[1] BERGER H. On the electroencephalogram of man[J]. Electroencephalography and Clinical Neurophysiology, 1969, 28(Suppl.): 37-74.
[2] ABOU-KHALIL B, MISULIS K E. Atlas of eeg & seizure semiology[M]. Butterworth-Heinemann, 2006.
[3] CHERNECKY C C, BERGER B J. Laboratory tests and diagnostic procedures[M]. Elsevier Health Sciences, 2012.
[4] ZHANG H, WEI C, ZHAO M, et al. A novel convolutional neural network model to remove muscle artifacts from eeg[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 1265-1269.
[5] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[J]. Advances in Neural Information Processing Systems, 2017, 30: 4078-4088.
[6] GLOWINSKI R, MARROCCO A. On the solution of a class of non linear dirichlet problems by a penalty-duality method and finite elements of order one[C]//Optimization Techniques IFIP Technical Conference. Springer, 1975: 327-333.
[7] GABAY D, MERCIER B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers & Mathematics with Applications, 1976, 2(1):17-40.
[8] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine learning, 2011, 3(1): 1-122.
[9] HE B, YUAN X. On the o(1/n) convergence rate of the douglas–rachford alternating direction method[J]. SIAM Journal on Numerical Analysis, 2012, 50(2): 700-709.
[10] ANG K K, CHIN Z Y, WANG C, et al. Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b[J]. Frontiers in Neuroscience, 2012, 6: 39.
[11] MOUSAVI E A, MALLER J J, FITZGERALD P B, et al. Wavelet common spatial pattern in asynchronous offline brain computer interfaces[J]. Biomedical Signal Processing and Control, 2011, 6(2): 121-128.
[12] TALUKDAR M T F, SAKIB S K, PATHAN N S, et al. Motor imagery eeg signal classification scheme based on autoregressive reflection coefficients[C]//2014 International Conference on Informatics, Electronics & Vision (ICIEV). IEEE, 2014: 1-4.
[13] AN X, KUANG D, GUO X, et al. A deep learning method for classification of eeg data based on motor imagery[C]//International Conference on Intelligent Computing. Springer, 2014: 203-210.
[14] TANG Z, SUN S, ZHANG S, et al. A brain-machine interface based on erd/ers for an upper-limb exoskeleton control[J]. Sensors, 2016, 16(12): 2050.
[15] REN Z, LI R, CHEN B, et al. Eeg-based driving fatigue detection using a two-level learning hierarchy radial basis function[J]. Frontiers in Neurorobotics, 2021, 15: 618408.
[16] AGGARWAL K, KHADANGA S, JOTY S, et al. A structured learning approach with neural conditional random fields for sleep staging[C]//2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018: 1318-1327.
[17] BHOSALE S, CHAKRABORTY R, KOPPARAPU S K. Calibration free meta learning based approach for subject independent eeg emotion recognition[J]. Biomedical Signal Processing and Control, 2022, 72: 103289.
[18] MIYAMOTO K, TANAKA H, NAKAMURA S. Meta-learning for emotion prediction from eeg while listening to music[C]//Companion Publication of the 2021 International Conference on Multimodal Interaction. 2021: 324-328.
[19] BANLUESOMBATKUL N, OUPPAPHAN P, LEELAARPORN P, et al. Metasleeplearner: A pilot study on fast adaptation of bio-signals-based sleep stage classifier to new individual subject using meta-learning[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(6): 1949-1963.
[20] CHOI S. Meta-learning: Towards fast adaptation in multi-subject eeg classification[C]//2021 9th International Winter Conference on Brain-Computer Interface (BCI). IEEE, 2021: 1-1.
[21] LI D, ORTEGA P, WEI X, et al. Model-agnostic meta-learning for eeg motor imagery decoding in brain-computer-interfacing[C]//2021 10th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2021: 527-530.
[22] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[J]. Advances in Neural Information Processing Systems, 2016: 3630–3638.
[23] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: Relation network for few-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1199-1208.
[24] XIAN Y, LAMPERT C H, SCHIELE B, et al. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(9): 2251-2265.
[25] WEISS K, KHOSHGOFTAAR T M, WANG D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 1-40.
[26] BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of representations for domain adaptation[J]. Advances in neural information processing systems, 2006: 137–144.
[27] LIU B, WANG X, DIXIT M, et al. Feature space transfer for data augmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 9090-9098.
[28] ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[C]//International Conference on Learning Representations. 2018.
[29] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 1-48.
[30] LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learningthrough probabilistic program induction[J]. Science, 2015, 350(6266): 1332-1338.
[31] CUBUK E D, ZOPH B, MANE D, et al. Autoaugment: Learning augmentation policies from data[C]//In Proceedings of the Conference on Computer Vision and Pattern Recognition. 2019:113–123.
[32] DING Y, ZHANG H, LI P, et al. An efficient semismooth newton method for adaptive sparse signal recovery problems[J]. arXiv:2111.12252, 2021.
[33] LIN M, SUN D, TOH K C. Efficient algorithms for multivariate shape-constrained convex regression problems[J]. arXiv:2002.11410, 2020.
[34] DENG L. The mnist database of handwritten digit images for machine learning research[J]. IEEE Signal Processing Magazine, 2012, 29(6): 141-142.
[35] NEWSON J J, THIAGARAJAN T C. Eeg frequency bands in psychiatric disorders: a review of resting state studies[J]. Frontiers in Human Neuroscience, 2019, 12: 521.
[36] MACLAURIN D, DUVENAUD D, ADAMS R. Gradient-based hyperparameter optimization through reversible learning[C]//International conference on machine learning. PMLR, 2015: 2113-2122.
[37] DEMPE S, ZEMKOHO A. Bilevel optimization[M]. Springer, 2020.
[38] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Conference on Machine Learning. PMLR, 2017: 1126-1135.
[39] NICHOL A, ACHIAM J, SCHULMAN J. On first-order meta-learning algorithms[J].arXiv:1803.02999, 2018.
[40] FRANCESCHI L, DONINI M, FRASCONI P, et al. Forward and reverse gradient-based hyperparameter optimization[C]//International Conference on Machine Learning. PMLR, 2017: 1165-1173.
[41] FRANCESCHI L, FRASCONI P, SALZO S, et al. Bilevel programming for hyperparameter optimization and meta-learning[C]//International Conference on Machine Learning. PMLR, 2018: 1568-1577.
[42] LIU R, MU P, YUAN X, et al. A general descent aggregation framework for gradient-based bilevel optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
[43] LIU R, MU P, YUAN X, et al. A generic first-order algorithmic framework for bi-level programming beyond lower-level singleton[C]//International Conference on Machine Learning. PMLR, 2020: 6305-6315.
[44] LIU R, MA L, YUAN X, et al. Task-oriented convex bilevel optimization with latent feasibility[J]. IEEE Transactions on Image Processing, 2022.
[45] FAZEL M, PONG T K, SUN D, et al. Hankel matrix rank minimization with applications to system identification and realization[J]. SIAM Journal on Matrix Analysis and Applications, 2013, 34(3): 946-977.
[46] XU M, WU T. A class of linearized proximal alternating direction methods[J]. Journal of Optimization Theory and Applications, 2011, 151(2): 321-337.
[47] LIU R, LIU X, ZENG S, et al. Optimization-derived learning with essential convergence analysis of training and hyper-training[J]. preprint, 2022.
[48] BAUSCHKE H H, COMBETTES P L, et al. Convex analysis and monotone operator theory in hilbert spaces[M]. Springer, 2011.
[49] CABOT A. Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization[J]. SIAM Journal on Optimization, 2005, 15(2): 555-572.
[50] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301-320.
[51] SABACH S, SHTERN S. A first order method for solving convex bilevel optimization problems[J]. SIAM Journal on Optimization, 2017, 27(2): 640-660.
[52] SOLODOV M. An explicit descent method for bilevel convex optimization[J]. Journal of Convex Analysis, 2007, 14(2): 227.
[53] TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
[54] CANDÈS E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
[55] YIN W. Analysis and generalizations of the linearized bregman method[J]. SIAM Journal on Imaging Sciences, 2010, 3(4): 856-877.
[56] AMINI F, HU G. A two-layer feature selection method using genetic algorithm and elastic net[J]. Expert Systems with Applications, 2021, 166: 114072.
[57] TEIPEL S J, GROTHE M J, METZGER C D, et al. Robust detection of impaired resting state functional connectivity networks in alzheimer’s disease using elastic net regularized regression[J]. Frontiers in Aging Neuroscience, 2017, 8: 318.
[58] DEMIRER M, DIEBOLD F X, LIU L, et al. Estimating global bank network connectedness[J]. Journal of Applied Econometrics, 2018, 33(1): 1-15.
[59] BUNEA F, SHE Y, OMBAO H, et al. Penalized least squares regression methods and applications to neuroimaging[J]. NeuroImage, 2011, 55(4): 1519-1527.
[60] CHO S, KIM H, OH S, et al. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis[C]//BMC Proceedings. BioMed Central, 2009: 1-6.
[61] HE B. Modified alternating directions method of multipliers for convex optimization with three separable functions[J]. Operations Research Transactions, 2015, 19: 57-70.
[62] CHEN C, HE B, YE Y, et al. The direct extension of admm for multi-block convex minimization problems is not necessarily convergent[J]. Mathematical Programming, 2016, 155(1): 57-79.
[63] BIRD J J, FARIA D R, MANSO L J, et al. A deep evolutionary approach to bioinspired classifier optimisation for brain-machine interaction[J]. Complexity, 2019: 1-14.
[64] JOLLY B L K, AGGRAWAL P, NATH S S, et al. Universal eeg encoder for learning diverse intelligent tasks[C]//2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). 2019: 213-218.
[65] 刘浩洋, 户将, 李勇锋, 等. 最优化:建模、算法与理论[M]. 高等教育出版社, 2020.
Edit Comment