct800503d.
[39] ZHANGJX,SHEONGFK,LINZ. UnravellingChemicalInteractionswithPrincipalInteractingOrbitalAnalysis[J/OL]. Chemistry-AEuropeanJournal,2018,24(38): 9639-9650. DOI: 10.1002/chem.201801220.
[40] ZHANGJX,SHEONGFK,LINZ.Principalinteractingorbital: Achemicallyintuitivemethod for deciphering bonding interaction[J/OL]. Wiley Interdisciplinary Reviews: Computational MolecularScience,2020,10(6): 1-26. DOI:10.1002/wcms.1469. 62参考文献
[41] ZUBAREV D Y, BOLDYREV A I. Developing paradigms of chemical bonding: Adaptive naturaldensitypartitioning[J/OL]. PhysicalChemistryChemicalPhysics,2008,10(34): 52075217. DOI:10.1039/b804083d.
[42] PIPEK J, MEZEY P G. A fast intrinsic localization procedure applicable for ab initio and semiempiricallinearcombinationofatomicorbitalwavefunctions[J/OL].TheJournalofChemicalPhysics,1989,90(9): 4916-4926. DOI:10.1063/1.456588.
[43] PYYKKÖP,ATSUMIM. MolecularSingle-BondCovalentRadiiforElements1–118[J/OL]. Chemistry–AEuropeanJournal,2009,15(1): 186-197. https://chemistry-europe.onlinelibrary. wiley.com/doi/abs/10.1002/chem.200800987. DOI:https://doi.org/10.1002/chem.200800987.
[44] PERDEWJP,BURKEK,ERNZERHOFM. Generalizedgradientapproximationmadesimple [J/OL]. Physical Review Letters, 1996, 77(18): 3865-3868. DOI: 10.1103/PhysRevLett.77.3 865.
[45] PERDEW J P. Density-functional approximation for the correlation energy of the inhomogeneouselectrongas[J/OL].PhysicalReviewB,1986,33(12).DOI:10.1103/PhysRevB.33.8822.
[46] LEE C, YANG W, Parr, G R. Development of the Colic-Salvetti correlation-energy into a functionaloftheelectrondensity[J]. AmericanPhysicalSociety,1988,37(2).
[47] TAO J, PERDEW J P, STAROVEROV V N, et al. Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids [J/OL]. PhysicalReviewLetters,2003,91(14): 3-6. DOI:10.1103/PhysRevLett.91.146401.
[48] PERDEWJP,RUZSINSZKYA,CSONKAGI,etal. Workhorsesemilocaldensityfunctional for condensed matter physics and quantum chemistry[J/OL]. Physical Review Letters, 2009, 103(2): 10-13. DOI:10.1103/PhysRevLett.103.026403.
[49] PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Erratum: Workhorse semilocal density functional for condensed matter physics and quantum chemistry (Physical Review Letters (2009) 103 (026403))[J/OL]. Physical Review Letters, 2011, 106(17): 179902. DOI: 10.1103/PhysRevLett.106.179902.
[50] BECKEAD. Density-functionalthermochemistry.III.Theroleofexactexchange[J/OL]. The JournalofChemicalPhysics,1993,98(7): 5648-5652. DOI:10.1063/1.464913.
[51] HAYPJ,WADTWR. Abinitioeffectivecorepotentialsformolecularcalculations.Potentials for K to Au including the outermost core orbitale[J/OL]. The Journal of Chemical Physics, 1985,82(1): 299-310. DOI:10.1063/1.448975.
[52] HEHRE W J, DITCHFIELD R, POPLE J A. Self—Consistent Molecular Orbital Methods. XII.FurtherExtensionsofGaussian—TypeBasisSetsforUseinMolecularOrbitalStudiesof Organic Molecules[J/OL]. The Journal of Chemical Physics, 1972, 56(5): 2257-2261. https: //doi.org/10.1063/1.1677527.
[53] FRANCLM M, PIETRO WJ, HEHRE W J,et al. Self‐consistent molecular orbitalmethods. XXIII.Apolarization‐typebasissetforsecond‐rowelements[J/OL]. TheJournalofChemical Physics,1982,77(7): 3654-3665. https://doi.org/10.1063/1.444267.
[54] FRISCHMJ,TRUCKSGW,SCHLEGELHE,etal.Gaussian16[M]//Gaussian,Inc.,WallingfordCT,. 2016. 63参考文献
[55] SHEONG F, ZHANG J X, LIN Z. Revitalizing Spin Natural Orbital Analysis: Electronic Structures of Mixed-Valence Compounds, Singlet Biradicals, and Antiferromagnetically Coupled Systems[J/OL]. Journal of Computational Chemistry, 2019, 40(10): 1172-1184. https: //onlinelibrary.wiley.com/doi/abs/10.1002/jcc.25762. DOI:https://doi.org/10.1002/jcc.25762.
[56] WALTERM,MOSELERM,WHETTENRL,etal. A58-electronsuperatom-complexmodel forthemagicphosphine-protectedgoldclusters(Schmid-gold,Nanogold®)of1.4-nmdimension[J/OL]. Chem.Sci.,2011,2(8): 1583-1587. http://dx.doi.org/10.1039/C1SC00060H.
[57] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J/OL]. Journal of Chemical Physics, 1999, 110(13): 6158-6170. DOI:10.1063/1.478522.
[58] FOSTERJM,BOYSSF. CanonicalConfigurationalInteractionProcedure[J/OL]. Rev.Mod. Phys.,1960,32(2): 300-302. https://link.aps.org/doi/10.1103/RevModPhys.32.300.
[59] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J/OL]. Journal of ComputationalChemistry,2012,33(5): 580-592. DOI:10.1002/jcc.22885.
[60] REEDAE,WEINSTOCKRB,WEINHOLDF.Naturalpopulationanalysis[J/OL].TheJournal ofChemicalPhysics,1985,83(2): 735-746. DOI:10.1063/1.449486.
[61] BECKE A D, EDGECOMBE K E. A simple measure of electron localization in atomic and molecular systems[J/OL]. The Journal of Chemical Physics, 1990, 92(9): 5397-5403. https: //doi.org/10.1063/1.458517.
[62] WEIGEND F. Extending DFT-based genetic algorithms by atom-to-place re-assignment via perturbationtheory: Asystematicandunbiasedapproachtostructuresofmixed-metallicclusters[J/OL]. TheJournalofChemicalPhysics,2014,141(13): 134103. https://doi.org/10.1063/ 1.4896658.
[63] CHEN X, ZHAO Y F, ZHANG Y Y, et al. TGMin: An efficient global minimum searching program for free and surface-supported clusters[J/OL]. Journal of Computational Chemistry, 2019, 40(10): 1105-1112. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.25649. DOI: https://doi.org/10.1002/jcc.25649.
[64] DEWARMJS. Areviewof𝜋ComplexTheory.[J]. Bull.Soc.Chim.Fr.,1951,18: C71-C77.
[65] CHATTJ,DUNCANSONLA.586.Olefinco-ordinationcompounds.PartIII.Infra-redspectra andstructure: attemptedpreparationofacetylenecomplexes[J/OL].J.Chem.Soc.,1953: 29392947. http://dx.doi.org/10.1039/JR9530002939.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O611.2
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/352526
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
崔云舒. 过渡金属团簇成键特征的理论研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930497-崔云舒-化学系.pdf(22796KB)Thesis Restricted AccessCC BY-NC-SAFulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[崔云舒]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[崔云舒]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[崔云舒]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.