中文版 | English


Alternative Title
Name pinyin
TANG Yinghong
School number
070302 分析化学
Subject category of dissertation
07 理学
Mentor unit
Publication Years
Submission date
Place of Publication


       本课题基于离子载体的 ECL 电化学传感和 NIR 光学传感,探究了两种新型光学和电化学传感方法。在电致化学发光(ECL)方面,提出一种基于钠离子载体的钌配合物的聚合物薄膜,利用三联吡啶钌及其共反应物具有好的发光特性,给予一定扫描电压无需对工作电极修饰便可以直接测定发光的钠离子检测方法。该测试结果与荧光的标准曲线进行对比,佐证ECL 这种新型传感方法的可靠性。在近红外区域(NIR)方面,提出基于与其他课题组合成的 SQ720H 作为近红外探针,制备基于钙离子载体的离子选择性光极用于近红外荧光(740 nm)成像下钙离子检测。通过在常见血液电解质离子的干扰下建立标准曲线,表明可以应用于生物离子荧光成像。这两种基于离子载体的新型传感方法不仅具有好的选择性,同时相比于之前的传感方法,能够克服样品自身荧光等背景干扰。未来也有望开发通用离子传感平台,用于更多复杂背景下的离子检测。

Other Abstract

    Concentrations of blood electrolytes (Na+, K+, Ca2+) in the organism are maintained within one range and are clinically instructive. Ion-selective sensors based on ion carriers have excellent selectivity and low background interference, often using chromophores as signal sensors to indirectly report the concentration of the ion of interest. These ion-selective sensors are made from polymer films and nanoparticles, which typically operate in electrochemical, light-absorbing,
and fluorescence modes. However, optical background interference with a sample, especially the background fluorescence of biomedical samples, adversely affects the sensitivity, detection limits, and accuracy of traditional fluorescence intensity-based methods. Therefore, it is of great significance to develop measurement methods that are not interfered with by the fluorescence of the sample background in the field of analysis and sensing.

    Based on ECL electrochemical sensing and NIR optical sensing of ion carriers, this project explores two novel optical and electrochemical sensing methods. In terms of electrochemiluminescence (ECL), a polymer film based on a ruthenium complex based on sodium ion carrier is proposed, and the sodium ion detection method of luminescence can be directly determined by using triple pyridine ruthenium and its co-reactants with good luminous properties, and a certain scanning voltage can be directly determined without modifying the working electrode. The test results are compared with the standard curve of fluorescence, which supports the reliability of ECL, a new sensing method. In the near-infrared region (NIR), an ion-selective optodes based on calcium ion carrier was prepared as a near-infrared probe based on SQ720H combined with other topics for calcium ion detection under near-infrared fluorescence (740 nm) imaging. By establishing a standard curve under the interference of common blood electrolyte ions, it is indicated that ion fluorescence bioimaging can be applied.

    These two new sensing methods based on ion carriers not only have good selectivity, but also can overcome background interference such as sample self-fluorescence compared to previous sensing methods. In the future, it is also expected to develop a universal ion sensing platform for ion detection in more complex backgrounds.

Other Keyword
Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] XIE X, SZILAGYI I, ZHAI J, et al. Ion-Selective Optical Nanosensors Based on Solvatochromic Dyes of Different Lipophilicity: From Bulk Partitioning to Interfacial Accumulation [J]. Acs Sensors, 2016: 516.
[2] ZHAI J, YUAN D, XIE X. Ionophore-based ion-selective electrodes: signal transduction and amplification from potentiometry [J]. Sensors & Diagnostics, 2022.
[3] MISTLBERGER G, CRESPO G A, BAKKER E. Ionophore-Based Optical Sensors [J]. Annual Review of Analytical Chemistry, 2014, 7(1): 483-512.
[4] XIE X, BAKKER E. Ion selective optodes: from the bulk to the nanoscale [J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3899-910.
[5] WANG R, ZHOU Y, GHANBARI GHALEHJOUGHI N, et al. Ion-Induced Phase Transfer of Cationic Dyes for Fluorescence-Based Electrolyte Sensing in Droplet Microfluidics [J]. Analytical Chemistry, 2021, 93(40): 13694-702.
[6] BAKKER E, BÜHLMANN P, PRETSCH E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics [J]. Chemical Reviews, 1997, 97(8): 3083-132.
[7] ZOU X U, ZHEN X V, CHEONG J H, et al. Calibration-Free Ionophore-Based Ion-Selective Electrodes With a Co(II)/Co(III) Redox Couple-Based Solid Contact [J]. Analytical Chemistry, 2014, 86(17): 8687-92.
[8] XIE X, ZHAI J, JAROLÍMOVÁ Z, et al. Determination of pKa Values of Hydrophobic Colorimetric pH Sensitive Probes in Nanospheres [J]. Analytical Chemistry, 2016, 88(6): 3015-8.
[9] XIE X, MISTLBERGER G, BAKKER E. Ultrasmall Fluorescent Ion-Exchanging Nanospheres Containing Selective Ionophores [J]. Analytical Chemistry, 2013, 85(20): 9932-8.
[10] XIE X, ZHAI J, CRESPO G A, et al. Ionophore-Based Ion-Selective Optical NanoSensors Operating in Exhaustive Sensing Mode [J]. Analytical Chemistry, 2014, 86(17): 8770-5.
[11] XIE X, ZHAI J, BAKKER E. pH Independent Nano-Optode Sensors Based on Exhaustive Ion-Selective Nanospheres [J]. Analytical Chemistry, 2014, 86(6): 2853-6.
[12] XIE X, SZILAGYI I, ZHAI J, et al. Ion-Selective Optical Nanosensors Based on Solvatochromic Dyes of Different Lipophilicity: From Bulk Partitioning to Interfacial Accumulation [J]. ACS Sensors, 2016, 1(5): 516-20.
[13] BABAMIRI B, BAHARI D, SALIMI A. Highly sensitive bioaffinity electrochemilumiescence sensors: Recent advances and future directions [J]. Biosensors and Bioelectronics, 2019, 142: 111530.
[14] CHEN M, NING Z, CHEN K, et al. Recent Advances of Electrochemiluminescent System in Bioassay [J]. Journal of Analysis and Testing, 2020, 4(2): 57-75.
[15] MIAO W. Electrogenerated Chemiluminescence and Its Biorelated Applications [J]. Chemical Reviews, 2008, 108(7): 2506-53.
[16] LI L, CHEN Y, ZHU J-J. Recent Advances in Electrochemiluminescence Analysis [J]. Analytical Chemistry, 2017, 89(1): 358-71.
[17] MA C, CAO Y, GOU X, et al. Recent Progress in Electrochemiluminescence Sensing and Imaging [J]. Analytical Chemistry, 2020, 92(1): 431-54.
[18] QI H, ZHANG C. Electrogenerated Chemiluminescence Biosensing [J]. Analytical Chemistry, 2020, 92(1): 524-34.
[19] WENYUEGAO, MUHAMMADSAQIB, LIMINGQI, et al. Recent advances in electrochemiluminescence devices for point-of-care testing [J]. Current Opinion in Electrochemistry, 2017.
[20] LIU Z, QI W, XU G. ChemInform Abstract: Recent Advances in Electrochemiluminescence [J]. Cheminform, 2015, 46(29): no-no.
[21] 贾伯年, 俞朴, 宋爱国. 传感器技术:(第3 版) [M]. 东南大学出版社, 2007.
[22] 启黎明, 袁帆, 徐国宝. 电化学发光分析研究进展 [J]. 中国科学:化学, 2018, v.48(08): 152-63.
[23] HESARI M, DING Z. Review—Electrogenerated Chemiluminescence: Light Years Ahead [J]. Journal of the Electrochemical Society, 2016, 163(4): H3116-H31.
[24] SHI Z, LI G, HU Y. Progress on the application of electrochemiluminescence biosensor based on nanomaterials [J]. Chinese Chemical Letters, 2019.
[25] MORGAN G T, BURSTALL F H. 3. Dehydrogenation of pyridine by anhydrous ferric chloride [J]. Jchemsoc, 1932: 20-30.
[26] TOKEL N E, BARD A J. Electrogenerated chemiluminescence. IX. Electrochemistryand emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride [J]. Journal of the American Chemical Society, 1972, 94(8): 2862-3.
[27] NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution properties of graphite and graphene [J]. Jamchemsoc, 2006, 128(24): 7720.
[28] SALAVAGIONE H J, GO?MEZ M N A, MARTI?NEZ G. Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly(vinyl alcohol) [J]. Macromolecules, 2009, 42(17): 83-6.
[29] VECA, L. M, F., et al. Polymer functionalization and solubilization of carbon nanosheets [J]. CHEMICAL COMMUNICATIONS- ROYAL SOCIETY OF CHEMISTRY, 2009.
[30] MIAO W, CHOI J P, BARD A J. Electrogenerated Chemiluminescence 69: The Tri (2,2'-bipyridine)ruthenium(II), (Ru(bpy) 3 2+ )/Tri- n -propylamine (TPrA) System RevisitedA New Route Involving TPrA + Cation Radicals [J]. Journal of the American Chemical Society, 2003, 124(48): 14478-85.
[31] HE L J, WU M S, XU J J, et al. A reusable potassium ion biosensor based on electrochemiluminescence resonance energy transfer [J]. Chem Commun, 2013, 49(15): 1539-41.
[32] LU H-J, XU J-J, ZHOU H, et al. Recent advances in electrochemiluminescence resonance energy transfer for bioanalysis: Fundamentals and applications [J]. TrAC Trends in Analytical Chemistry, 2020, 122: 115746.
[33] REBECCA, Y., LAI, et al. Electrogenerated Chemiluminescence. 68. Detection of Sodium Ion with a Ruthenium(II) Complex with Crown Ether Moiety at the 3,3'- Positions on the 2,2'-Bipyridine Ligand [J]. Anal Chem, 2002, 74(3): 551–3.
[34] SODA Y, SHIBATA H, YAMADA K, et al. Selective Detection of K+ by Ion-Selective Optode Nanoparticles on Cellulosic Filter Paper Substrates [J]. ACS Applied Nano Materials, 2018, 1(4): 1792-800.
[35] KRATA A A, STELMACH E, WOJCIECHOWSKI M, et al. Insights into Primary Ion Exchange between Ion-Selective Membranes and Solution. From Altering Natural Isotope Ratios to Isotope Dilution Inductively Coupled Plasma Mass Spectrometry Studies [J]. ACS Sensors, 2020, 5(12): 3930-8.
[36] CHEN Q, LI X, WANG R, et al. Rapid Equilibrated Colorimetric Detection of Protamine and Heparin: Recognition at the Nanoscale Liquid–Liquid Interface [J]. Analytical Chemistry, 2019, 91(16): 10390-4.
[37] DU X, XIE X. Ion-Selective optodes: Alternative approaches for simplified fabrication and signaling [J]. Sensors and Actuators B: Chemical, 2021, 335: 129368.
[38] BÜHLMANN P, PRETSCH E, BAKKER E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors [J]. ChemicalReviews, 1998, 98(4): 1593-688.
[39] BAKKER E, BHAKTHAVATSALAM V, GEMENE K L. Beyond potentiometry: Robust electrochemical ion sensor concepts in view of remote chemical sensing [J]. Talanta, 2008, 75(3): 629-35.
[40] DENG L, ZHAI J, DU X, et al. Ionophore-Based Ion-Selective Nanospheres Basedon Monomer–Dimer Conversion in the Near-Infrared Region [J]. ACS Sensors, 2021, 6(3): 1279-85.
[41] CRESPO G A, MISTLBERGER G, BAKKER E. Electrogenerated Chemiluminescencefor Potentiometric Sensors [J]. Journal of the American Chemical Society, 2012, 134(1): 205-7.
[42] CAO S-P, HU H-M, LIANG R-P, et al. An ultrasensitive electrochemiluminescenceresonance energy transfer biosensor for divalent mercury monitoring [J]. J Electroanal Chem, 2020, 856: 113494.
[43] ZHANG J, CHEN Y, FANG D. Electrochemiluminescence in Luminol-based calciumselective nanoparticles for the determination of calcium ions [J]. Journal of Electroanalytical Chemistry, 2020, 878: 114671.
[44] DU X, ZHAI J, ZENG D, et al. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles [J]. Sensors and Actuators B: Chemical, 2020, 319: 128300.
[45] DU X, XIE X. Non-Equilibrium Diffusion Controlled Ion-Selective Optical Sensor for Blood Potassium Determination [J]. ACS Sensors, 2017: acssensors.7b00614.
[46] WANG R, DU X, ZHAI J, et al. Distance and Color Change Based Hydrogel Sensorfor Visual Quantitative Determination of Buffer Concentrations [J]. ACS Sensors, 2019, 4(4): 1017-22.
[47] SODA Y, CITTERIO D, BAKKER E. Equipment-Free Detection of K+ on MicrofluidicPaper-Based Analytical Devices Based on Exhaustive Replacement with Ionic Dye inIon-selective Capillary Sensors [J]. ACS Sensors, 2019, 4(3): 670-7.
[48] HONG G, DIAO S, ANTARIS A L, et al. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy [J]. Chemical Reviews, 2015, 115(19): 10816-906.
[49] NAUMOVA A V, MODO M, MOORE A, et al. Clinical imaging in regenerativemedicine [J]. Nat Biotechnol, 2014, 32(8): 804-18.
[50] HONG G S, ANTARIS A L, DAI H J. Near-infrared fluorophores for biomedicalimaging [J]. Nature Biomedical Engineering, 2017, 1(1).
[51] NTZIACHRISTOS V. Going deeper than microscopy: the optical imaging frontier in biology [J]. Nature Methods, 2010, 7(8): 603-14.
[52] HONG G, ANTARIS A L, DAI H. Near-infrared fluorophores for biomedical imaging [J]. Nature Biomedical Engineering, 2017, 1(1): 0010.
[53] BASHKATOV A N, GENINA E A, TUCHIN V V. OPTICAL PROPERTIES OF SKIN, SUBCUTANEOUS, AND MUSCLE TISSUES: A REVIEW [J]. Journal of Innovative Optical Health Sciences, 2011, 04(01): 9-38.
[54] HONG G, DIAO S, CHANG J, et al. Through-skull fluorescence imaging of the brain a new near-infrared window [J]. Nature Photonics, 2014, 8(9): 723-30.
[55] DIAO S, BLACKBURN J L, HONG G, et al. Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm [J]. Angewandte Chemie International Edition, 2015, 54(49): 14758-62.
[56] FRANGIONI J V. In vivo near-infrared fluorescence imaging [J]. Current Opinion in Chemical Biology, 2003, 7(5): 626-34.
[57] VERBEEK F P R, SCHAAFSMA B E, TUMMERS Q R J G, et al. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery [J]. Surgical Endoscopy, 2014, 28(4): 1076-82.
[58] TUMMERS Q R J G, SCHEPERS A, HAMMING J F, et al. Intraoperative guidance inparathyroid surgery using near-infrared fluorescence imaging and low-dose Methylene Blue [J]. Surgery, 2015, 158(5): 1323-30.
[59] TUMMERS Q R J G, VERBEEK F P R, PREVOO H A J M, et al. First Experience on Laparoscopic Near-Infrared Fluorescence Imaging of Hepatic Uveal Melanoma Metastases Using Indocyanine Green [J]. Surgical Innovation, 2014, 22(1): 20-5.
[60] VERBEEK F P R, TUMMERS Q R J G, RIETBERGEN D D D, et al. Sentinel Lymph Node Biopsy in Vulvar Cancer Using Combined Radioactive and Fluorescence Guidance [J]. International Journal of Gynecologic Cancer, 2015, 25(6): 1086.
[61] VERBEEK FLORIS P R, VAN DER VORST JOOST R, SCHAAFSMA BOUDEWIJN E, et al. Intraoperative Near Infrared Fluorescence Guided Identification of the Ureters Using Low Dose Methylene Blue: A First in Human Experience [J]. Journal of Urology, 2013, 190(2): 574-9.
[62] MATSUI A, TANAKA E, CHOI H S, et al. Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents [J]. Surgery, 2010, 148(1): 87-95.
[63] QIAN G, WANG Z Y. Near-Infrared Organic Compounds and Emerging Applications [J]. Chemistry – An Asian Journal, 2010, 5(5): 1006-29.
[64] HILDERBRAND S A, WEISSLEDER R. Near-infrared fluorescence: application to invivo molecular imaging [J]. Current Opinion in Chemical Biology, 2010, 14(1): 71-9.
[65] ESCOBEDO J O, RUSIN O, LIM S, et al. NIR dyes for bioimaging applications [J].Current Opinion in Chemical Biology, 2010, 14(1): 64-70.
[66] TERAI T, NAGANO T. Small-molecule fluorophores and fluorescent probes forbioimaging [J]. Pflügers Archiv - European Journal of Physiology, 2013, 465(3): 347-59.
[67] WU D, CHEN L, LEE W, et al. Recent progress in the development of organic dyebased near-infrared fluorescence probes for metal ions [J]. Coordination Chemistry Reviews, 2018, 354: 74-97.
[68] TSIEN R Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures [J]. Biochemistry, 1980, 19(11): 2396-404.
[69] GRYNKIEWICZ G, POENIE M, TSIEN R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties [J]. Journal of Biological Chemistry, 1985, 260(6): 3440-50.
[70] MINTA A, KAO J P Y, TSIEN R Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores [J]. Journal of Biological Chemistry,1989, 264(14): 8171-8.
[71] KIYOSE K, AIZAWA S, SASAKI E, et al. Molecular Design Strategies for Near-Infrared Ratiometric Fluorescent Probes Based on the Unique Spectral Properties ofAminocyanines [J]. Chemistry – A European Journal, 2009, 15(36): 9191-200.
[72] EGAWA T, HANAOKA K, KOIDE Y, et al. Development of a Far-Red to Near-Infrared Fluorescence Probe for Calcium Ion and its Application to Multicolor Neuronal Imaging [J]. Journal of the American Chemical Society, 2011, 133(36): 14157-9.
[73] MINTA A, TSIEN R Y. Fluorescent indicators for cytosolic sodium* [J]. Journal ofBiological Chemistry, 1989, 264(32): 19449-57.
[74] HE H, MORTELLARO M A, LEINER M J P, et al. A Fluorescent Sensor with High Selectivity and Sensitivity for Potassium in Water [J]. Journal of the American Chemical Society, 2003, 125(6): 1468-9.
[75] PADMAWAR P, YAO X, BLOCH O, et al. K+ waves in brain cortex visualized usinga long-wavelength K+-sensing fluorescent indicator [J]. Nature Methods, 2005, 2(11): 825-7.
[76] SAMBATH K, LIU X, WAN Z, et al. Potassium Ion Fluorescence Probes: Structures, Properties and Bioimaging [J]. ChemPhotoChem, 2021, 5(4): 317-25.
[77] SUI B, YUE X, TICHY M G, et al. Improved Synthesis of the Triazacryptand (TAC) and its Application in the Construction of a Fluorescent TAC-BODIPY Conjugate for K+ Sensing in Live Cells [J]. European Journal of Organic Chemistry, 2015, 2015(6): 1189-92.
[78] DENG L, ZHAI J Y, DU X F, et al. Ionophore-Based Ion-Selective Nanospheres Based on Monomer-Dimer Conversion in the Near-Infrared Region [J]. Acs Sensors, 2021, 6(3): 1279-85.
[79] DU X, YANG L, HU W, et al. A Plasticizer-Free Miniaturized Optical Ion Sensing Platform with Ionophores and Silicon-Based Particles [J]. Analytical Chemistry, 2018:5818-24.
[80] RENJIE, WANG, XINFENG, et al. Graphene Quantum Dots Integrated in Ionophorebased Fluorescent Nanosensors for Na+ and K [J]. Acs Sensors, 2018.
[81] DU X, HUANG M, WANG R, et al. A rapid point-of-care optical ion sensing platform based on target-induced dye release from smart hydrogels [J]. ChemicalCommunications, 2019.
[82] TANG Y H, ZHAI J Y, CHEN Q H, et al. Ruthenium bipyridine complexes as electrochemiluminescent transducers for ionophore-based ion-selective detection [J]. Analyst, 2021, 146(22): 6955-9.
[83] DENG L, ZHAI J Y, XIE X J. Chemiluminescent Ion Sensing Platform Based on Ionophores [J]. Analytical Chemistry, 2019, 91(13): 8638-43.
[84] LELAND J K, POWELL M J. Electrogenerated Chemiluminescence: An Oxidative‐Reduction Type ECL Reaction Sequence Using Tripropyl Amine [J]. Journal of TheElectrochemical Society, 1990, 137(10): 3127-31.
[85] NOFFSINGER J B, DANIELSON N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) [J]. Analytical Chemistry, 1987, 59(6): 865-8.
[86] BLACKBURN G F, SHAH H P, KENTEN J H, et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics [J]. Clinical Chemistry, 1991, 37(9): 1534-9.
[87] MIAO W, CHOI J-P, BARD A J. Electrogenerated Chemiluminescence 69: The Tris(2,2‘-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System RevisitedA New Route Involving TPrA•+ Cation Radicals [J]. Journal of the American Chemical Society, 2002, 124(48): 14478-85.
[88] KANOUFI F, ZU Y, BARD A J. Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine/Ru(bpy)32+ System [J]. The Journal of Physical Chemistry B, 2001, 105(1): 210-6.
[89] ZU Y, BARD A J. Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2‘)bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity [J]. Analytical Chemistry, 2000, 72(14): 3223-32.
[90] CHANG Y-L, PALACIOS R E, FAN F-R F, et al. Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles [J]. Journal of the American Chemical Society, 2008, 130(28): 8906-7.
[91] HE L, COX K A, DANIELSON N D. Chemiluminescence Detection of Amino Acids, Peptides, and Proteins Using Tris-2,2′-Bipyridine Ruthenium (III) [J]. Analytical Letters, 1990, 23(2): 195-210.
[92] DENG L, ZHAI J, XIE X. Chemiluminescent Ion Sensing Platform Based on Ionophores [J]. Analytical Chemistry, 2019, 91(13): 8638-43.
[93] KOMATSU H, MIKI T, CITTERIO D, et al. Single Molecular Multianalyte (Ca2+, Mg2+) Fluorescent Probe and Applications to Bioimaging [J]. Journal of the American Chemical Society, 2005, 127(31): 10798-9.
[94] KUCHIBHOTLA KISHORE V, LATTARULO CARLI R, HYMAN BRADLEY T, et al. Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice [J]. Science, 2009, 323(5918): 1211-5.
[95] ZHANG H, YIN C, LIU T, et al. “Turn-on” fluorescent probe detection of Ca2+ ions and applications to bioimaging [J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy, 2017, 180: 211-6.

Academic Degree Assessment Sub committee
Domestic book classification number
Data Source
Document TypeThesis
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
唐樱红. 基于离子载体的新型电化学发光和近红外荧光传感方法[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930099-唐樱红-化学系.pdf(7811KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[唐樱红]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[唐樱红]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[唐樱红]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.