[1] Hoffert M I, Caldeira K, Benford G L, et al. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet[J]. Science, 2002, 298(5595): 981-987.
[2] 2020 Visions[J]. Nature, 2010, 463(7277): 26-32.
[3] 王伟兴,康庆华,董帆,et al. 国内外能源利用现状分析[J]. 云南化工, 2019, 46(06): 48-49.
[4] Mazzio K A, Luscombe C K. The Future of Organic Photovoltaic[J]. Chemical Society Reviews 2015, 44(1): 78-90.
[5] Günes S, Neugebauer H, Sariciftci N S. Conjugated Polymer-Based Organic Solar Cells[J]. Chemical Reviews. 2007, 107(4): 1324-1338.
[6] 梁启超,乔芬,杨健,et al. 太阳能电池的研究现状与进展[J]. 中国材料进展, 2019, 38(05): 505-511.
[7] The National Renewable Energy Laboratory (US), Best research-cell efficiency chart [EB/OL]. 2021.
[8] 李忠贤. 太阳能电池研究现状[J]. 信息记录材料, 2013, 14(3): 58-61.
[9] Kearns D, Calvin M. Photovoltaic Effect and Photoconductivity in Laminated Organic Systems[J]. Journal of Chemical Physics, 1958, 29(4): 950-951.
[10] Tang C W. Two-Layer Organic Photovoltaic Cell[J]. Applied Physics Letters, 1986, 48(2): 183-185.
[11] Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunction[J]. Science, 1995, 270(5243): 1789-1791.
[12] Cowan S R, Banerji N, Leong W L, et al. Charge Formation, Recombination, And Sweep-Out Dynamics in Organic Solar Cells[J]. Advanced Functional Materials, 2012, 22(6): 1116-1128.
[13] Yan C, Barloe S, Wang Z H, et al. Non-Fullerene Acceptors for Organic Solar Cells[J]. Nature Reviews Materials, 2018, 3(3): 5868-5923.
[14] Lu L Y, Zheng T Y, Wu Q H, et al. Recent Advances in Bulk Heterojunction Polymer Solar Cells[J]. Chemical Reviews, 2015, 115(23): 12666-12731.
[15] Ni W, Wan X J, Li M M, et al. A-D-A Small Molecules for Solution-Processed Organic Photovoltaic Cells[J]. Chemical Communications, 2015, 51(24): 4936-4950.
[16] Xie Y P, Li T F, Guo J, et al. Ternary Organic Solar Cells with Small Nonradiative Recombination Loss[J]. ACS Energy Letters, 2019, 4(5): 1196-1203.
[17] Li G, Yao Y, Yang H, et al. “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly (3-Hexylthiophene) and Methano-Fullerenes[J]. Advanced Functional Materials, 2007, 17(10): 1636-1644.
[18] Yu K B, Song W, Li Y F, et al. Achieving 18.14% Efficiency of Ternary Organic Solar Cells with Alloyed Non-fullerene Acceptor[J]. Small Structures, 2021, 2(11): 2100099.
[19] Zuo L J, Jo S B, Li Y K, et al. Dilution Effect For Highly Efficient Multiple-Component Organic Solar Cells[J]. Nature Nanotechnology, 2021, 17(1): 53-60.
[20] Xu X P, Yu L Y, Meng H F, et al. Polymer Solar Cells with 18.74% Efficiency: From Bulk Heterojunction to Interdigitated Bulk Heterojunction[J]. Advanced Functional Materials, 2021, 32(4): 2108797.
[21] Zhou L Y, Meng L, Zhang J Y, et al. Introducing Low-Cost Pyrazine Unit into Terpolymer Enables High-Performance Polymer Solar Cells with Efficiency of 18.23%[J]. Advanced Functional Materials, 2021, 2109271.
[22] Zhang T, An C B, Bi P Q, et al. A Thiadiazole-Based Conjugated Polymer with Ultradeep HOMO Level and Strong Electroluminescence Enables 18.6% Efficiency in Organic Solar Cell[J]. Advanced Energy Materials, 2021, 11(35): 2101705.
[23] Xu Y, Cui Y, Yao H F, et al. A New Conjugated Polymer that Enables the Integration of Photovoltaic and Light-Emitting Functions in One Device[J]. Advanced Materials, 2021, 33(22): 2101090.
[24] Liu G C, Xia R X, Huang Q R, et al. Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in Front Sub-Cell[J]. Advanced Functional Materials, 2021, 31(29): 2103283.
[25] Spanggaard H, Krebs F C. A Brief History of The Development of Organic and Polymeric Photovoltaics. Solar Energy Materials and Solar Cells[J]. 2004, 83(2): 125-146.
[26] Benanti T L, Venkaraman D. Organic Solar Cells: An Overview Focusing on Active Layer Morphology[J]. Photosynthesis Research, 2006, 87(1): 73-81.
[27] Huang Y S, Westenhoff S, Avilov I, et al. Electronic Structures of Interfacial States Formed at Polymeric Semiconductor Heterojunction[J]. Nature Materials, 2008, 7(30): 483-493.
[28] Snaith H J, Arias A C, Morteani A C, et al. Charge Generation Kinetics and Transport Mechanisms in Blended Polyfluorene Photovoltaic Devices[J]. Nano Letters, 2002, 2(12): 1353-1357.
[29] Bakulin A A, Rao A, Pavelyev V G, et al. The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors[J]. Science, 2012, 335(6074): 1340-1351.
[30] Liang Y Y, Yu L P. A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance[J]. Accounts of Chemical Research, 2010, 43(9): 1227-1236.
[31] Li Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: toward Suitable Electronic Energy Levels and Broad Absorption[J]. Accounts of Chemical Research, 2012, 45(5): 723-733.
[32] Zhao J, Li Y, Yang G, et al. Efficient Organic Solar Cells Processed From Hydrocarbon Solvents[J]. Nature Energy, 2016, 1(2): 1789-1791.
[33] He Z, Xiao B, Liu F, et al. Single-Junction Polymer Solar Cells with High Efficiency and Photovoltage[J]. Nature Photonics, 2015, 9: 174-179.
[34] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced Electron Transfer from a Conducting Polymer to Buckminster Fullerene[J]. Science, 1992, 258(5087): 1474-1476.
[35] Li H Y, Earmme T, Ren G Q, et al. Beyond Fullerenes: Design of Non-Fullerene Acceptors for Efficient Organic Photovoltaics[J]. Journal of the American Chemical Society, 2014, 136(41): 14589-14597.
[36] Mihailetchi V D, van Duren J K J, Blom P W M, et al. Electron Transport in a Methano Fullerene[J]. Advanced Functional Materials, 2003, 13(1): 43-46.
[37] Yao H F, Cui Y, Yu R N, et al. Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap[J]. Angewandte Chemie International Edition, 2017, 56(11): 3045-3049.
[38] Lin Y Z, Wang J Y, Zhang Z G, et al. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[39] Zhang G Y, Zhao J B, Chow P C Y, et al. Non-Fullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells[J]. Chemical Review, 2018, 118(7): 3447-3507.
[40] Li S S, Ye L, Zhao W C, et al. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells[J]. Advanced Materials, 2016, 28(42): 9423-9429.
[41] Zhu J S, Ke Z F, Zhang Q Q, et al. Naphthodithiophene-Based Non-fullerene Acceptor for High-Performance Organic Photovoltaics: Effect of Extended Conjugation[J]. Advanced Materials, 2018, 30(2): 17047131.
[42] Dai S X, Xiao Y Q, Xue P Y, et al. Effect of Core Size on Performance of Fused-Ring Electron Acceptors[J]. Chemistry of Materials 2018, 30(15): 5390-5396.
[43] Cai G L, Xue P Y, Chen Z Y, et al. High-Performance Mid-Bandgap Fused-Pyrene Electron Acceptor[J]. Chemistry of Materials, 2019, 31(17): 6484-6490.
[44] Wang J Y, Zhang J X, Xiao Y Q, et al. Effect of Isomerization on High-Performance Non-fullerene Electron Acceptors[J]. Journal of the American Chemical Society, 2018, 140(29): 9140-9147.
[45] Cai G L, Zhu J S, Xiao Y Q, et al. Fused Octacyclic Electron Acceptor Isomers for Organic Solar Cells[J]. Journal of Materials Chemistry A, 2019, 7(37): 21432-21437.
[46] Cai G L, Wang W, Zhou J D, et al. Comparison of Linear- and Star-Shaped Fused-Ring Electron Acceptors[J]. ACS Materials Letters, 2019, 1(3): 367-374.
[47] Liu W R, Zhang J Y, Zhou, Z C, et al. Design of a New Fused-Ring Electron Acceptor with Excellent Compatibility to Wide-Bandgap Polymer Donors for High-Performance Organic Photovoltaics[J]. Advanced Materials, 2018, 30(26): 1800403.
[48] Gao W, Liu T, Zhong C, et al. Asymmetrical Small Molecule Acceptor Enabling Non-fullerene Polymer Solar Cell with Fill Factor Approaching 79%[J]. ACS Energy Letters, 2018, 3(7): 1760-1768.
[49] Huang C Y, Liao X F, Gao K, et al. Highly Efficient Organic Solar Cells Based on S, N-Heteroacene Non-Fullerene Acceptors[J]. Chemistry of Materials, 2018, 30(15): 5429-5434.
[50] He D, Zhao F R, Xin J M, et al. A Fused Ring Electron Acceptor with Decacyclic Core Enables over 13.5% Efficiency for Organic Solar Cells[J]. Advanced Energy Materials, 2018, 8(30): 1802050.
[51] Xiao Z, Jia X, Li D, et al. 26 mA cm-2 JSC From Organic Solar Cells with a Low-Bandgap Non-fullerene Acceptor[J]. Science Bulletin, 2017, 22(62): 8-10.
[52] Li H, Xiao Z, Ding L M, et al. Thermostable Single-Junction Organic Solar Cells with a Power Conversion Efficiency of 14.62%[J]. Science Bulletin, 2018, 63(6): 340-342.
[53] Meng L X, Zhang Y M, Wan X J, et al. Organic and Solution-Processed Tandem Solar Cells with 17.3% Efficiency[J]. Science, 2018, 361(6407): 1094-1098.
[54] Wang J L, Liu K K, Hong L, et al. Selenopheno
[3,2-b]thiophene-Based Narrow-Bandgap Non-fullerene Acceptor Enabling 13.3% Efficiency for Organic Solar Cells with Thickness-Insensitive Feature[J]. ACS Energy Letters, 2018, 3(12): 2967-2976.
[55] Sun J, Ma X L, Zhang Z H, et al. Dithieno
[3, 2-b: 2’, 3’-d] pyrrol Fused Non-fullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells[J]. Advanced Materials, 2018, 30(16): 1707150
[56] Geng R Y, Song X, Feng H H, et al. Non-fullerene Acceptor for Organic Solar Cells with Chlorination on Dithieno
[3, 2-b: 2’, 3’-d] pyrrol Fused-Ring[J]. ACS Energy Letters, 2019, 4(3): 763-770.
[57] Yao Z Y, Liao X F, Gao K, et al. Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss[J]. Journal of the American Chemical Society, 2018, 140(6): 2054-2057.
[58] Chen T W, Peng K L, Lin Y W, et al. A Chlorinated Nonacyclic Carbazole-Based Acceptor Affords Over 15% Efficiency in Organic Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(3): 1131-1137.
[59] Ke X, Meng L X, Wan X J, et al. The Rational and Effective Design of Non-fullerene Acceptors Guided by a Semi-Empirical Model for an Organic Solar Cell with an Efficiency Over 15%[J]. Journal of Materials Chemistry A, 2020, 8(19): 9726-9732.
[60] Guo Q, Ma R J, Hu J, et al. Over 15% Efficiency Polymer Solar Cells Enabled by Conformation Tuning of Newly Designed Asymmetric Small-Molecule Acceptors[J]. Advanced Functional Materials, 2020, 30(21): 2000383.
[61] Ma Y L, Zhang M, Wan S, et al. Efficient Organic Solar Cells from Molecular Orientation Control of M-Series Acceptors[J]. Joule, 2021, 5(1): 197-209.
[62] Wang N, Zhan L L, Li S X, et al. Enhancement of Intra- and Inter-Molecular π-Conjugated Effects for a Non-Fullerene Acceptor to Achieve High-Efficiency Organic Solar Cells With an Extended Photoresponse Range and Optimized Morphology[J]. Materials Chemistry Frontiers, 2018, 2: 2006-2012.
[63] Huang H, Guo Q X, Feng S Y, et al. Noncovalently Fused-Ring Electron Acceptors with Near-Infrared Absorption for High-Performance Organic Solar Cells[J]. Nature Communications, 2019, 10(1): 3038.
[64] Cui Y, Yang C Y, Yao H F, et al. Efficient Semitransparent Organic Solar Cells with Tunable Color Enabled by an Ultralow-Bandgap Non-fullerene Acceptor[J]. Advanced Materials, 2017, 29(43): 1703080.
[65] Guo Q, Lin J, Liu H Q, et al. Asymmetrically Noncovalently Fused-Ring Acceptor for High-Efficiency Organic Solar Cells with Reduced Voltage Loss and Excellent Thermal Stability[J]. Nano Energy, 2020, 74: 104861.
[66] Wang W P, Zhao B F, Cong Z Y, et al. Non-fullerene Polymer Solar Cells Based on a Main-Chain Twisted Low-Bandgap Acceptor with Power Conversion Efficiency of 13.2%[J]. ACS Energy Letters, 2018, 3(7): 1499-1507.
[67] Lin Y Z, Zhao F W, He Q, et al. High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics[J]. Journal of the American Chemical Society, 2016, 138(14): 4955-4961.
[68] Gao W, An Q S, Ming R J, et al. Side Group Engineering of Small Molecular Acceptors for High-Performance Fullerene-Free Polymer Solar Cells: Thiophene Being Superior to Selenophene[J]. Advanced Functional Materials 2017, 27(34): 1702194.
[69] Zhu J S, Xiao Y Q, Wang J Y, et al. Alkoxy-Induced Near-Infrared Sensitive Electron Acceptor for High-Performance Organic Solar Cells[J]. Chemistry of Materials, 2018, 30(12): 4150-4156.
[70] Gao H H, Sun Y N, Cai Y, et al. Achieving Both Enhanced Voltage and Current through Fine-Tuning Molecular Backbone and Morphology Control in Organic Solar Cells[J]. Advanced Energy Materials, 2019, 9(27): 1901024.
[71] Li X J, Huang H, Angunawela I, et al. Effects of Short-Axis Alkoxy Substituents on Molecular Self-Assembly and Photovoltaic Performance of Indacenodithiophene-Based Acceptors[J]. Advanced Functional Materials, 2019, 30(3): 1906855.
[72] Li Y H, Zheng N, Yu L, et al. A Simple Phenyl Group Introduced at the Tail of Alkyl Side Chains of Small Molecular Acceptors: New Strategy to Balance the Crystallinity of Acceptors and Miscibility of Bulk Heterojunction Enabling Highly Efficient Organic Solar Cells[J]. Advanced Materials, 2019, 31(12): 1807832.
[73] Kan B, Chen X B, Gao K, et al. Asymmetrical Side-Chain Engineering of Small-Molecule Acceptors Enable High-Performance Non-fullerene Organic Solar Cells[J]. Nano Energy, 2020, 67(C): 104209-104209.
[74] Liu T, Gao W, Wang Y L, et al. Unconjugated Side-Chain Engineering Enables Small Molecular Acceptors for Highly Efficient Non-Fullerene Organic Solar Cells: Insights into the Fine-Tuning of Acceptor Properties and Micromorphology[J]. Advanced Functional Materials, 2019, 29(26): 1902155.
[75] Zhang Y D, Cho Y J, Zhong L, et al. Two-Dimension Conjugated Acceptors Based on Benzodi (cyclopentadithiophene) Core with Thiophene-Fused Ending Group for Efficient Polymer Solar Cells[J]. Solar RRL, 2020, 4(5): 2000071.
[76] Ma L J, Zhang S Q, Zhu J C, et al. Completely Non-Fused Electron Acceptor with 3D-Interpenetrated Crystalline Structure Enables Efficient and Stable Organic Solar Cell[J]. Nature Communications, 2021, 12(1): 5093-5093.
[77] Li C Q, Zhang X, Yu N, et al. Simple Nonfused-Ring Electron Acceptors with Noncovalently Conformational Locks for Low-Cost and High-Performance Organic Solar Cells Enabled by End-Group Engineering[J]. Advanced Functional Materials, 2021, 32(5): 2108861.
[78] Xie D J, Liu T, Gao W, et al. A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency[J]. Solar RRL, 2017, 1(6): 1700044-1700044.
[79] Li S S, Ye L, Zhao W C, et al. Design of a New Small-Molecule Electron Acceptor Enables Efficient Polymer Solar Cells with High Fill Factor[J]. Advanced Materials, 2017, 29(46): 1704051.
[80] Zhao W C, Li, S S, Yao H F, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21): 7148-7151.
[81] Li Y X, Lin J D, Che X Z, et al. High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells[J]. Journal of the American Chemical Society, 2017, 139(47): 17114-17119.
[82] Chang S L, Cao F Y, Huang W C, et al. New Thieno
[3, 2-b] thiophene-Based Acceptor: Tuning Acceptor Strength of Ladder-Type N-Type Materials to Simultaneously Achieve Enhanced Voc and Jsc of Non-fullerene Solar Cells[J]. ACS Energy Letters, 2018, 3(7): 1722-1729.
[83] Yan D, Liu W X. Yao J N, et al. Fused-Ring Non-fullerene Acceptor Forming Interpenetrating J-Architecture for Fullerene-Free Polymer Solar Cells[J]. Advanced Energy Materials, 2018, 8(31): 1800204.
[84] Feng S Y, Ma D Y, Wu L L, et al. Enhance the Performance of Polymer Solar Cells via Extension of the Flanking End Groups of Fused-ring Acceptors[J]. Science China Chemistry, 2018, 61(10): 1320-1327.
[85] Cao H D, Bauer N, Pang C, et al. End-cap Group Engineering of a Small Molecule Non-Fullerene Acceptor: The Influence of Benzothiophene Dioxide[J]. ACS Applied Energy Materials, 2018, 1(12): 7146-7152.
[86] Luo Z H, Liu, T.; Wang Y L, et al. Reduced Energy Loss Enabled by a Chlorinated Thiophene-Fused Ending-Group Small Molecular Acceptor for Efficient Non-fullerene Organic Solar Cells with 13.6% Efficiency[J]. Advanced Energy Materials, 2019, 9(18): 1900041.
[87] Wan S S, Chang C, Wang J L, et al. Effects of the Number of Bromine Substitution on Photovoltaic Efficiency and Energy Loss of Benzo
[1,2-b:4,5-b’]diselenophene-based Narrow-Bandgap Multibrominated Non-fullerene Acceptors[J]. Solar RRL, 2019, 3(1): 1800250.
[88] Lai H J, Chen H, Zhou J D, et al. Isomer-free: Precise Positioning of Chlorine Induced Interpenetrating Charge Transfer for Elevated Solar Conversion[J]. iScience, 2019, 17: 302–314.
[89] Qu J F, Li D N, Wang H, et al. Bromination of the Small-Molecule Acceptor with Fixed Position for High-Performance Solar Cells[J]. Chemistry of Materials, 2019, 31(19): 8044-8051.
[90] Hao M H, Liu T, Xiao Y Q, et al. Achieving Balanced Charge Transport and Favorable Blend Morphology in Non-Fullerene Solar Cells via Acceptor End Group Modification[J]. Chemistry of Materials, 2019, 31(5): 1752-1760.
[91] Wang S S, Xu X P, Zhao J, et al. A Bromine and Chlorine Concurrently Functionalized End Group for Benzo
[1, 2-b: 4, 5-b’] Diselenophene-Based Non-Fluorinated Acceptors: A New Hybrid Strategy to Balance the Crystallinity and Miscibility of Blend Films for Enabling Highly Efficient Polymer Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(9): 4856-4867.
[92] Aldrich T J, Matta M, Zhu W G, et al. Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response[J]. Journal of the American Chemical Society, 2019, 141(7): 3274-3287.
[93] Swick S M, Zhu W G, Matta M, et al. Closely Packed, Low Reorganization Energy Pi-Extended Postfullerene Acceptors for Efficient Polymer Solar Cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): E8341-E8348
[94] Liu X, Wang X C, Xiao Y J, et al. H-Bonds-Assisted Molecular Order Manipulation of Non-fullerene Acceptors for Efficient Nonannealed Organic Solar Cells[J]. Advanced Energy Materials, 2020, 10(8): 1903650.
[95] Lai H J, Chen H, Zhou J D, et al. 3D Interpenetrating Network for High-Performance Non-fullerene Acceptors via Asymmetric Chlorine Substitution[J]. Journal of Physical Chemistry Letters, 2019, 10(16): 4737-4743.
[96] Ye L L, Xie Y P, Xiao Y Q, et al. Asymmetric Fused-Ring Electron Acceptor with Two Distinct Terminal Groups for Efficient Organic Solar Cells[J]. Journal of Materials Chemistry A, 2019, 7(14): 8055-8060.
[97] Feng L L, Yuan J, Zhang Z Z, et al. Thieno
[3, 2-b] pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31985-31992.
[98] Yuan J, Zhang Y Q, Zhou L Y, et al. Single-Junction Organic Solar Cell with Over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core[J]. Joule, 2019, 3(4): 1140-1151.
[99] Zheng Z, Wang J Q, Bi P Q, et al. Tandem Organic Solar Cell with 20.2% Efficiency[J]. Joule, 2021, 6(1): 171-184.
[100] Cui Y, Yao H F, Zhang J Q, et al. Over 16% Efficiency Organic Photovoltaic Cells Enabled by a Chlorinated Acceptor With Increased Open-Circuit Voltages[J]. Nature Communications, 2019, 10(1): 2515.
[101] Cui Y, Yao H F, Hong L, et al. 17% Efficiency Organic Photovoltaic Cell with Superior Processability[J]. National Science Review, 2019, 7(7): 1239-1246.
[102] Cui Y, Yao H F, Zhang, J Q, et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency[J]. Advanced Materials, 2020, 32(19): 1908205.
[103] Jiang K, Wei Q Y, Yuk, J H, et al. Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells[J]. Joule, 2019, 3(12): 3020-3033.
[104] Zhou Z C, Liu W R, Zhou G Q, et al. Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation[J]. Advanced Materials, 2020, 32(4): 1906324.
[105] Liu S, Yuan J, Deng W Y, et al. High-Efficiency Organic Solar Cells with Low Non-Radiative Recombination Loss and Low Energetic Disorder[J]. Nature Photonics, 2020, 14(5): 300-305.
[106] Zhu C, Yuan J, Cai F F, et al. Tuning the Electron-Deficient Core of a Non-Fullerene Acceptor to Achieve Over 17% Efficiency in a Single-Junction Organic Solar Cell[J]. Energy & Environmental Science, 2020,13(8): 2459-2466
[107] Lai H J, Zhao Q Q, Chen Z Y, et al. Trifluoromethylation Enables a 3D Interpenetrated Low-Band-Gap Acceptor for Efficient Organic Solar Cells[J]. Joule, 2020, 4(3): 688-700.
[108] Gao W, Fan B B, Qi F, et al. Asymmetric Isomer Effects in Benzo[c]
[1, 2, 5] thiadiazole-Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement[J]. Advanced Functional Materials, 2021, 31(37): 2104369.
[109] Lin F, Jiang K, Kaminsky W, et al. A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells[J]. Journal of the American Chemical Society, 2020, 142(36): 15246-15251.
[110] Zhang Z Z, Li Y W, Cai G L, et al. Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells[J]. Journal of the American Chemical Society, 2020, 142(44): 18741-18745.
[111] Chai G D, Zhang J Q, Pan M G, et al. Deciphering the Role of Chalcogen-Containing Heterocycles in Non-fullerene Acceptors for Organic Solar Cells[J]. ACS energy letters, 2020, 5(11): 3415-3425.
[112] Zhang J Q, Bai F J, Angunawela I, et al. Alkyl-Chain Branching of Non-Fullerene Acceptors Flanking Conjugated Side Groups toward Highly Efficient Organic Solar Cells[J]. Advanced Energy Materials, 2021, 11(47): 2102596.
[113] He C L, Li Y K, Li S X, et al. Near-Infrared Electron Acceptors with Unfused Architecture for Efficient Organic Solar Cells[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16700-16706.
[114] Wang Y Z, Liu Z W, Cai X Y, et al. Small Molecule Acceptors with a Ladder-Like Core for High-Performance Organic Solar Cells with Low Non-Radiative Energy Losses[J]. Journal of Materials Chemistry A, 2020, 8(25): 12495-12501.
[115] Li Y X, Fu H T, Wu Z, et al. Regulating the Aggregation of Unfused Non-Fullerene Acceptors via Molecular Engineering towards Efficient Polymer Solar Cells[J]. ChemSusChem, 2021, 14(17): 3579-3589.
[116] Zhang X, Li C Q, Qin L Q, et al. Side-Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fused-Ring Electron Acceptors[J]. Angewandte Chemie International Edition, 2021, 133(32): 17861-17866.
[117] Lai H J, He F. Crystal Engineering in Organic Photovoltaic Acceptors: A 3D Network Approach[J]. Adv. Energy Mater, 2020, 10(47): 2002678.
[118] Hajime N, Chihaya A, et al. Organic Light-Emitting Diodes Containing Multilayers of Organic Single Crystals[J]. Applied Physics Letters, 2010, 96(5): 053301.
[119] Liu J, Wang J C, Zhang Z T, et al. Fully Stretchable Active-Matrix Organic Light-Emitting Electrochemical Cell Array[J]. Nature Communications, 2020, 11(1): 3362.
[120] Liu D, De J B, Gao H K, et al. Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics[J]. Journal of the American Chemical Society, 2020, 142(13): 6332-6339.
[121] Zheng L, Li J F, Zhou K. et al. Molecular-Scale Integrated Multi-Functions For Organic Light-Emitting Transistors[J]. Nano Research, 2020, 13: 1976-1981.
[122] Yuan D F, Awais M A, Sharapov V, et al. Highly Emissive Semi-Ladder-Type Copolymers, Aggregation State, and Solution-Processed Organic Light-Emitting Transistor[J]. Chemistry of Materials, 2020, 32(11): 4672-4680.
[123] Fang Y J, Dong Q F, Shao Y C, et al. Highly Narrowband Perovskite Single-Crystal Photodetectors Enabled by Surface-Charge Recombination[J]. Nature Photonics, 2015, 9: 679-686.
[124] Rahmany S, Etgar L. Semitransparent Perovskite Solar Cells[J]. ACS Energy Letter, 2020, 5(5): 1519–1531.
[125] Yang J M, Bao Q Y, Shen L, et al. Potential Applications for Perovskite Solar Cells in Space[J]. Nano Energy, 2020, 76: 105019.
[126] Nie R M, Sumukam R R, Reddy S H, et al. Lead-Free Perovskite Solar Cells Enabled by Hetero-Valent Substitutes[J]. Energy & Environmental Science, 2020, 13(8): 2363-2385.
[127] Gao X X, Luo W, Zhang Y, et al. Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(9): 1905502.
[128] Xie W, Willa K, Wu Y F, et al. Temperature-Independent Transport in High-Mobility Dinaphtho-Thieno-Thiophene (DNTT) Single Crystal Transistors[J]. Advanced Materials, 2013, 25(25): 3478-3484.
[129] Chen H L, Zhang W N, Li M L, et al. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives[J]. Chemical reviews, 2020, 120(5): 2879-2949.
[130] Duan S M, Wang T, Geng B W, et al. Solution-Processed Centimeter-Scale Highly Aligned Organic Crystalline Arrays for High-Performance Organic Field-Effect Transistors[J]. Advanced Materials, 2020, 32(12): 1908388.
[131] Chen C H, Wang Y, Michinobu T, et al. Donor-Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6144-6150.
[132] Wang T, Jiang J F, Zhang C C, et al. Energy-eefficient, Fully Flexible, High-performance Tactile Sensor Based on Piezotronic Effect: Piezoelectric Signal Amplified with Organic Field-Effect Transistors[J]. Nano Energy, 2020, 76: 105050.
[133] Ford M J, Suzuki M, Bridges C R, et al. Robust Unipolar Electron Conduction Using an Ambipolar Polymer Semiconductor with Solution-Processable Blends[J]. Chemistry of Materials, 2020, 32(16): 6831-6837.
[134] Hayakawa S, Matsuo K, Yamada H, et al. Dinaphthothiepine Bisimide and Its Sulfoxide: Soluble Precursors for Perylene Bisimide[J]. Journal of the American Chemical Society, 2020, 142(27): 11663-11668.
[135] Qi L W, Li S Y, Xiang S H, et al. Asymmetric Construction of Atropisomeric Biaryls via a Redox Neutral Cross-Coupling Strategy[J]. Nature Catalysis, 2019, 2(4): 314-323.
[136] Zhang Y Z, Zhao H H, Funck E, et al. A Single-Chain Magnet Tape Based on Hexacyanomanganate (III) [J]. Angewandte Chemie International Edition, 2015, 54(19): 5583-5587.
[137] Han G C, Yi Y P, Shuai Z G. From Molecular Packing Structures to Electronic Processes: Theoretical Simulations for Organic Solar Cells[J]. Advanced Energy Materials, 2018, 8(28): 1702743.
[138] Han G C, Guo Y, Song X X, et al. Terminal π–π Stacking Determines Three-Dimensional Molecular Packing and Isotropic Charge Transport in an A-π-A Electron Acceptor for Non-Fullerene Organic Solar Cells[J]. Journal of Materials Chemistry C, 2017, 5(20): 4852-4857.
[139] Eisner F D, Azzouzi M, Fei Z, et al. Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells[J]. Journal of the American Chemical Society, 2019, 141(15): 6362-6374.
[140] Qu J F, Chen H, Zhou J D, et al. Chlorine Atom-Induced Molecular Interlocked Network in a Non-Fullerene Acceptor[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39992-40000.
[141] Wang Y B, Zhang Y M, Qiu N L, et al. A Halogenation Strategy for over 12% Efficiency Non-fullerene Organic Solar Cells[J]. Advanced Energy Materials, 2018, 8(15): 1702870.
[142] Yang F, Li C, Lai W, et al. Halogenated Conjugated Molecules for Ambipolar Field-Effect Transistors and Non-Fullerene Organic Solar Cells[J]. Materials Chemistry Frontiers. 2017, 1(7): 1389-1395.
[143] 何畅, 侯剑辉. 基于非富勒烯受体的溶液加工型全小分子太阳能电池研究进展[J]. 物理化学学报, 2018, 34(11): 1202-1210.
[144] Zhang S Q, Qin Y P, Zhu J, et al. Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor[J]. Advanced Materials, 2018, 30(20): 1800868.
[145] Kan B, Feng H R, Yao, H F, et al. A Chlorinated Low-Bandgap Small-Molecule Acceptor for Organic Solar Cells with 14.1% Efficiency and Low Energy Loss[J]. Science China Chemistry, 2018, 61(10): 1307-1313.
[146] Chen Y Z, Liu T, Hu H W, et al. Modulation of End Groups for Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells[J]. Advanced Energy Materials, 2018, 8(27): 1801203.
[147] Dai S X, Zhao F W, Zhang Q Q, et al. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(3): 1336-1343.
[148] Xie Y P, Yang F, Li Y X, et al. Morphology Control Enables Efficient Ternary Organic Solar Cells[J]. Advanced Mterials, 2018, 30(38): 803045.
[149] Luo Z H, Liu T, Yan H, et al. Isomerization Strategy of Non-fullerene Small-Molecule Acceptors for Organic Solar Cells[J]. Advanced Functional Materials, 2020, 30(46): 2004477.
[150] Swick S M, Alzola J M, Sangwan V K, et al. Fluorinating π-Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells[J]. Advanced Energy Materials, 2020, 10(23): 2000635.
[151] Luo Z H, Liu T, Ma R J, et al. Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15%[J]. Advanced Materials, 2020, 32(48): 2005942-2005942.
[152] Wang H T, Chen H, Xie W C, et al. Configurational Isomers Induced Significant Difference in All-Polymer Solar Cells[J]. Advanced Functional Materials, 2021, 31(26): 2100877.
[153] Yao H F, Wang J W, Xu Y, et al. Recent Progress in Chlorinated Organic Photovoltaic Materials[J]. Accounts of Chemical Research, 2020, 53(4): 822-832.
[154] Mo D Z, Chen H, Zhou J D, et al. Alkyl Chain Engineering of Chlorinated Acceptors for Elevated Solar Conversion[J]. Journal of Materials Chemistry A, 2020, 8(18): 8903-8912.
[155] Chen H, Zhao T X, Li L, et al. 17.6%-Efficient Quasiplanar Heterojunction Organic Solar Cells from a Chlorinated 3D Network Acceptor[J]. Advanced Materials, 2021, 33(37): 2102778-2102778.
[156] Xu X P, Yu L Y, Yan H, et al. Highly Efficient Non-Fullerene Organic Solar Cells Enabled by a Delayed Processing Method Using a Non-Halogenated Solvent[J]. Energy & Environmental Science, 2020, 13(11): 4381-4388.
[157] Qin Y P, Balar N, Peng Z X, et al. The Performance-Stability Conundrum of BTP-Based Organic Solar Cells[J]. Joule, 2021, 5(8): 2129-2147.
[158] Li X J, Angunawela I, Chang Y, et al. Effect of the Chlorine Substitution Position of the End-Group on Intermolecular Interactions and Photovoltaic Performance of Small Molecule Acceptors[J]. Energy & Environmental Science, 2020, 13(12): 5028-5038.
[159] Li Y Q, Meng H F, Huang J. H, et al. Structural Cutting of Non-fullerene Acceptors by Chlorination: Effects of Substituent Number on Device Performance[J]. ACS Applied Materials & Interfaces, 2020, 12(45), 50541-50549.
[160] Gao W, Zhang M, Liu T, et al. Asymmetrical Ladder-Type Donor-Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for High-Performance Non-fullerene Polymer Solar Cells[J]. Advanced Materials, 2018, 30(26): 1800052.
[161] 李韦伟. 给体/受体双缆型共轭聚合物材料及其单组分有机太阳能电池器件[J]. 高分子学报, 2019, 50(03): 209-218.
[162] Kan B, Zhang J B, Liu F, et al. Fine-Tuning the Energy Levels of a Non-fullerene Small-Molecule Acceptor to Achieve a High Short-Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells[J]. Advanced Materials, 2018, 30(3): 1704904.
[163] Zafrani Y, Sod-Moriah G, Yeffet D, et al. CF2H, a Functional Group-Dependent Hydrogen-Bond Donor: Is It a More or Less Lipophilic Bioisostere of OH, SH, and CH3?[J]. Journal of medicinal chemistry, 2019, 62(11): 5628-5637.
[164] Gao W, Liu T, Luo Z H, et al. Regulating Exciton Bonding Energy and Bulk Heterojunction Morphology in Organic Solar Cells via Methyl-Functionalized Non-Fullerene Acceptors[J]. Journal of Materials Chemistry A, 2019, 7(12): 6809-6817.
[165] Wang Y M, Qian D P, Cui Y, et al. Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses[J]. Advanced Energy Materials, 2018, 8(28): 1801352.
[166] Liu J, Chen S S, Qian D P, et al. Fast Charge Separation in a Non-Fullerene Organic Solar Cell with a Small Driving Force[J]. Nature Energy, 2016, 1(7): 1474-1476.
[167] Xu Y, Yao H F, Ma L L, et al. Tuning the Hybridization of Local Exciton and Charge-Transfer States in Highly Efficient Organic Photovoltaic Cells[J]. Angewandte Chemie International Edition, 2020, 59(23): 9004-9010.
[168] Wang H, Liu T, Zhou J D, et al. Bromination: An Alternative Strategy for Non-Fullerene Small Molecule Acceptors[J]. Advanced Science, 2020, 7(9): 1903784.
[169] Zhou Z J, Duan J M, Ye L L, et al. Simultaneously Improving the Photovoltaic Parameters of Organic Solar Cells via Isomerization of Benzo[b]Benzo
[4,5]Thieno
[2,3-d]Thiophene-Based Octacyclic Non-Fullerene Acceptors[J]. Journal of Materials Chemistry A, 2020, 8(19): 9684-9692.
[170] Wang J Y, Zhang J X, Xiao Y Q, et al. Effect of Isomerization on High-Performance Non-fullerene Electron Acceptors[J]. Journal of the American Chemical Society, 2018, 140(29): 9140-9147.
[171] Xue Y-J, Cao F Y, Huang P-K, et al. Isomeric Effect of Fluorene-Based Fused-Ring Electron Acceptors to Achieve High-Efficiency Organic Solar Cells[J]. Journal of Materials Chemistry A, 2020, 8(10), 5315-5322.
[172] Kan B, Feng H R, Wan X J, et al. Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(13): 4929-4934.
[173] Raychev D, Guskova O, Seifert G, et al. Conformational and Electronic Properties of Small Benzothiadiazole-Cored Oligomers with Aryl Flanking Units: Thiophene Versus Furan[J]. Computational Materials Science, 2017, 126: 287-298.
[174] Luke J, Speller E M, Wadsworth A, et al. Twist and Degrade-Impact of Molecular Structure on the Photostability of Nonfullerene Acceptors and Their Photovoltaic Blends[J]. Advanced Energy Materials, 2019, 9(15): 1803755.
[175] Jespersen K G, Beenken W J, Zaushitsyn Y, et al. The Electronic States of Polyfluorene Copolymers with Alternating Donor-Acceptor Units[J]. The Journal of Chemical Physics, 2004, 121(24): 12613.
[176] Wood S, Wade J, Shahid M, Natures of Optical Absorption Transitions and Excitation Energy Dependent Photostability of Diketopyrrolopyrrole (DPP)-Based Photovoltaic Copolymers[J]. Energy & Environmental Science, 2015, 8(11): 3222-3232.
Edit Comment