中文版 | English
Title

RUNX2和TEAD1在调控肿瘤EMT过程中的功能与机制研究

Alternative Title
THE FUNCTION AND MECHANISM OF RUNX2 AND TEAD1 IN THE REGULATION OF EPITHELIAL-MESENCHYMAL TRANSITION OF CANCER CELLS
Author
Name pinyin
YI Hongyang
School number
11849484
Degree
博士
Discipline
0710 生物学
Subject category of dissertation
07 理学
Supervisor
陈炜
Mentor unit
生物系
Publication Years
2022-05-16
Submission date
2022-07-08
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

随着人口老龄化的加剧,全球癌症发病率与死亡率不断增高,至2017年,癌症已成为导致人类死亡的第二大因素,仅次于心脑血管疾病。同时,近年来国内癌症的负担不断加大,中国癌症的发病率及死亡率均是全球第一,其中中国发病人数占全球发病人数的21.1%死亡人数占全球死亡人数的23.9%因此,亟需开发出新的癌症治疗方法与手段以解决目前所面临的问题。癌症治疗新方法的提出依赖于对癌症发病机制的深度探索,而目前关于癌症治疗的难点在于癌症治疗过程中病灶的转移以及化疗药物耐药性的产生。上皮间质转化(EMT)对肿瘤的转移和耐药的产生都具有促进作用,其中EMT的发生是肿瘤开始转移的标志性事件。本研究建立了以肿瘤细胞系为工具研究细胞异质性的方法,同时联合多组学测序技术探明了RUNX2促进细胞迁移的具体机制;发现了在临床上RUNX2的表达量与肿瘤是否发生转移呈正相关,与多种癌症病人的生存期呈负相关的现象;发现了在Wnt-high细胞与Wnt-low细胞中TEAD1基因存在着不同的剪接形式,这种剪接形式可以被ESRP1MBNL1调节,并且发现TEAD1不同剪接异构体在Wnt-high细胞中具有不同的功能。

通过单细胞测序发现在SW480细胞中具有两群EMT状态且Wnt信号通路活性都不同的细胞群。利用以绿色荧光蛋白(GFP)为信号的Wnt信号报告系统标记SW480细胞,并通过流式细胞仪将性状不同的两群细胞分离出来,分别命名为Wnt-high细胞和Wnt-low细胞。通过qPCR技术检测Wnt下游基因AXIN2LEF1mRNA表达水平,确认Wnt-high细胞具有高的Wnt信号通路活性,Wnt-low细胞具有低的Wnt信号通路活性;通过Transwell实验检测发现Wnt-high细胞具有强的细胞迁移能力,Wnt-low细胞具有弱的细胞迁移能力。对Wnt-high细胞与Wnt-low细胞进行ATAC-seqmRNA-seq测序,通过分析发现两个活性不同且表达特性不同的转录因子RUNX2TEAD1RUNX2基因在Wnt-high细胞和Wnt-low细胞中转录水平不同,而TEAD1基因在Wnt-high细胞和Wnt-low细胞中剪接偏好性不同。

Wnt-high细胞中,利用shRNA干扰RUNX2基因的表达,可以降低细胞的体外迁移能力和体内转移能力;在Wnt-low细胞中,过表达RUNX2,可以促进细胞的体外迁移能力和体内转移能力。此外,在SW480细胞中Wnt信号通路可以调控RUNX2基因的表达:在Wnt-low细胞中,利用CHIR99021激活细胞内Wnt信号通路活性,可以促进RUNX2基因的表达;在Wnt-high细胞中,利用shRNA干扰β-catenin基因的表达,可以抑制RUNX2基因的表达。为了进一步研究RUNX2促进SW480细胞迁移能力的作用机制,多种组学高通量测序技术被应用,包括在Wnt-high细胞中检测了基于RUNX2蛋白的ChIP-seq,以及在Wnt-high细胞干扰RUNX2基因的表达后检测mRNA-seq。综合以上测序结果分析,受RUNX2直接调控的基因需满足以下条件:在ChIP-seq数据中具有RUNX2蛋白结合位点;在ATAC-seq数据中Wnt-high细胞中峰的强度要高于Wnt-low细胞;在Wnt-high细胞中mRNA水平表达量高于Wnt-low细胞;在Wnt-high细胞中,当下调RUNX2基因的表达时,该基因的表达量降低。通过分析共发现401个基因直接受到RUNX2的调控,其中有210个基因与EMT相关,包括PSG1EPAS1MPZL2等。通过临床数据分析发现在结肠癌的临床分期病例中,临床期的RUNX2基因的表达量显著高于临床期;在肿瘤发生转移的病人中RUNX2表达量高于未发生转移的病人。同时,在RUNX2表达量更高的结肠癌患者中,生存率更低,并且在神经胶质瘤、肾癌、膀胱癌以及胃癌中也是类似的情况,RUNX2的表达量与患者生存率呈负相关。

通过mRNA-seq的分析发现TEAD1基因的外显子5-6-7处的剪接形式在Wnt-highWnt-low细胞之间有巨大差异,这种差异也存在于干细胞与分化的细胞之间。在TEAD1基因中,外显子5与外显子6是一对具有不同功能的互斥外显子,外显子7是一个仅编码4个氨基酸的微小外显子,其在不同细胞中具有不同的组合形式。通过对TEAD家族基因蛋白序列分析发现,不同TEAD家族成员在TEAD1基因外显子5-6-7处的序列都可以由TEAD1基因外显子567不同组合而成。两个已知对EMT有调控作用的剪调控基因ESRP1MBNL1TEAD1的可变剪接有调控作用。在Wnt-low细胞中,TEAD1所有的剪接异构体均可促进细胞的迁移;在Wnt-high细胞中,只有TEAD1-468剪接异构体可以促进细胞的迁移。通过mRNA-seq分析推测,在Wnt-high细胞中,TEAD1-468剪接异构体可能通过促进ZEB1KRT81LCN2SPARCCX3CL1以及TLE1EMT相关基因的表达来促进细胞的迁移;TEAD1-4578剪接异构体可能通过促进IL24基因的表达,以及抑制CLUCTGFFSCN1MPP7基因的表达来抑制细胞的迁移。

综上,本研究在SW480细胞中探索了以肿瘤细胞系作为研究对象来研究肿瘤异质性的可行性,同时探究了多组学相互结合的应用场景,找到了RUNX2促进EMT的作用机制。通过对TEAD1的深入研究发现TEAD1不同剪接异构体在Wnt-high细胞中具有不同的功能。本研究促进了对肿瘤异质性的探索,同时为肿瘤转移的诊断、治疗提供了新的理论基础和潜在的治疗靶点。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-06
References List

[1] GLOBAL BURDEN OF DISEASE CANCER C, FITZMAURICE C, ABATE D, ABBASI N, ABBASTABAR H, ABD-ALLAH F, ABDEL-RAHMAN O, ABDELALIM A, ABDOLI A, ABDOLLAHPOUR I et al: Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2019, 5(12):1749-1768.
[2] TIFFON C: The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int J Mol Sci 2018, 19(11).
[3] HERON M, ANDERSON RN: Changes in the Leading Cause of Death: Recent Patterns in Heart Disease and Cancer Mortality. NCHS Data Brief 2016(254):1-8.
[4] SIEGEL RL, MILLER KD, FUCHS HE, JEMAL A: Cancer statistics, 2022. CA Cancer J Clin 2022, 72(1):7-33.
[5] SUNG H, FERLAY J, SIEGEL RL, LAVERSANNE M, SOERJOMATARAM I, JEMAL A, BRAY F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71(3):209-249.
[6] 郑荣寿, 孙可欣, 张思维, 曾红梅, 邹小农, 陈茹, 顾秀瑛, 魏文强, 赫捷: 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志 2019(01).
[7] BRAY F, FERLAY J, SOERJOMATARAM I, SIEGEL RL, TORRE LA, JEMAL A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018, 68(6):394-424.
[8] FIFE CM, MCCARROLL JA, KAVALLARIS M: Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 2014, 171(24):5507-5523.
[9] PASTUSHENKO I, BLANPAIN C: EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol 2019, 29(3):212-226.
[10] HANAHAN D, WEINBERG RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
[11] NIETO MA, HUANG RY, JACKSON RA, THIERY JP: Emt: 2016. Cell 2016, 166(1):21-45.
[12] BAKIR B, CHIARELLA AM, PITARRESI JR, RUSTGI AK: EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol 2020, 30(10):764-776.
[13] ZHENG X, CARSTENS JL, KIM J, SCHEIBLE M, KAYE J, SUGIMOTO H, WU CC, LEBLEU VS, KALLURI R: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015, 527(7579):525-530.
[14] NILSEN TW, GRAVELEY BR: Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463(7280):457-463.
[15] PURAM SV, TIROSH I, PARIKH AS, PATEL AP, YIZHAK K, GILLESPIE S, RODMAN C, LUO CL, MROZ EA, EMERICK KS et al: Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017, 171(7):1611-1624 e1624.
[16] LI F, MI R, FAN C, ZHANG P, ZHU T, WANG Q, LU Y, GU J, ZHENG Q: RUNX2-interacting genes identified by yeast two-hybrid screening of libraries generated from hypertrophic chondrocytes. Am J Transl Res 2016, 8(12):5465-5474.
[17] LIN KC, PARK HW, GUAN KL: Regulation of the Hippo Pathway Transcription Factor TEAD. Trends Biochem Sci 2017, 42(11):862-872.
[18] PETERSEN CP, REDDIEN PW: Wnt signaling and the polarity of the primary body axis. Cell 2009, 139(6):1056-1068.
[19] SHARMA RP: Wingless a new mutant in Drosophila melanogaster. In: 1973; 1973.
[20] SHARMA RP, CHOPRA VL: Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 1976, 48(2):461-465.
[21] NUSSLEIN-VOLHARD C, WIESCHAUS E: Mutations affecting segment number and polarity in Drosophila. Nature 1980, 287(5785):795-801.
[22] NUSSE R, VARMUS HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31(1):99-109.
[23] RIJSEWIJK F, SCHUERMANN M, WAGENAAR E, PARREN P, WEIGEL D, NUSSE R: The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 1987, 50(4):649-657.
[24] SIEGFRIED E, CHOU TB, PERRIMON N: wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 1992, 71(7):1167-1179.
[25] PEIFER M, SWEETON D, CASEY M, WIESCHAUS E: wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 1994, 120(2):369-380.
[26] NOORDERMEER J, KLINGENSMITH J, PERRIMON N, NUSSE R: dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 1994, 367(6458):80-83.
[27] AKIYAMA T: Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000, 11(4):273-282.
[28] WANG HY: WNT-frizzled signaling via cyclic GMP. Front Biosci 2004, 9:1043-1047.
[29] BEHRENS J, VON KRIES JP, KUHL M, BRUHN L, WEDLICH D, GROSSCHEDL R, BIRCHMEIER W: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996, 382(6592):638-642.
[30] REN Q, CHEN J, LIU Y: LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence. Front Cell Dev Biol 2021, 9:670960.
[31] MACDONALD BT, TAMAI K, HE X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009, 17(1):9-26.
[32] WEHRLI M, DOUGAN ST, CALDWELL K, O'KEEFE L, SCHWARTZ S, VAIZEL-OHAYON D, SCHEJTER E, TOMLINSON A, DINARDO S: arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 2000, 407(6803):527-530.
[33] IKEDA S, KISHIDA M, MATSUURA Y, USUI H, KIKUCHI A: GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 2000, 19(4):537-545.
[34] RUBINFELD B, TICE DA, POLAKIS P: Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1epsilon. J Biol Chem 2001, 276(42):39037-39045.
[35] YAMAMOTO H, KISHIDA S, KISHIDA M, IKEDA S, TAKADA S, KIKUCHI A: Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 1999, 274(16):10681-10684.
[36] LEE E, SALIC A, KRUGER R, HEINRICH R, KIRSCHNER MW: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 2003, 1(1):E10.
[37] HAGEN T, DI DANIEL E, CULBERT AA, REITH AD: Expression and characterization of GSK-3 mutants and their effect on beta-catenin phosphorylation in intact cells. J Biol Chem 2002, 277(26):23330-23335.
[38] WU G, XU G, SCHULMAN BA, JEFFREY PD, HARPER JW, PAVLETICH NP: Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 2003, 11(6):1445-1456.
[39] CHAE WJ, BOTHWELL ALM: Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol 2018, 39(10):830-847.
[40] CONG F, SCHWEIZER L, VARMUS H: Casein kinase Iepsilon modulates the signaling specificities of dishevelled. Mol Cell Biol 2004, 24(5):2000-2011.
[41] GREENBURG G, HAY ED: Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 1982, 95(1):333-339.
[42] LIU M, YANG J, XU B, ZHANG X: Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (2020) 2021, 2(4):587-617.
[43] BRABLETZ S, SCHUHWERK H, BRABLETZ T, STEMMLER MP: Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021, 40(18):e108647.
[44] AIELLO NM, KANG Y: Context-dependent EMT programs in cancer metastasis. J Exp Med 2019, 216(5):1016-1026.
[45] LAMBERT AW, WEINBERG RA: Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 2021, 21(5):325-338.
[46] LU W, KANG Y: Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell 2019, 49(3):361-374.
[47] CHO ES, KANG HE, KIM NH, YOOK JI: Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res 2019, 42(1):14-24.
[48] TRAN HD, LUITEL K, KIM M, ZHANG K, LONGMORE GD, TRAN DD: Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res 2014, 74(21):6330-6340.
[49] TSAI JH, DONAHER JL, MURPHY DA, CHAU S, YANG J: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012, 22(6):725-736.
[50] VENABLES JP, BROSSEAU JP, GADEA G, KLINCK R, PRINOS P, BEAULIEU JF, LAPOINTE E, DURAND M, THIBAULT P, TREMBLAY K et al: RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol Cell Biol 2013, 33(2):396-405.
[51] YANG Y, PARK JW, BEBEE TW, WARZECHA CC, GUO Y, SHANG X, XING Y, CARSTENS RP: Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition. Mol Cell Biol 2016, 36(11):1704-1719.
[52] ROY BURMAN D, DAS S, DAS C, BHATTACHARYA R: Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Mol Biol Rep 2021, 48(1):897-914.
[53] ROY S, SUNKARA RR, PARMAR MY, SHAIKH S, WAGHMARE SK: EMT imparts cancer stemness and plasticity: new perspectives and therapeutic potential. Front Biosci (Landmark Ed) 2021, 26(2):238-265.
[54] MITTAL V: Epithelial Mesenchymal Transition in Tumor Metastasis. Annu Rev Pathol 2018, 13:395-412.
[55] OGAWA E, MARUYAMA M, KAGOSHIMA H, INUZUKA M, LU J, SATAKE M, SHIGESADA K, ITO Y: PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A 1993, 90(14):6859-6863.
[56] KHAN M, CORTES J, KADIA T, NAQVI K, BRANDT M, PIERCE S, PATEL KP, BORTHAKUR G, RAVANDI F, KONOPLEVA M et al: Clinical Outcomes and Co-Occurring Mutations in Patients with RUNX1-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2017, 18(8).
[57] LIE ALM, MEVEL R, PATEL R, BLYTH K, BAENA E, KOUSKOFF V, LACAUD G: RUNX1 Dosage in Development and Cancer. Mol Cells 2020, 43(2):126-138.
[58] BROWN AL, HAHN CN, SCOTT HS: Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020, 136(1):24-35.
[59] BANERJEE C, JAVED A, CHOI JY, GREEN J, ROSEN V, VAN WIJNEN AJ, STEIN JL, LIAN JB, STEIN GS: Differential regulation of the two principal RUNX2/Cbfa1 n-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 2001, 142(9):4026-4039.
[60] ZHANG L, LIU P, LI H, XUE F: Effect of histone deacetylase inhibitors on cell apoptosis and expression of the tumor suppressor genes RUNX3 and ARHI in ovarian tumors. Mol Med Rep 2013, 7(5):1705-1709.
[61] LI Y, JI X, SU Z, TONG J, XIA S, CHEN X, LU P, BARNIE PA, WANG S, HUANG X et al: Downregulation of Runx3 is closely related to the decreased Th1-associated factors in patients with gastric carcinoma. Tumour Biol 2014, 35(12):12235-12244.
[62] LI WQ, PAN KF, ZHANG Y, DONG CX, ZHANG L, MA JL, ZHOU T, LI JY, YOU WC: RUNX3 methylation and expression associated with advanced precancerous gastric lesions in a Chinese population. Carcinogenesis 2011, 32(3):406-410.
[63] YOKOMIZO-NAKANO T, SASHIDA G: Two faces of RUNX3 in myeloid transformation. Exp Hematol 2021, 97:14-20.
[64] SUN J, LI B, JIA Z, ZHANG A, WANG G, CHEN Z, SHANG Z, ZHANG C, CUI J, YANG W: RUNX3 inhibits glioma survival and invasion via suppression of the beta-catenin/TCF-4 signaling pathway. J Neurooncol 2018, 140(1):15-26.
[65] DATE Y, ITO K: Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation. Mol Cells 2020, 43(2):176-181.
[66] WANG X, NING Y, ZHANG P, YANG L, WANG Y, GUO X: Chondrocytes damage induced by T-2 toxin via Wnt/beta-catenin signaling pathway is involved in the pathogenesis of an endemic osteochondropathy, Kashin-Beck disease. Exp Cell Res 2017, 361(1):141-148.
[67] VIMALRAJ S, ARUMUGAM B, MIRANDA PJ, SELVAMURUGAN N: RUNX2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 2015, 78:202-208.
[68] KOMORI T: Regulation of bone development and maintenance by RUNX2. Front Biosci 2008, 13:898-903.
[69] KOMORI T: Molecular Mechanism of RUNX2-Dependent Bone Development. Mol Cells 2020, 43(2):168-175.
[70] CHEN D, KIM DJ, SHEN J, ZOU Z, O'KEEFE RJ: RUNX2 plays a central role in Osteoarthritis development. J Orthop Translat 2020, 23:132-139.
[71] SHIEH A, HAN W, ISHII S, GREENDALE GA, CRANDALL CJ, KARLAMANGLA AS: Quantifying the Balance Between Total Bone Formation and Total Bone Resorption: An Index of Net Bone Formation. J Clin Endocrinol Metab 2016, 101(7):2802-2809.
[72] KOMORI T: RUNX2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 2018, 149(4):313-323.
[73] KOBAYASHI Y, UDAGAWA N: [Mechanisms of alveolar bone remodeling]. Clin Calcium 2007, 17(2):209-216.
[74] DALLE CARBONARE L, INNAMORATI G, VALENTI MT: Transcription factor RUNX2 and its application to bone tissue engineering. Stem Cell Rev Rep 2012, 8(3):891-897.
[75] MUNDLOS S, OTTO F, MUNDLOS C, MULLIKEN JB, AYLSWORTH AS, ALBRIGHT S, LINDHOUT D, COLE WG, HENN W, KNOLL JH et al: Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997, 89(5):773-779.
[76] LEE B, THIRUNAVUKKARASU K, ZHOU L, PASTORE L, BALDINI A, HECHT J, GEOFFROY V, DUCY P, KARSENTY G: Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 1997, 16(3):307-310.
[77] BARNES GL, JAVED A, WALLER SM, KAMAL MH, HEBERT KE, HASSAN MQ, BELLAHCENE A, VAN WIJNEN AJ, YOUNG MF, LIAN JB et al: Osteoblast-related transcription factors RUNX2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003, 63(10):2631-2637.
[78] BARNES GL, HEBERT KE, KAMAL M, JAVED A, EINHORN TA, LIAN JB, STEIN GS, GERSTENFELD LC: Fidelity of RUNX2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res 2004, 64(13):4506-4513.
[79] YANG J, FIZAZI K, PELEG S, SIKES CR, RAYMOND AK, JAMAL N, HU M, OLIVE M, MARTINEZ LA, WOOD CG et al: Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Cancer Res 2001, 61(14):5652-5659.
[80] YEUNG F, LAW WK, YEH CH, WESTENDORF JJ, ZHANG Y, WANG R, KAO C, CHUNG LW: Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem 2002, 277(4):2468-2476.
[81] BANIWAL SK, KHALID O, GABET Y, SHAH RR, PURCELL DJ, MAV D, KOHN-GABET AE, SHI Y, COETZEE GA, FRENKEL B: RUNX2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 2010, 9:258.
[82] CHIMGE NO, BANIWAL SK, LITTLE GH, CHEN YB, KAHN M, TRIPATHY D, BOROK Z, FRENKEL B: Regulation of breast cancer metastasis by RUNX2 and estrogen signaling: the role of SNAI2. Breast Cancer Res 2011, 13(6):R127.
[83] INMAN CK, SHORE P: The osteoblast transcription factor RUNX2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 2003, 278(49):48684-48689.
[84] PRATAP J, JAVED A, LANGUINO LR, VAN WIJNEN AJ, STEIN JL, STEIN GS, LIAN JB: The RUNX2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 2005, 25(19):8581-8591.
[85] SELVAMURUGAN N, KWOK S, PARTRIDGE NC: Smad3 interacts with JunB and Cbfa1/RUNX2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem 2004, 279(26):27764-27773.
[86] BUSTOS F, SEPULVEDA H, PRIETO CP, CARRASCO M, DIAZ L, PALMA J, LATTUS J, MONTECINO M, PALMA V: Runt-Related Transcription Factor 2 Induction During Differentiation of Wharton's Jelly Mesenchymal Stem Cells to Osteoblasts Is Regulated by Jumonji AT-Rich Interactive Domain 1B Histone Demethylase. Stem Cells 2017, 35(12):2430-2441.
[87] NIU DF, KONDO T, NAKAZAWA T, OISHI N, KAWASAKI T, MOCHIZUKI K, YAMANE T, KATOH R: Transcription factor RUNX2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Invest 2012, 92(8):1181-1190.
[88] DEY A, VARELAS X, GUAN KL: Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020, 19(7):480-494.
[89] JACQUEMIN P, MARTIAL JA, DAVIDSON I: Human TEF-5 is preferentially expressed in placenta and binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. J Biol Chem 1997, 272(20):12928-12937.
[90] JACQUEMIN P, HWANG JJ, MARTIAL JA, DOLLE P, DAVIDSON I: A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA binding domain. J Biol Chem 1996, 271(36):21775-21785.
[91] OTA M, SASAKI H: Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 2008, 135(24):4059-4069.
[92] ZHAO B, WEI X, LI W, UDAN RS, YANG Q, KIM J, XIE J, IKENOUE T, YU J, LI L et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007, 21(21):2747-2761.
[93] ANBANANDAM A, ALBARADO DC, NGUYEN CT, HALDER G, GAO X, VEERARAGHAVAN S: Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci U S A 2006, 103(46):17225-17230.
[94] CHEN L, CHAN SW, ZHANG X, WALSH M, LIM CJ, HONG W, SONG H: Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev 2010, 24(3):290-300.
[95] LI Z, ZHAO B, WANG P, CHEN F, DONG Z, YANG H, GUAN KL, XU Y: Structural insights into the YAP and TEAD complex. Genes Dev 2010, 24(3):235-240.
[96] HUH HD, KIM DH, JEONG HS, PARK HW: Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019, 8(6).
[97] ZHAO B, YE X, YU J, LI L, LI W, LI S, YU J, LIN JD, WANG CY, CHINNAIYAN AM et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008, 22(14):1962-1971.
[98] LEI QY, ZHANG H, ZHAO B, ZHA ZY, BAI F, PEI XH, ZHAO S, XIONG Y, GUAN KL: TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 2008, 28(7):2426-2436.
[99] JIAO S, LI C, HAO Q, MIAO H, ZHANG L, LI L, ZHOU Z: VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun 2017, 8:14058.
[100] THOMPSON BJ: YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. Bioessays 2020, 42(5):e1900162.
[101] LIU X, LI H, RAJURKAR M, LI Q, COTTON JL, OU J, ZHU LJ, GOEL HL, MERCURIO AM, PARK JS et al: Tead and AP1 Coordinate Transcription and Motility. Cell Rep 2016, 14(5):1169-1180.
[102] BEYER TA, WEISS A, KHOMCHUK Y, HUANG K, OGUNJIMI AA, VARELAS X, WRANA JL: Switch enhancers interpret TGF-beta and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep 2013, 5(6):1611-1624.
[103] ZANCONATO F, FORCATO M, BATTILANA G, AZZOLIN L, QUARANTA E, BODEGA B, ROSATO A, BICCIATO S, CORDENONSI M, PICCOLO S: Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 2015, 17(9):1218-1227.
[104] DIEPENBRUCK M, WALDMEIER L, IVANEK R, BERNINGER P, ARNOLD P, VAN NIMWEGEN E, CHRISTOFORI G: Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J Cell Sci 2014, 127(Pt 7):1523-1536.
[105] LIU Y, WANG G, YANG Y, MEI Z, LIANG Z, CUI A, WU T, LIU CY, CUI L: Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial-mesenchymal transition and metastasis in a YAP-independent manner. Oncogene 2016, 35(21):2789-2800.
[106] OVERHOLTZER M, ZHANG J, SMOLEN GA, MUIR B, LI W, SGROI DC, DENG CX, BRUGGE JS, HABER DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 2006, 103(33):12405-12410.
[107] LAMAR JM, STERN P, LIU H, SCHINDLER JW, JIANG ZG, HYNES RO: The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A 2012, 109(37):E2441-2450.
[108] VINCENT-MISTIAEN Z, ELBEDIWY A, VANYAI H, COTTON J, STAMP G, NYE E, SPENCER-DENE B, THOMAS GJ, MAO J, THOMPSON B: YAP drives cutaneous squamous cell carcinoma formation and progression. Elife 2018, 7.
[109] YU M, CHEN Y, LI X, YANG R, ZHANG L, HUANGFU L, ZHENG N, ZHAO X, LV L, HONG Y et al: YAP1 contributes to NSCLC invasion and migration by promoting Slug transcription via the transcription co-factor TEAD. Cell Death Dis 2018, 9(5):464.
[110] GAO Y, ZHANG W, HAN X, LI F, WANG X, WANG R, FANG Z, TONG X, YAO S, LI F et al: YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. Nat Commun 2014, 5:4629.
[111] LEHMANN W, MOSSMANN D, KLEEMANN J, MOCK K, MEISINGER C, BRUMMER T, HERR R, BRABLETZ S, STEMMLER MP, BRABLETZ T: ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun 2016, 7:10498.
[112] HAEMMERLE M, TAYLOR ML, GUTSCHNER T, PRADEEP S, CHO MS, SHENG J, LYONS YM, NAGARAJA AS, DOOD RL, WEN Y et al: Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun 2017, 8(1):310.
[113] ZHAO B, LI L, WANG L, WANG CY, YU J, GUAN KL: Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 2012, 26(1):54-68.
[114] LEE HJ, DIAZ MF, PRICE KM, OZUNA JA, ZHANG S, SEVICK-MURACA EM, HAGAN JP, WENZEL PL: Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun 2017, 8:14122.
[115] GUO PD, LU XX, GAN WJ, LI XM, HE XS, ZHANG S, JI QH, ZHOU F, CAO Y, WANG JR et al: RARgamma Downregulation Contributes to Colorectal Tumorigenesis and Metastasis by Derepressing the Hippo-Yap Pathway. Cancer Res 2016, 76(13):3813-3825.
[116] LI C, WANG S, XING Z, LIN A, LIANG K, SONG J, HU Q, YAO J, CHEN Z, PARK PK et al: A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol 2017, 19(2):106-119.
[117] CHEN D, SUN Y, WEI Y, ZHANG P, REZAEIAN AH, TERUYA-FELDSTEIN J, GUPTA S, LIANG H, LIN HK, HUNG MC et al: LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 2012, 18(10):1511-1517.
[118] ER EE, VALIENTE M, GANESH K, ZOU Y, AGRAWAL S, HU J, GRISCOM B, ROSENBLUM M, BOIRE A, BROGI E et al: Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 2018, 20(8):966-978.
[119] QI Y, YU J, HAN W, FAN X, QIAN H, WEI H, TSAI YH, ZHAO J, ZHANG W, LIU Q et al: A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Nat Commun 2016, 7:ncomms11840.
[120] DING K, JI J, ZHANG X, HUANG B, CHEN A, ZHANG D, LI X, WANG X, WANG J: RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 2019, 38(37):6414-6428.
[121] PAN Q, SHAI O, LEE LJ, FREY BJ, BLENCOWE BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008, 40(12):1413-1415.
[122] WANG ET, SANDBERG R, LUO S, KHREBTUKOVA I, ZHANG L, MAYR C, KINGSMORE SF, SCHROTH GP, BURGE CB: Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456(7221):470-476.
[123] BLAND CS, WANG ET, VU A, DAVID MP, CASTLE JC, JOHNSON JM, BURGE CB, COOPER TA: Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res 2010, 38(21):7651-7664.
[124] JOHNSON MB, KAWASAWA YI, MASON CE, KRSNIK Z, COPPOLA G, BOGDANOVIC D, GESCHWIND DH, MANE SM, STATE MW, SESTAN N: Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 2009, 62(4):494-509.
[125] PAIK PK, DRILON A, FAN PD, YU H, REKHTMAN N, GINSBERG MS, BORSU L, SCHULTZ N, BERGER MF, RUDIN CM et al: Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov 2015, 5(8):842-849.
[126] FRAMPTON GM, ALI SM, ROSENZWEIG M, CHMIELECKI J, LU X, BAUER TM, AKIMOV M, BUFILL JA, LEE C, JENTZ D et al: Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015, 5(8):850-859.
[127] BROOKS AN, CHOI PS, DE WAAL L, SHARIFNIA T, IMIELINSKI M, SAKSENA G, PEDAMALLU CS, SIVACHENKO A, ROSENBERG M, CHMIELECKI J et al: A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One 2014, 9(1):e87361.
[128] GRAUBERT TA, SHEN D, DING L, OKEYO-OWUOR T, LUNN CL, SHAO J, KRYSIAK K, HARRIS CC, KOBOLDT DC, LARSON DE et al: Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2011, 44(1):53-57.
[129] SUZUKI H, KUMAR SA, SHUAI S, DIAZ-NAVARRO A, GUTIERREZ-FERNANDEZ A, DE ANTONELLIS P, CAVALLI FMG, JURASCHKA K, FAROOQ H, SHIBAHARA I et al: Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 2019, 574(7780):707-711.
[130] SHUAI S, SUZUKI H, DIAZ-NAVARRO A, NADEU F, KUMAR SA, GUTIERREZ-FERNANDEZ A, DELGADO J, PINYOL M, LOPEZ-OTIN C, PUENTE XS et al: The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 2019, 574(7780):712-716.
[131] KAHLES A, LEHMANN KV, TOUSSAINT NC, HUSER M, STARK SG, SACHSENBERG T, STEGLE O, KOHLBACHER O, SANDER C, CANCER GENOME ATLAS RESEARCH N et al: Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell 2018, 34(2):211-224 e216.
[132] HARVEY SE, XU Y, LIN X, GAO XD, QIU Y, AHN J, XIAO X, CHENG C: Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA 2018, 24(10):1326-1338.
[133] LU ZX, HUANG Q, PARK JW, SHEN S, LIN L, TOKHEIM CJ, HENRY MD, XING Y: Transcriptome-wide landscape of pre-mRNA alternative splicing associated with metastatic colonization. Mol Cancer Res 2015, 13(2):305-318.
[134] PRADELLA D, NARO C, SETTE C, GHIGNA C: EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 2017, 16(1):8.
[135] DOBIN A, DAVIS CA, SCHLESINGER F, DRENKOW J, ZALESKI C, JHA S, BATUT P, CHAISSON M, GINGERAS TR: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29(1):15-21.
[136] MARTIN M: Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. EMBnet journal 2011, 17(1).
[137] LANGMEAD B, SALZBERG SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-359.
[138] HEINZ S, BENNER C, SPANN N, BERTOLINO E, LIN YC, LASLO P, CHENG JX, MURRE C, SINGH H, GLASS CK: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010, 38(4):576-589.
[139] ZHENG GX, TERRY JM, BELGRADER P, RYVKIN P, BENT ZW, WILSON R, ZIRALDO SB, WHEELER TD, MCDERMOTT GP, ZHU J et al: Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017, 8:14049.
[140] WOLF FA, ANGERER P, THEIS FJ: SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 2018, 19(1):15.
[141] BLONDEL VD, GUILLAUME JL, HENDRICKX JM, DE KERCHOVE C, LAMBIOTTE R: Local leaders in random networks. Phys Rev E Stat Nonlin Soft Matter Phys 2008, 77(3 Pt 2):036114.
[142] GARDNER W, CUTTS SM, PHILLIPS DR, PIGRAM PJ: Understanding mass spectrometry images: complexity to clarity with machine learning. Biopolymers 2021, 112(4):e23400.
[143] SIEGEL RL, MILLER KD, JEMAL A: Cancer Statistics, 2017. CA Cancer J Clin 2017, 67(1):7-30.
[144] NEUSE CJ, LOMAS OC, SCHLIEMANN C, SHEN YJ, MANIER S, BUSTOROS M, GHOBRIAL IM: Genome instability in multiple myeloma. Leukemia 2020, 34(11):2887-2897.
[145] BAKHOUM SF, CANTLEY LC: The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment. Cell 2018, 174(6):1347-1360.
[146] GOLLIN SM: Chromosomal instability. Curr Opin Oncol 2004, 16(1):25-31.
[147] MCGRANAHAN N, SWANTON C: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 2015, 27(1):15-26.
[148] SVEEN A, BRUUN J, EIDE PW, EILERTSEN IA, RAMIREZ L, MURUMAGI A, ARJAMA M, DANIELSEN SA, KRYEZIU K, ELEZ E et al: Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. Clin Cancer Res 2018, 24(4):794-806.
[149] ZHAN T, RINDTORFF N, BOUTROS M: Wnt signaling in cancer. Oncogene 2017, 36(11):1461-1473.
[150] SANCHEZ-TILLO E, DE BARRIOS O, SILES L, CUATRECASAS M, CASTELLS A, POSTIGO A: beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A 2011, 108(48):19204-19209.
[151] YOOK JI, LI XY, OTA I, HU C, KIM HS, KIM NH, CHA SY, RYU JK, CHOI YJ, KIM J et al: A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006, 8(12):1398-1406.
[152] VERMEULEN L, DE SOUSA EMF, VAN DER HEIJDEN M, CAMERON K, DE JONG JH, BOROVSKI T, TUYNMAN JB, TODARO M, MERZ C, RODERMOND H et al: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010, 12(5):468-476.
[153] DRIESSENS G, BECK B, CAAUWE A, SIMONS BD, BLANPAIN C: Defining the mode of tumour growth by clonal analysis. Nature 2012, 488(7412):527-530.
[154] GERLINGER M, ROWAN AJ, HORSWELL S, MATH M, LARKIN J, ENDESFELDER D, GRONROOS E, MARTINEZ P, MATTHEWS N, STEWART A et al: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012, 366(10):883-892.
[155] NAVIN N, KENDALL J, TROGE J, ANDREWS P, RODGERS L, MCINDOO J, COOK K, STEPANSKY A, LEVY D, ESPOSITO D et al: Tumour evolution inferred by single-cell sequencing. Nature 2011, 472(7341):90-94.
[156] BEDARD PL, HANSEN AR, RATAIN MJ, SIU LL: Tumour heterogeneity in the clinic. Nature 2013, 501(7467):355-364.
[157] BLOIS SM, SULKOWSKI G, TIRADO-GONZALEZ I, WARREN J, FREITAG N, KLAPP BF, RIFKIN D, FUSS I, STROBER W, DVEKSLER GS: Pregnancy-specific glycoprotein 1 (PSG1) activates TGF-beta and prevents dextran sodium sulfate (DSS)-induced colitis in mice. Mucosal Immunol 2014, 7(2):348-358.
[158] LIN CW, WANG LK, WANG SP, CHANG YL, WU YY, CHEN HY, HSIAO TH, LAI WY, LU HH, CHANG YH et al: Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1alpha/HDAC1/Slug axis. Nat Commun 2016, 7:13867.
[159] PISTORE C, GIANNONI E, COLANGELO T, RIZZO F, MAGNANI E, MUCCILLO L, GIURATO G, MANCINI M, RIZZO S, RICCARDI M et al: DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene 2017, 36(40):5551-5566.
[160] VAN STAALDUINEN J, BAKER D, TEN DIJKE P, VAN DAM H: Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 2018, 37(48):6195-6211.
[161] HU Y, GAEDCKE J, EMONS G, BEISSBARTH T, GRADE M, JO P, YEAGER M, CHANOCK SJ, WOLFF H, CAMPS J et al: Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery. Genes Chromosomes Cancer 2018, 57(3):140-149.

Academic Degree Assessment Sub committee
生物系
Domestic book classification number
Q291
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/353149
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
仪洪洋. RUNX2和TEAD1在调控肿瘤EMT过程中的功能与机制研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849484-仪洪洋-生物系.pdf(8502KB) Open Access--View Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[仪洪洋]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[仪洪洋]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[仪洪洋]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 11849484-仪洪洋-生物系.pdf
Format: Adobe PDF
File name: 11849484-仪洪洋-生物系.pdf
Format: Adobe PDF
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.