[1] GLOBAL BURDEN OF DISEASE CANCER C, FITZMAURICE C, ABATE D, ABBASI N, ABBASTABAR H, ABD-ALLAH F, ABDEL-RAHMAN O, ABDELALIM A, ABDOLI A, ABDOLLAHPOUR I et al: Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2019, 5(12):1749-1768.
[2] TIFFON C: The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int J Mol Sci 2018, 19(11).
[3] HERON M, ANDERSON RN: Changes in the Leading Cause of Death: Recent Patterns in Heart Disease and Cancer Mortality. NCHS Data Brief 2016(254):1-8.
[4] SIEGEL RL, MILLER KD, FUCHS HE, JEMAL A: Cancer statistics, 2022. CA Cancer J Clin 2022, 72(1):7-33.
[5] SUNG H, FERLAY J, SIEGEL RL, LAVERSANNE M, SOERJOMATARAM I, JEMAL A, BRAY F: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71(3):209-249.
[6] 郑荣寿, 孙可欣, 张思维, 曾红梅, 邹小农, 陈茹, 顾秀瑛, 魏文强, 赫捷: 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志 2019(01).
[7] BRAY F, FERLAY J, SOERJOMATARAM I, SIEGEL RL, TORRE LA, JEMAL A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018, 68(6):394-424.
[8] FIFE CM, MCCARROLL JA, KAVALLARIS M: Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 2014, 171(24):5507-5523.
[9] PASTUSHENKO I, BLANPAIN C: EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol 2019, 29(3):212-226.
[10] HANAHAN D, WEINBERG RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
[11] NIETO MA, HUANG RY, JACKSON RA, THIERY JP: Emt: 2016. Cell 2016, 166(1):21-45.
[12] BAKIR B, CHIARELLA AM, PITARRESI JR, RUSTGI AK: EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol 2020, 30(10):764-776.
[13] ZHENG X, CARSTENS JL, KIM J, SCHEIBLE M, KAYE J, SUGIMOTO H, WU CC, LEBLEU VS, KALLURI R: Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015, 527(7579):525-530.
[14] NILSEN TW, GRAVELEY BR: Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463(7280):457-463.
[15] PURAM SV, TIROSH I, PARIKH AS, PATEL AP, YIZHAK K, GILLESPIE S, RODMAN C, LUO CL, MROZ EA, EMERICK KS et al: Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017, 171(7):1611-1624 e1624.
[16] LI F, MI R, FAN C, ZHANG P, ZHU T, WANG Q, LU Y, GU J, ZHENG Q: RUNX2-interacting genes identified by yeast two-hybrid screening of libraries generated from hypertrophic chondrocytes. Am J Transl Res 2016, 8(12):5465-5474.
[17] LIN KC, PARK HW, GUAN KL: Regulation of the Hippo Pathway Transcription Factor TEAD. Trends Biochem Sci 2017, 42(11):862-872.
[18] PETERSEN CP, REDDIEN PW: Wnt signaling and the polarity of the primary body axis. Cell 2009, 139(6):1056-1068.
[19] SHARMA RP: Wingless a new mutant in Drosophila melanogaster. In: 1973; 1973.
[20] SHARMA RP, CHOPRA VL: Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 1976, 48(2):461-465.
[21] NUSSLEIN-VOLHARD C, WIESCHAUS E: Mutations affecting segment number and polarity in Drosophila. Nature 1980, 287(5785):795-801.
[22] NUSSE R, VARMUS HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31(1):99-109.
[23] RIJSEWIJK F, SCHUERMANN M, WAGENAAR E, PARREN P, WEIGEL D, NUSSE R: The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 1987, 50(4):649-657.
[24] SIEGFRIED E, CHOU TB, PERRIMON N: wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 1992, 71(7):1167-1179.
[25] PEIFER M, SWEETON D, CASEY M, WIESCHAUS E: wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 1994, 120(2):369-380.
[26] NOORDERMEER J, KLINGENSMITH J, PERRIMON N, NUSSE R: dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 1994, 367(6458):80-83.
[27] AKIYAMA T: Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000, 11(4):273-282.
[28] WANG HY: WNT-frizzled signaling via cyclic GMP. Front Biosci 2004, 9:1043-1047.
[29] BEHRENS J, VON KRIES JP, KUHL M, BRUHN L, WEDLICH D, GROSSCHEDL R, BIRCHMEIER W: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996, 382(6592):638-642.
[30] REN Q, CHEN J, LIU Y: LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence. Front Cell Dev Biol 2021, 9:670960.
[31] MACDONALD BT, TAMAI K, HE X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009, 17(1):9-26.
[32] WEHRLI M, DOUGAN ST, CALDWELL K, O'KEEFE L, SCHWARTZ S, VAIZEL-OHAYON D, SCHEJTER E, TOMLINSON A, DINARDO S: arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 2000, 407(6803):527-530.
[33] IKEDA S, KISHIDA M, MATSUURA Y, USUI H, KIKUCHI A: GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 2000, 19(4):537-545.
[34] RUBINFELD B, TICE DA, POLAKIS P: Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1epsilon. J Biol Chem 2001, 276(42):39037-39045.
[35] YAMAMOTO H, KISHIDA S, KISHIDA M, IKEDA S, TAKADA S, KIKUCHI A: Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 1999, 274(16):10681-10684.
[36] LEE E, SALIC A, KRUGER R, HEINRICH R, KIRSCHNER MW: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 2003, 1(1):E10.
[37] HAGEN T, DI DANIEL E, CULBERT AA, REITH AD: Expression and characterization of GSK-3 mutants and their effect on beta-catenin phosphorylation in intact cells. J Biol Chem 2002, 277(26):23330-23335.
[38] WU G, XU G, SCHULMAN BA, JEFFREY PD, HARPER JW, PAVLETICH NP: Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 2003, 11(6):1445-1456.
[39] CHAE WJ, BOTHWELL ALM: Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol 2018, 39(10):830-847.
[40] CONG F, SCHWEIZER L, VARMUS H: Casein kinase Iepsilon modulates the signaling specificities of dishevelled. Mol Cell Biol 2004, 24(5):2000-2011.
[41] GREENBURG G, HAY ED: Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 1982, 95(1):333-339.
[42] LIU M, YANG J, XU B, ZHANG X: Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (2020) 2021, 2(4):587-617.
[43] BRABLETZ S, SCHUHWERK H, BRABLETZ T, STEMMLER MP: Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021, 40(18):e108647.
[44] AIELLO NM, KANG Y: Context-dependent EMT programs in cancer metastasis. J Exp Med 2019, 216(5):1016-1026.
[45] LAMBERT AW, WEINBERG RA: Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 2021, 21(5):325-338.
[46] LU W, KANG Y: Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell 2019, 49(3):361-374.
[47] CHO ES, KANG HE, KIM NH, YOOK JI: Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res 2019, 42(1):14-24.
[48] TRAN HD, LUITEL K, KIM M, ZHANG K, LONGMORE GD, TRAN DD: Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res 2014, 74(21):6330-6340.
[49] TSAI JH, DONAHER JL, MURPHY DA, CHAU S, YANG J: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012, 22(6):725-736.
[50] VENABLES JP, BROSSEAU JP, GADEA G, KLINCK R, PRINOS P, BEAULIEU JF, LAPOINTE E, DURAND M, THIBAULT P, TREMBLAY K et al: RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol Cell Biol 2013, 33(2):396-405.
[51] YANG Y, PARK JW, BEBEE TW, WARZECHA CC, GUO Y, SHANG X, XING Y, CARSTENS RP: Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition. Mol Cell Biol 2016, 36(11):1704-1719.
[52] ROY BURMAN D, DAS S, DAS C, BHATTACHARYA R: Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Mol Biol Rep 2021, 48(1):897-914.
[53] ROY S, SUNKARA RR, PARMAR MY, SHAIKH S, WAGHMARE SK: EMT imparts cancer stemness and plasticity: new perspectives and therapeutic potential. Front Biosci (Landmark Ed) 2021, 26(2):238-265.
[54] MITTAL V: Epithelial Mesenchymal Transition in Tumor Metastasis. Annu Rev Pathol 2018, 13:395-412.
[55] OGAWA E, MARUYAMA M, KAGOSHIMA H, INUZUKA M, LU J, SATAKE M, SHIGESADA K, ITO Y: PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A 1993, 90(14):6859-6863.
[56] KHAN M, CORTES J, KADIA T, NAQVI K, BRANDT M, PIERCE S, PATEL KP, BORTHAKUR G, RAVANDI F, KONOPLEVA M et al: Clinical Outcomes and Co-Occurring Mutations in Patients with RUNX1-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2017, 18(8).
[57] LIE ALM, MEVEL R, PATEL R, BLYTH K, BAENA E, KOUSKOFF V, LACAUD G: RUNX1 Dosage in Development and Cancer. Mol Cells 2020, 43(2):126-138.
[58] BROWN AL, HAHN CN, SCOTT HS: Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020, 136(1):24-35.
[59] BANERJEE C, JAVED A, CHOI JY, GREEN J, ROSEN V, VAN WIJNEN AJ, STEIN JL, LIAN JB, STEIN GS: Differential regulation of the two principal RUNX2/Cbfa1 n-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 2001, 142(9):4026-4039.
[60] ZHANG L, LIU P, LI H, XUE F: Effect of histone deacetylase inhibitors on cell apoptosis and expression of the tumor suppressor genes RUNX3 and ARHI in ovarian tumors. Mol Med Rep 2013, 7(5):1705-1709.
[61] LI Y, JI X, SU Z, TONG J, XIA S, CHEN X, LU P, BARNIE PA, WANG S, HUANG X et al: Downregulation of Runx3 is closely related to the decreased Th1-associated factors in patients with gastric carcinoma. Tumour Biol 2014, 35(12):12235-12244.
[62] LI WQ, PAN KF, ZHANG Y, DONG CX, ZHANG L, MA JL, ZHOU T, LI JY, YOU WC: RUNX3 methylation and expression associated with advanced precancerous gastric lesions in a Chinese population. Carcinogenesis 2011, 32(3):406-410.
[63] YOKOMIZO-NAKANO T, SASHIDA G: Two faces of RUNX3 in myeloid transformation. Exp Hematol 2021, 97:14-20.
[64] SUN J, LI B, JIA Z, ZHANG A, WANG G, CHEN Z, SHANG Z, ZHANG C, CUI J, YANG W: RUNX3 inhibits glioma survival and invasion via suppression of the beta-catenin/TCF-4 signaling pathway. J Neurooncol 2018, 140(1):15-26.
[65] DATE Y, ITO K: Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation. Mol Cells 2020, 43(2):176-181.
[66] WANG X, NING Y, ZHANG P, YANG L, WANG Y, GUO X: Chondrocytes damage induced by T-2 toxin via Wnt/beta-catenin signaling pathway is involved in the pathogenesis of an endemic osteochondropathy, Kashin-Beck disease. Exp Cell Res 2017, 361(1):141-148.
[67] VIMALRAJ S, ARUMUGAM B, MIRANDA PJ, SELVAMURUGAN N: RUNX2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 2015, 78:202-208.
[68] KOMORI T: Regulation of bone development and maintenance by RUNX2. Front Biosci 2008, 13:898-903.
[69] KOMORI T: Molecular Mechanism of RUNX2-Dependent Bone Development. Mol Cells 2020, 43(2):168-175.
[70] CHEN D, KIM DJ, SHEN J, ZOU Z, O'KEEFE RJ: RUNX2 plays a central role in Osteoarthritis development. J Orthop Translat 2020, 23:132-139.
[71] SHIEH A, HAN W, ISHII S, GREENDALE GA, CRANDALL CJ, KARLAMANGLA AS: Quantifying the Balance Between Total Bone Formation and Total Bone Resorption: An Index of Net Bone Formation. J Clin Endocrinol Metab 2016, 101(7):2802-2809.
[72] KOMORI T: RUNX2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 2018, 149(4):313-323.
[73] KOBAYASHI Y, UDAGAWA N: [Mechanisms of alveolar bone remodeling]. Clin Calcium 2007, 17(2):209-216.
[74] DALLE CARBONARE L, INNAMORATI G, VALENTI MT: Transcription factor RUNX2 and its application to bone tissue engineering. Stem Cell Rev Rep 2012, 8(3):891-897.
[75] MUNDLOS S, OTTO F, MUNDLOS C, MULLIKEN JB, AYLSWORTH AS, ALBRIGHT S, LINDHOUT D, COLE WG, HENN W, KNOLL JH et al: Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997, 89(5):773-779.
[76] LEE B, THIRUNAVUKKARASU K, ZHOU L, PASTORE L, BALDINI A, HECHT J, GEOFFROY V, DUCY P, KARSENTY G: Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 1997, 16(3):307-310.
[77] BARNES GL, JAVED A, WALLER SM, KAMAL MH, HEBERT KE, HASSAN MQ, BELLAHCENE A, VAN WIJNEN AJ, YOUNG MF, LIAN JB et al: Osteoblast-related transcription factors RUNX2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 2003, 63(10):2631-2637.
[78] BARNES GL, HEBERT KE, KAMAL M, JAVED A, EINHORN TA, LIAN JB, STEIN GS, GERSTENFELD LC: Fidelity of RUNX2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res 2004, 64(13):4506-4513.
[79] YANG J, FIZAZI K, PELEG S, SIKES CR, RAYMOND AK, JAMAL N, HU M, OLIVE M, MARTINEZ LA, WOOD CG et al: Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Cancer Res 2001, 61(14):5652-5659.
[80] YEUNG F, LAW WK, YEH CH, WESTENDORF JJ, ZHANG Y, WANG R, KAO C, CHUNG LW: Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells. J Biol Chem 2002, 277(4):2468-2476.
[81] BANIWAL SK, KHALID O, GABET Y, SHAH RR, PURCELL DJ, MAV D, KOHN-GABET AE, SHI Y, COETZEE GA, FRENKEL B: RUNX2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 2010, 9:258.
[82] CHIMGE NO, BANIWAL SK, LITTLE GH, CHEN YB, KAHN M, TRIPATHY D, BOROK Z, FRENKEL B: Regulation of breast cancer metastasis by RUNX2 and estrogen signaling: the role of SNAI2. Breast Cancer Res 2011, 13(6):R127.
[83] INMAN CK, SHORE P: The osteoblast transcription factor RUNX2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem 2003, 278(49):48684-48689.
[84] PRATAP J, JAVED A, LANGUINO LR, VAN WIJNEN AJ, STEIN JL, STEIN GS, LIAN JB: The RUNX2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 2005, 25(19):8581-8591.
[85] SELVAMURUGAN N, KWOK S, PARTRIDGE NC: Smad3 interacts with JunB and Cbfa1/RUNX2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem 2004, 279(26):27764-27773.
[86] BUSTOS F, SEPULVEDA H, PRIETO CP, CARRASCO M, DIAZ L, PALMA J, LATTUS J, MONTECINO M, PALMA V: Runt-Related Transcription Factor 2 Induction During Differentiation of Wharton's Jelly Mesenchymal Stem Cells to Osteoblasts Is Regulated by Jumonji AT-Rich Interactive Domain 1B Histone Demethylase. Stem Cells 2017, 35(12):2430-2441.
[87] NIU DF, KONDO T, NAKAZAWA T, OISHI N, KAWASAKI T, MOCHIZUKI K, YAMANE T, KATOH R: Transcription factor RUNX2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Invest 2012, 92(8):1181-1190.
[88] DEY A, VARELAS X, GUAN KL: Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov 2020, 19(7):480-494.
[89] JACQUEMIN P, MARTIAL JA, DAVIDSON I: Human TEF-5 is preferentially expressed in placenta and binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. J Biol Chem 1997, 272(20):12928-12937.
[90] JACQUEMIN P, HWANG JJ, MARTIAL JA, DOLLE P, DAVIDSON I: A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA binding domain. J Biol Chem 1996, 271(36):21775-21785.
[91] OTA M, SASAKI H: Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 2008, 135(24):4059-4069.
[92] ZHAO B, WEI X, LI W, UDAN RS, YANG Q, KIM J, XIE J, IKENOUE T, YU J, LI L et al: Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2007, 21(21):2747-2761.
[93] ANBANANDAM A, ALBARADO DC, NGUYEN CT, HALDER G, GAO X, VEERARAGHAVAN S: Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci U S A 2006, 103(46):17225-17230.
[94] CHEN L, CHAN SW, ZHANG X, WALSH M, LIM CJ, HONG W, SONG H: Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev 2010, 24(3):290-300.
[95] LI Z, ZHAO B, WANG P, CHEN F, DONG Z, YANG H, GUAN KL, XU Y: Structural insights into the YAP and TEAD complex. Genes Dev 2010, 24(3):235-240.
[96] HUH HD, KIM DH, JEONG HS, PARK HW: Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019, 8(6).
[97] ZHAO B, YE X, YU J, LI L, LI W, LI S, YU J, LIN JD, WANG CY, CHINNAIYAN AM et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008, 22(14):1962-1971.
[98] LEI QY, ZHANG H, ZHAO B, ZHA ZY, BAI F, PEI XH, ZHAO S, XIONG Y, GUAN KL: TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 2008, 28(7):2426-2436.
[99] JIAO S, LI C, HAO Q, MIAO H, ZHANG L, LI L, ZHOU Z: VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun 2017, 8:14058.
[100] THOMPSON BJ: YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. Bioessays 2020, 42(5):e1900162.
[101] LIU X, LI H, RAJURKAR M, LI Q, COTTON JL, OU J, ZHU LJ, GOEL HL, MERCURIO AM, PARK JS et al: Tead and AP1 Coordinate Transcription and Motility. Cell Rep 2016, 14(5):1169-1180.
[102] BEYER TA, WEISS A, KHOMCHUK Y, HUANG K, OGUNJIMI AA, VARELAS X, WRANA JL: Switch enhancers interpret TGF-beta and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep 2013, 5(6):1611-1624.
[103] ZANCONATO F, FORCATO M, BATTILANA G, AZZOLIN L, QUARANTA E, BODEGA B, ROSATO A, BICCIATO S, CORDENONSI M, PICCOLO S: Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol 2015, 17(9):1218-1227.
[104] DIEPENBRUCK M, WALDMEIER L, IVANEK R, BERNINGER P, ARNOLD P, VAN NIMWEGEN E, CHRISTOFORI G: Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J Cell Sci 2014, 127(Pt 7):1523-1536.
[105] LIU Y, WANG G, YANG Y, MEI Z, LIANG Z, CUI A, WU T, LIU CY, CUI L: Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial-mesenchymal transition and metastasis in a YAP-independent manner. Oncogene 2016, 35(21):2789-2800.
[106] OVERHOLTZER M, ZHANG J, SMOLEN GA, MUIR B, LI W, SGROI DC, DENG CX, BRUGGE JS, HABER DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 2006, 103(33):12405-12410.
[107] LAMAR JM, STERN P, LIU H, SCHINDLER JW, JIANG ZG, HYNES RO: The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A 2012, 109(37):E2441-2450.
[108] VINCENT-MISTIAEN Z, ELBEDIWY A, VANYAI H, COTTON J, STAMP G, NYE E, SPENCER-DENE B, THOMAS GJ, MAO J, THOMPSON B: YAP drives cutaneous squamous cell carcinoma formation and progression. Elife 2018, 7.
[109] YU M, CHEN Y, LI X, YANG R, ZHANG L, HUANGFU L, ZHENG N, ZHAO X, LV L, HONG Y et al: YAP1 contributes to NSCLC invasion and migration by promoting Slug transcription via the transcription co-factor TEAD. Cell Death Dis 2018, 9(5):464.
[110] GAO Y, ZHANG W, HAN X, LI F, WANG X, WANG R, FANG Z, TONG X, YAO S, LI F et al: YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. Nat Commun 2014, 5:4629.
[111] LEHMANN W, MOSSMANN D, KLEEMANN J, MOCK K, MEISINGER C, BRUMMER T, HERR R, BRABLETZ S, STEMMLER MP, BRABLETZ T: ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun 2016, 7:10498.
[112] HAEMMERLE M, TAYLOR ML, GUTSCHNER T, PRADEEP S, CHO MS, SHENG J, LYONS YM, NAGARAJA AS, DOOD RL, WEN Y et al: Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun 2017, 8(1):310.
[113] ZHAO B, LI L, WANG L, WANG CY, YU J, GUAN KL: Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 2012, 26(1):54-68.
[114] LEE HJ, DIAZ MF, PRICE KM, OZUNA JA, ZHANG S, SEVICK-MURACA EM, HAGAN JP, WENZEL PL: Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun 2017, 8:14122.
[115] GUO PD, LU XX, GAN WJ, LI XM, HE XS, ZHANG S, JI QH, ZHOU F, CAO Y, WANG JR et al: RARgamma Downregulation Contributes to Colorectal Tumorigenesis and Metastasis by Derepressing the Hippo-Yap Pathway. Cancer Res 2016, 76(13):3813-3825.
[116] LI C, WANG S, XING Z, LIN A, LIANG K, SONG J, HU Q, YAO J, CHEN Z, PARK PK et al: A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol 2017, 19(2):106-119.
[117] CHEN D, SUN Y, WEI Y, ZHANG P, REZAEIAN AH, TERUYA-FELDSTEIN J, GUPTA S, LIANG H, LIN HK, HUNG MC et al: LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 2012, 18(10):1511-1517.
[118] ER EE, VALIENTE M, GANESH K, ZOU Y, AGRAWAL S, HU J, GRISCOM B, ROSENBLUM M, BOIRE A, BROGI E et al: Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 2018, 20(8):966-978.
[119] QI Y, YU J, HAN W, FAN X, QIAN H, WEI H, TSAI YH, ZHAO J, ZHANG W, LIU Q et al: A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Nat Commun 2016, 7:ncomms11840.
[120] DING K, JI J, ZHANG X, HUANG B, CHEN A, ZHANG D, LI X, WANG X, WANG J: RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 2019, 38(37):6414-6428.
[121] PAN Q, SHAI O, LEE LJ, FREY BJ, BLENCOWE BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008, 40(12):1413-1415.
[122] WANG ET, SANDBERG R, LUO S, KHREBTUKOVA I, ZHANG L, MAYR C, KINGSMORE SF, SCHROTH GP, BURGE CB: Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456(7221):470-476.
[123] BLAND CS, WANG ET, VU A, DAVID MP, CASTLE JC, JOHNSON JM, BURGE CB, COOPER TA: Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res 2010, 38(21):7651-7664.
[124] JOHNSON MB, KAWASAWA YI, MASON CE, KRSNIK Z, COPPOLA G, BOGDANOVIC D, GESCHWIND DH, MANE SM, STATE MW, SESTAN N: Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 2009, 62(4):494-509.
[125] PAIK PK, DRILON A, FAN PD, YU H, REKHTMAN N, GINSBERG MS, BORSU L, SCHULTZ N, BERGER MF, RUDIN CM et al: Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov 2015, 5(8):842-849.
[126] FRAMPTON GM, ALI SM, ROSENZWEIG M, CHMIELECKI J, LU X, BAUER TM, AKIMOV M, BUFILL JA, LEE C, JENTZ D et al: Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015, 5(8):850-859.
[127] BROOKS AN, CHOI PS, DE WAAL L, SHARIFNIA T, IMIELINSKI M, SAKSENA G, PEDAMALLU CS, SIVACHENKO A, ROSENBERG M, CHMIELECKI J et al: A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS One 2014, 9(1):e87361.
[128] GRAUBERT TA, SHEN D, DING L, OKEYO-OWUOR T, LUNN CL, SHAO J, KRYSIAK K, HARRIS CC, KOBOLDT DC, LARSON DE et al: Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2011, 44(1):53-57.
[129] SUZUKI H, KUMAR SA, SHUAI S, DIAZ-NAVARRO A, GUTIERREZ-FERNANDEZ A, DE ANTONELLIS P, CAVALLI FMG, JURASCHKA K, FAROOQ H, SHIBAHARA I et al: Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 2019, 574(7780):707-711.
[130] SHUAI S, SUZUKI H, DIAZ-NAVARRO A, NADEU F, KUMAR SA, GUTIERREZ-FERNANDEZ A, DELGADO J, PINYOL M, LOPEZ-OTIN C, PUENTE XS et al: The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 2019, 574(7780):712-716.
[131] KAHLES A, LEHMANN KV, TOUSSAINT NC, HUSER M, STARK SG, SACHSENBERG T, STEGLE O, KOHLBACHER O, SANDER C, CANCER GENOME ATLAS RESEARCH N et al: Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell 2018, 34(2):211-224 e216.
[132] HARVEY SE, XU Y, LIN X, GAO XD, QIU Y, AHN J, XIAO X, CHENG C: Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA 2018, 24(10):1326-1338.
[133] LU ZX, HUANG Q, PARK JW, SHEN S, LIN L, TOKHEIM CJ, HENRY MD, XING Y: Transcriptome-wide landscape of pre-mRNA alternative splicing associated with metastatic colonization. Mol Cancer Res 2015, 13(2):305-318.
[134] PRADELLA D, NARO C, SETTE C, GHIGNA C: EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 2017, 16(1):8.
[135] DOBIN A, DAVIS CA, SCHLESINGER F, DRENKOW J, ZALESKI C, JHA S, BATUT P, CHAISSON M, GINGERAS TR: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29(1):15-21.
[136] MARTIN M: Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. EMBnet journal 2011, 17(1).
[137] LANGMEAD B, SALZBERG SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-359.
[138] HEINZ S, BENNER C, SPANN N, BERTOLINO E, LIN YC, LASLO P, CHENG JX, MURRE C, SINGH H, GLASS CK: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010, 38(4):576-589.
[139] ZHENG GX, TERRY JM, BELGRADER P, RYVKIN P, BENT ZW, WILSON R, ZIRALDO SB, WHEELER TD, MCDERMOTT GP, ZHU J et al: Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017, 8:14049.
[140] WOLF FA, ANGERER P, THEIS FJ: SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 2018, 19(1):15.
[141] BLONDEL VD, GUILLAUME JL, HENDRICKX JM, DE KERCHOVE C, LAMBIOTTE R: Local leaders in random networks. Phys Rev E Stat Nonlin Soft Matter Phys 2008, 77(3 Pt 2):036114.
[142] GARDNER W, CUTTS SM, PHILLIPS DR, PIGRAM PJ: Understanding mass spectrometry images: complexity to clarity with machine learning. Biopolymers 2021, 112(4):e23400.
[143] SIEGEL RL, MILLER KD, JEMAL A: Cancer Statistics, 2017. CA Cancer J Clin 2017, 67(1):7-30.
[144] NEUSE CJ, LOMAS OC, SCHLIEMANN C, SHEN YJ, MANIER S, BUSTOROS M, GHOBRIAL IM: Genome instability in multiple myeloma. Leukemia 2020, 34(11):2887-2897.
[145] BAKHOUM SF, CANTLEY LC: The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment. Cell 2018, 174(6):1347-1360.
[146] GOLLIN SM: Chromosomal instability. Curr Opin Oncol 2004, 16(1):25-31.
[147] MCGRANAHAN N, SWANTON C: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 2015, 27(1):15-26.
[148] SVEEN A, BRUUN J, EIDE PW, EILERTSEN IA, RAMIREZ L, MURUMAGI A, ARJAMA M, DANIELSEN SA, KRYEZIU K, ELEZ E et al: Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. Clin Cancer Res 2018, 24(4):794-806.
[149] ZHAN T, RINDTORFF N, BOUTROS M: Wnt signaling in cancer. Oncogene 2017, 36(11):1461-1473.
[150] SANCHEZ-TILLO E, DE BARRIOS O, SILES L, CUATRECASAS M, CASTELLS A, POSTIGO A: beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A 2011, 108(48):19204-19209.
[151] YOOK JI, LI XY, OTA I, HU C, KIM HS, KIM NH, CHA SY, RYU JK, CHOI YJ, KIM J et al: A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006, 8(12):1398-1406.
[152] VERMEULEN L, DE SOUSA EMF, VAN DER HEIJDEN M, CAMERON K, DE JONG JH, BOROVSKI T, TUYNMAN JB, TODARO M, MERZ C, RODERMOND H et al: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010, 12(5):468-476.
[153] DRIESSENS G, BECK B, CAAUWE A, SIMONS BD, BLANPAIN C: Defining the mode of tumour growth by clonal analysis. Nature 2012, 488(7412):527-530.
[154] GERLINGER M, ROWAN AJ, HORSWELL S, MATH M, LARKIN J, ENDESFELDER D, GRONROOS E, MARTINEZ P, MATTHEWS N, STEWART A et al: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012, 366(10):883-892.
[155] NAVIN N, KENDALL J, TROGE J, ANDREWS P, RODGERS L, MCINDOO J, COOK K, STEPANSKY A, LEVY D, ESPOSITO D et al: Tumour evolution inferred by single-cell sequencing. Nature 2011, 472(7341):90-94.
[156] BEDARD PL, HANSEN AR, RATAIN MJ, SIU LL: Tumour heterogeneity in the clinic. Nature 2013, 501(7467):355-364.
[157] BLOIS SM, SULKOWSKI G, TIRADO-GONZALEZ I, WARREN J, FREITAG N, KLAPP BF, RIFKIN D, FUSS I, STROBER W, DVEKSLER GS: Pregnancy-specific glycoprotein 1 (PSG1) activates TGF-beta and prevents dextran sodium sulfate (DSS)-induced colitis in mice. Mucosal Immunol 2014, 7(2):348-358.
[158] LIN CW, WANG LK, WANG SP, CHANG YL, WU YY, CHEN HY, HSIAO TH, LAI WY, LU HH, CHANG YH et al: Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1alpha/HDAC1/Slug axis. Nat Commun 2016, 7:13867.
[159] PISTORE C, GIANNONI E, COLANGELO T, RIZZO F, MAGNANI E, MUCCILLO L, GIURATO G, MANCINI M, RIZZO S, RICCARDI M et al: DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene 2017, 36(40):5551-5566.
[160] VAN STAALDUINEN J, BAKER D, TEN DIJKE P, VAN DAM H: Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 2018, 37(48):6195-6211.
[161] HU Y, GAEDCKE J, EMONS G, BEISSBARTH T, GRADE M, JO P, YEAGER M, CHANOCK SJ, WOLFF H, CAMPS J et al: Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery. Genes Chromosomes Cancer 2018, 57(3):140-149.
Edit Comment