中文版 | English
Title

基于嵌段共聚物的双酚A型环氧树脂的增韧研究

Alternative Title
TOUGHENING STUDY OF BISPHENOL A EPOXY RESIN BASED ON BLOCK COPOLYMERS
Author
Name pinyin
LU Junyi
School number
12032317
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
田颜清
Mentor unit
材料科学与工程系
Publication Years
2022-05-05
Submission date
2022-07-11
University
南方科技大学
Place of Publication
深圳
Abstract

环氧树脂是一类应用非常广的高分子材料。双酚A型环氧树脂是其中备受重视的一种,它因为自身强度高、易加工、性质稳定的特点而被广泛应用于土木工程、航天器材、电子封装等领域。但是由于其具有易脆性,双酚A型环氧树脂更为广阔的潜在应用受到了限制。因此研究如何增强环氧树脂的韧性不仅具有学术价值,更具有现实意义。嵌段共聚物在极性环境下自发形成的微观纳米胶束,按照不同结构分为球状、蠕虫状和囊泡状胶束。本论文利用嵌段共聚物的不同结构胶束对环氧树脂基底进行了增韧研究。

本论文制备了两亲性嵌段共聚物。以亲水性聚乙二醇大分子作为主链以疏水性的苯乙烯作为疏水嵌段单体进行共聚合反应获得具有两亲性的嵌段共聚结构。将嵌段共聚物与双酚A型环氧树脂共混固化,通过拉伸实验表征改性后的力学性能。

通过系统性实验研究了嵌段共聚物的浓度与嵌段比对形成胶束形貌的影响以及对力学性能的影响。研究发现:对于双嵌段共聚物来说,疏水性嵌段(苯乙烯)越长,其形成的胶束就越容易聚集,形成无定形相分离所需要的最低浓度越低。合成的三类嵌段共聚物中两亲性双嵌段共聚物对韧性的改进有限,一旦使用量超过临界团聚值,环氧树脂基底的韧性会急剧下降。相比较纯环氧树脂而言,具有10 wt%三嵌段共聚物增韧的环氧树脂的韧性提高了60 %。结果表明在所选的材料中两亲性三嵌段共聚物的增韧效果最佳,这对于提高环氧树脂韧性、实现环氧树脂更广泛的应用具有重要意义。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-06
References List

[1] JAYAN J S, SARITHA A, JOSEPH K. Innovative Materials of This Era for Toughening the Epoxy Matrix: A Review [J]. Polymer Composite, 2018, 39: E1959-E1986.
[2] SALVADOR M, JIŘí M. A Kinetic Analysis of the Curing Reaction of an Epoxy Resin [J]. Thermochimica Acta, 1993, 228: 47-60.
[3] PATEL A, MAIORANA A, YUE L, et al. Curing Kinetics of Biobased Epoxies for Tailored Applications [J]. Macromolecules, 2016, 49(15): 5315-5324.
[4] FAN-LONG J, XIANG L, SOO-JIN P. Synthesis and Application of Epoxy Resins: A review [J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 1-11.
[5] 薛伟. 基于改性环氧树脂各向异性导电胶的研究 [D]; 哈尔滨工业大学, 2020.
[6] DOMUN N, HADAVINIA H, ZHANG T, et al. Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials--A Review of the Current Status [J]. Nanoscale, 2015, 7(23): 10294-10329.
[7] YEE A F, PEARSON R A. Toughening Mechanisms in Elastomer-Modified Epoxies .1. Mechanical Studies [J]. Journal of Materials Science, 1986, 21(7): 2462-2474.
[8] LI L, ZHENG S. Mechanical Properties of Epoxy/Block Copolymer Blends [Z]. Springer International Publishing: Cham. 2015: 1-29
[9] MASSER K A, KNORR D B, HINDENLANG M D, et al. Relating Structure and Chain Dynamics to Ballistic Performance in Transparent Epoxy Networks Exhibiting Nanometer Scale Heterogeneity [J]. Polymer, 2015, 58: 96-106.
[10] SMART T, LOMAS H, MASSIGNANI M, et al. Block Copolymer Nanostructures [J]. Nano Today, 2008, 3(3-4): 38-46.
[11] WANG W Z, SONG W, WANG R, et al. ATRP Synthesis of Poly(4-bromostyrene)-b-poly(propylene glycol) Block Copolymer and its Self-assembly in Catalystic Emulsion Polymerization to form Luminescent Nanospheres with Core-shell Structure [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(5): 1478-1483.
[12] HSIEH T H, KINLOCH A J, MASANIA K, et al. The Mechanisms and Mechanics of the Toughening of Epoxy Polymers Modified with Silica Nanoparticles [J]. Polymer, 2010, 51(26): 6284-6294.
[13] WAZZAN A A, AL-TURAIF H A, ABDELKADER A F. Influence of Submicron TiO2 Particles on the Mechanical Properties and Fracture Characteristics of Cured Epoxy Resin [J]. Polymer-Plastics Technology and Engineering, 2007, 45(10): 1155-1561.
[14] WANG M, FAN X, THITSARTARN W, et al. Rheological and Mechanical Properties of Epoxy/clay Nanocomposites with Enhanced Tensile and Fracture Toughnesses [J]. Polymer, 2015, 58: 43-52.
[15] ZHU J, KIM J, PENG H, et al. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization [J]. Nano Letters, 2003, 3(8): 1107-1113.
[16] QIU J, WANG S. Enhancing Polymer Performance Through Graphene Sheets [J]. Journal of Applied Polymer Science, 2011, 119(6): 3670-3674.
[17] ABETZ V, STADLER R, LEIBLER L. Order-disorder-and order-order-transitions in AB and ABC Block Copolymers: Description by a Simple Model [J]. Polymer Bulletin, 1996, 37(1): 135-142.
[18] KIM H S, MA P. Correlation Between Stress‐whitening and Fracture Toughness in Rubber‐modified Epoxies [J]. Journal of Applied Polymer Science, 1996, 61(4): 659-662.
[19] HILLMYER M A, LIPIC P M, HAJDUK D A, et al. Self-assembly and Polymerization of Epoxy Resin-amphiphilic Block Copolymer Nanocomposites [J]. Journal of the American Chemical Society, 1997, 119(11): 2749-2750.
[20] LIPIC P M, BATES F S, HILLMYER M A. Nanostructured Thermosets from Self-assembled Amphiphilic Block Copolymer/epoxy Resin Mixtures [J]. Journal of the American Chemical Society, 1998, 120(35): 8963-8970.
[21] JOHNSEN B B, KINLOCH A J, TAYLOR A C. Toughness of Syndiotactic Polystyrene/epoxy Polymer Blends: Microstructure and Toughening Mechanisms [J]. Polymer, 2005, 46(18): 7352-7369.
[22] Meyer E E, Rosenberg K J, Israelachvili J. Recent Progress in Understanding Hydrophobic Interactions [J]. Proceedings of the National Academy of Sciences, 2006, 103(43): 15739-15746.
[23] ISRAELACHVILI J N. Intermolecular and Surface Forces [M]. Academic press, 2011.
[24] NAGARAJAN R. Molecular Packing Parameter and Surfactant Self-assembly: The Neglected Role of the Surfactant Sail [J]. Langmuir, 2002, 18(1): 31-38.
[25] LARRAñAGA M, ARRUTI P, SERRANO E, et al. Towards Microphase Separation in Epoxy Systems Containing PEO/PPO/PEO Block Copolymers by Controlling Cure Conditions and Molar Ratios Between Blocks. Part 2. Structural Characterization [J]. Colloid and Polymer Science, 2006, 284(12): 1419-1430.
[26] MATTHEW J D, LEE A F, STEVEN P A. Polymerization-induced Self-assembly of Block Copolymer Nanoparticles via RAFT Non-aqueous Dispersion Polymerization [J]. Progress in Polymer Science, 2016, 52: 1-18.
[27] WU S, Guo Q, Peng S, et al. Toughening Epoxy Thermosets with Block Ionomer Complexes: A Nanostructure–mechanical Property Correlation[J]. Macromolecules, 2012, 45(9): 3829-3840.
[28] CHU W C, LIN W S, KUO S W. Flexible Epoxy Resin Formed Upon Blending with a Triblock Copolymer through Reaction-Induced Microphase Separation [J]. Materials (Basel), 2016, 9(6).
[29] LIU J, SUE H-J, THOMPSON Z J, et al. Nanocavitation in Self-Assembled Amphiphilic Block Copolymer-Modified Epoxy [J]. Macromolecules, 2008, 41(20): 7616-7624.
[30] REBIZANT V, VENET A-S, TOURNILHAC F, et al. Chemistry and Mechanical Properties of Epoxy-Based Thermosets Reinforced by Reactive and Nonreactive SBMX Block Copolymers [J]. Macromolecules, 2004, 37(21): 8017-8027.
[31] YANG X, YI F, XIN Z, et al. Morphology and Mechanical Properties of Nanostructured Blends of Epoxy Resin with Poly (ɛ-caprolactone)-block-poly (butadiene-co-acrylonitrile)-block-poly (ɛ-caprolactone) Triblock Copolymer [J]. Polymer, 2009, 50(16): 4089-4100.
[32] YU R, ZHENG S. Morphological Transition from Spherical to Lamellar Nanophases in Epoxy Thermosets Containing Poly(ethylene oxide)-block-poly(ε-caprolactone)-block-polystyrene Triblock Copolymer by Hardeners [J]. Macromolecules, 2011, 44(21): 8546-8557.
[33] THIO Y S, WU J, BATES F S. Epoxy Toughening Using Low Molecular Weight Poly (hexylene oxide)-poly (ethylene oxide) Diblock Copolymers [J]. Macromolecules, 2006, 39(21): 7187-7189.
[34] GRUBBS R B, DEAN J M, BROZ M E, et al. Reactive Block Copolymers for Modification of Thermosetting Epoxy [J]. Macromolecules, 2000, 33(26): 9522-9534.
[35] DEAN J M, VERGHESE N E, PHAM H Q, et al. Nanostructure Toughened Epoxy Resins [J]. Macromolecules, 2003, 36(25): 9267-9270.
[36] YI F, YU R, ZHENG S, et al. Nanostructured Thermosets from Epoxy and Poly (2, 2, 2-trifluoroethyl acrylate)-block-poly (glycidyl methacrylate) Diblock Copolymer: Demixing of Reactive Blocks and Thermomechanical Properties [J]. Polymer, 2011, 52(24): 5669-5680.
[37] CHEN Y. On the Use of Self-Assembling Block Copolymers to Toughen A Model Epoxy [M]. 2015.
[38] NAGUIB M, SANGERMANO M, CAPOZZI L C, et al. Non-reactive and Reactive Block Copolymers for Toughening of UV-cured Epoxy Coating [J]. Progress in Organic Coatings, 2015, 85: 178-188.
[39] GARATE H, GOYANES S, D’ACCORSO N B. Controlling Nanodomain Morphology of Epoxy Thermosets Modified with Reactive Amine-Containing Epoxidized Poly(styrene-b-isoprene-b-styrene) Block Copolymer [J]. Macromolecules, 2014, 47(21): 7416-7423.
[40] HAMEED N, GUO Q, XU Z, et al. Reactive Block Copolymer Modified Thermosets: Highly Ordered Nanostructures and Improved Properties [J]. Soft Matter, 2010, 6(24): 6119-6129.
[41] FRANCIS R, BABY D K. A Reactive Polystyrene-block-polyisoprene Star Copolymer as a Toughening Agent in an Epoxy Thermoset [J]. Colloid and Polymer Science, 2016, 294(3): 565-574.
[42] RITZENTHALER S, COURT F, GIRARD-REYDET E, et al. ABC Triblock Copolymers/epoxy− diamine Blends. 2. Parameters Controlling the Morphologies and Properties [J]. Macromolecules, 2003, 36(1): 118-126.
[43] OCANDO C, TERCJAK A, SERRANO E, et al. Micro‐and Macrophase Separation of Thermosetting Systems Modified with Epoxidized Styrene‐block‐butadiene‐block‐styrene Linear Triblock Copolymers and Their Influence on Final Mechanical Properties [J]. Polymer International, 2008, 57(12): 1333-1342.
[44] OCANDO C, FERNANDEZ R, TERCJAK A, et al. Nanostructured Thermoplastic Elastomers Based on SBS Triblock Copolymer Stiffening with Low Contents of Epoxy System. Morphological Behavior and Mechanical Properties [J]. Macromolecules, 2013, 46(9): 3444-3451.
[45] Dean J M, Grubbs R B, Saad W, et al. Mechanical Properties of Block Copolymer Vesicle and Micelle Modified Epoxies[J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(20): 2444-2456.
[46] Hermel‐Davidock T J, Tang H S, Murray D J, et al. Control of the Block Copolymer Morphology in Templated Epoxy Thermosets [J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(24): 3338-3348.
[47] LIU J, THOMPSON Z J, SUE H-J, et al. Toughening of Epoxies with Block Copolymer Micelles of Wormlike Morphology [J]. Macromolecules, 2010, 43(17): 7238-7243.
[48] KöNCZöL L, DöLL W, BUCHHOLZ U, et al. Ultimate Properties of Epoxy Resins Modified with a Polysiloxane–polycaprolactone Block Copolymer [J]. Journal of Applied Polymer Science, 1994, 54(6): 815-826.
[49] ZHANG C, YI Y, LI L, et al. Morphology and Fracture Toughness of Nanostructured Epoxy Thermosets Containing Macromolecular Miktobrushes Composed of Poly (ε-caprolactone) and Polydimethylsiloxane Side Chains [J]. Journal of Materials Science, 2014, 49(3): 1256-1266.
[50] FRANCIS R, BABY D K. Toughening of Epoxy Thermoset with Polystyrene-block-polyglycolic Acid Star Copolymer: Nanostructure–mechanical Property Correlation [J]. Industrial & Engineering Chemistry Research, 2014, 53(46): 17945-17951.
[51] PANDIT R, LACH R, GRELLMANN W, et al. Chemical Modification of SBS Star Block Copolymer for Templating Nanostructures in Epoxy Resin Blends [J]. Materials Today: Proceedings, 2020, 29: 1156-1160.
[52] KHATIWADA S P, SARATH CHANDRAN C, LACH R, et al. Morphology and Mechanical Properties of Star Block Copolymer Modified Epoxy Resin Blends [J]. Materials Today: Proceedings, 2017, 4(4): 5734-5742.
[53] CURRAN D P. The Design and Application of Free Radical Chain Reactions in Organic Synthesis. Part 2 [J]. Synthesis, 1988, 1988(07): 489-513.
[54] BELLUS D. Copper-catalyzed Additions of Organic Polyhalides to Olefins: A Versatile Synthetic Tool [J]. Pure and Applied Chemistry, 1985, 57(12): 1827-1838.
[55] WANG J-S, MATYJASZEWSKI K. Controlled/"living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-metal Complexes [J]. Journal of the American Chemical Society, 1995, 117(20): 5614-5615.
[56] KATO M, KAMIGAITO M, SAWAMOTO M, et al. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/dichlorotris- (triphenylphosphine) Ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization [J]. Macromolecules, 1995, 28(5): 1721-1723.
[57] CARLMARK A, MALMSTROM E E. ATRP Grafting from Cellulose Fibers to Create Block-copolymer Grafts [J]. Biomacromolecules, 2003, 4(6): 1740-1745.
[58] SIEGWART D J, OH J K, MATYJASZEWSKI K. ATRP in the Design of Functional Materials for Biomedical Applications [J]. Progress in Polymer Science, 2012, 37(1): 18-37.
[59] GB/T 4161 2007. 金属材料平面应变断裂韧度KIC试验方法[S].

Academic Degree Assessment Sub committee
材料科学与工程系
Domestic book classification number
TQ327
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/353271
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
鲁军义. 基于嵌段共聚物的双酚A型环氧树脂的增韧研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032317-鲁军义-材料科学与工程(5236KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[鲁军义]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[鲁军义]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[鲁军义]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.