中文版 | English
Title

粉煤灰源铝基固态胺CO2吸附剂制备及其用于沼气纯化研究

Alternative Title
PREPARATION OF ALUMINUM-BASED SOLID AMINE CO2 ADSORBENT DERIVED FROM COAL FLY ASH AND ITS APPLICATION IN BIOGAS PURIFICATION
Author
Name pinyin
SHEN Xuehua
School number
11849588
Degree
博士
Discipline
0830 环境科学与工程
Subject category of dissertation
08 工学
Supervisor
张作泰
Mentor unit
环境科学与工程学院
Publication Years
2022-05-18
Submission date
2022-07-12
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

沼气纯化制备生物天然气对于缓解我国能源压力以及实现“碳中和”目标具有战略意义。与传统的沼气纯化技术相比,固态胺吸附剂在CO2分离效果、能源消耗、设备要求和环境影响方面均具有潜在优势。然而,固态胺吸附剂存在吸附性能与循环稳定性不兼容、吸附剂性能与制备成本相互制约、缺少扩大化生产能力的问题,限制了固态胺吸附剂在沼气纯化领域的应用。本论文从制备兼具CO2吸附量、循环稳定性、制备成本和可批量生产多种优势的高性能固态胺吸附剂角度出发,创新性地提出以高铝粉煤灰为原料回收铝元素、制备粉煤灰源铝基固态胺吸附剂,系统探索了纳米Al2O3基体的孔隙结构、表面化学性质对吸附剂吸附性能和循环稳定性的影响,并进一步研究了吸附剂在实际沼气成分中的相关性能,为固态胺吸附剂应用于沼气纯化工程提供理论基础。取得的主要研究成果如下:

针对固态胺吸附剂缺少扩大化生产能力、循环稳定性差的问题,创新性提出粉煤灰源铝基固态胺制备技术。系统研究了关键合成参数对粉煤灰源纳米Al2O3孔结构的影响规律和相关机理,并阐述了纳米Al2O3基体的孔结构在浸渍PEI制备吸附剂过程中的作用。制备得到的铝基固态胺吸附剂CO2吸附量达136 mg·g-1更为重要的是,纳米Al2O3基体表面具有丰富的路易斯酸性位点,基体与负载在基体上的有机胺(PEI)能自发形成交联,从而抑制了尿素化合物的生成,进而提高了吸附剂的循环稳定性;在CO2再生气氛下循环50次,吸附剂依然保留112 mg·g-1的吸附容量,仅衰减16.5%,稳定性较传统硅基固态胺吸附剂显著提高了5.5倍。

针对纳米Al2O3基体孔体积较小,限制了铝基固态胺CO2吸附容量的问题,采用共沸蒸馏和醇洗涤法进行扩孔,并以扩孔纳米Al2O3为基体制备扩孔铝基固态胺吸附剂。制备的扩孔铝基固态胺吸附剂展现出优异的CO2吸附性能,饱和吸附容量达195 mg·g-1以上,超过了176 mg·g-1优秀固态胺吸附剂的标准,并且吸附剂拥有快速吸附的能力,10 min内的CO2吸附量可达180 mg·g-1;同时,扩孔铝基固态胺吸附剂依然具备良好的抗尿素循环稳定性,10次循环仅衰减6.2%

进一步探索了沼气中的杂质成分(H2OO2H2S)对铝基固态胺吸附剂的影响及其影响机制,并对铝基固态胺吸附剂应用于沼气纯化工程的可行性进行评估。H2O在铝基固态胺吸附剂的最佳操作条件下不会促进CO2吸附,但在吸附剂再生过程可阻止胺基甲酸酯或胺基甲酸的脱水过程而有效抑制尿素化合物的生成,进而提高吸附剂的循环稳定性;水蒸气还可以提供部分浓度梯度驱动力促进吸附剂的再生,在最佳操作条件下,铝基固态胺吸附剂在CO2再生气氛下具备优异的循环稳定性,循环50次仅衰减6.3%O2H2S在吸附剂的最佳操作条件下对吸附剂的CO2吸附性能和循环稳定性造成的干扰均较小。铝基固态胺吸附剂在沼气纯化应用中展现出优异的吸附性能,初始穿透CO2吸附量达到了159 mg·g-1,并且纯化过程可获得CH4纯度超过95%的生物天然气产品,可满足多种用途。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-07
References List

[1] BP. Statistical Review of World Energy 2021[DB/OL]. London, 2021. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/introduction.html.
[2] TIAN S, YAN F, ZHANG Z, et al. Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency[J]. Science advances, 2019, 5: eaav5077.
[3] 刘飞. 胺基两相吸收剂捕集二氧化碳机理研究[D]. 浙江大学, 2020.
[4] KHAN I U, OTHMAN M H D, HASHIM H, et al. Biogas as a renewable energy fuel – a review of biogas upgrading, utilisation and storage[J]. Energy Conversion and Management, 2017, 150: 277-294.
[5] 生态环境部环境规划院. 中国二氧化碳捕集利用与封存(CCUS)年度报告[R]. 2021.
[6] SUN Q, LI H, YAN J, et al. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 521-532.
[7] ZHOU K, CHAEMCHUEN S, VERPOORT F. Alternative materials in technologies for biogas upgrading via CO2 capture[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1414-1441.
[8] BACIOCCHI R, CARNEVALE E, CORTI A, et al. Innovative process for biogas upgrading with CO2 storage: Results from pilot plant operation[J]. Biomass and Bioenergy, 2013, 53: 128-137.
[9] 尹龙天. 基于MEA-乙醇吸收的旋转床用于沼气中CO2脱除性能与模拟研究[D]. 北京化工大学, 2021.
[10] SCARLAT N, DALLEMAND J-F, FAHL F. Biogas: Developments and perspectives in Europe[J]. Renewable Energy, 2018, 129: 457-472.
[11] LARSSON M, GRONKVIST S, ALVFORS P. Upgraded biogas for transport in Sweden – effects of policy instruments on production, infrastructure deployment and vehicle sales[J]. Journal of Cleaner Production, 2015, 112: 3774-3784.
[12] ANGELIDAKI I, TREU L, TSAPEKOS P, et al. Biogas upgrading and utilization: Current status and perspectives[J]. Biotechnology Advances, 2018, 36(2): 452-466.
[13] ARTO I, CAPELLÁN-PÉREZ I, LAGO R, et al. The energy requirements of a developed world[J]. Energy for Sustainable Development, 2016, 33: 1-13.
[14] KHAN M U, LEE J T E, BASHIR M A, et al. Current status of biogas upgrading for direct biomethane use: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111343.
[15] 中华人民共和国国家发展和改革委员会. 可再生能源发展“十三五”规划[R]. 2016.
[16] 李秀金. 沼气生产国内外现状与发展趋势[R]. 北京 科技部, 2017.
[17] 李景明, 李冰峰, 徐文勇. 中国沼气产业发展的政策影响分析[J]. 中国沼气, 2018, 36(05): 3-10.
[18] 中华人民共和国国家统计局. 中国统计年鉴[DB]. 2019.
[19] TRAN V T L, GÉLIN P, FERRONATO C, et al. Adsorption of linear and cyclic siloxanes on activated carbons for biogas purification: Sorbents regenerability[J]. Chemical Engineering Journal, 2019, 378: 122152.
[20] KUNKEL C, VIÑES F, ILLAS F. Biogas upgrading by transition metal carbides[J]. ACS Applied Energy Materials, 2017, 1(1): 43-47.
[21] 刘冰. MOF/聚酰亚胺复合膜结构设计及对沼气中CO2/CH4分离性能研究[D]. 哈尔滨工业大学, 2021.
[22] 常旭宁, 吴媛媛. 沼气提纯生物天然气的气质标准探讨[J]. 中国沼气, 2019, 37(05): 73-77.
[23] 包海军. 我国沼气提纯技术及生物天然气产业发展情况[J]. 中国沼气, 2021, 39(01): 54-58.
[24] SANTOS M S, GRANDE C A, RODRIGUES A E. New cycle configuration to enhance performance of kinetic PSA processes[J]. Chemical Engineering Science, 2011, 66(8): 1590-1599.
[25] CHEN C, HUANG H, YU Y, et al. Template-free synthesis of hierarchical porous carbon with controlled morphology for CO2 efficient capture[J]. Chemical Engineering Journal, 2018, 353: 584-594.
[26] AUGELLETTI R, CONTI M, ANNESINI M C. Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide[J]. Journal of Cleaner Production, 2017, 140: 1390-1398.
[27] SIEGELMAN R L, MILNER P J, FORSE A C, et al. Water enables efficient CO2 capture from natural gas flue emissions in an oxidation-resistant diamine-appended metal–organic framework[J]. Journal of the American Chemical Society, 2019, 141(33): 13171-13186..
[28] RYCKEBOSCH E, DROUILLON M, VERVAEREN H. Techniques for transformation of biogas to biomethane[J]. Biomass and Bioenergy, 2011, 35(5): 1633-1645.
[29] LI K, TIAN S, JIANG J, et al. Pine cone shell-based activated carbon used for CO2 adsorption[J]. Journal of Materials Chemistry A, 2016, 4(14): 5223-5234.
[30] HU X, LIU L, LUO X, et al. A review of N-functionalized solid adsorbents for post-combustion CO2 capture[J]. Applied Energy, 2020, 260: 114244.
[31] BASU S, KHAN A L, CANO-ODENA A, et al. Membrane-based technologies for biogas separations[J]. Chemical Society Reviews, 2010, 39(2): 750-768.
[32] MAKARUK A, MILTNER M, HARASEK M. Membrane biogas upgrading processes for the production of natural gas substitute[J]. Separation and Purification Technology, 2010, 74(1): 83-92.
[33] KADAM R, PANWAR N L. Recent advancement in biogas enrichment and its applications[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 892-903.
[34] WANG L, ZHANG Y, WANG R, et al. Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture[J]. Environmental Science & Technology, 2018, 52(24): 14556-14563.
[35] PAUL S, GHOSHAL A K, MANDAL B. Absorption of carbon dioxide into aqueous solutions of 2-piperidineethanol: Kinetics analysis[J]. Industrial & Engineering Chemistry Research, 2008, 48(3): 1414-1419.
[36] LV B, GUO B, ZHOU Z, et al. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes[J]. Environmental Science & Technology, 2015, 49(17): 10728-10735.
[37] ABOUDHEIR A, TONTIWACHWUTHIKUL P, CHAKMA A, et al. Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions[J]. Chemical Engineering Science, 2003, 58(23-24): 5195-5210.
[38] SHOUKAT U, PINTO D, KNUUTILA H. Study of various aqueous and non-aqueous amine blends for hydrogen sulfide removal from natural gas[J]. Processes, 2019, 7(3): 160.
[39] SU F, LU C, CHEN H S. Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes[J]. Langmuir, 2011, 27(13): 8090-8098.
[40] BEKKERING J, BROEKHUIS A A, VAN GEMERT W J. Optimisation of a green gas supply chain – A review[J]. Bioresource Technology, 2010, 101(2): 450-456.
[41] LEUNG D Y C, CARAMANNA G, MAROTO-VALER M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
[42] QI G, FU L, CHOI B H, et al. Efficient CO2 sorbents based on silica foam with ultra-large mesopores[J]. Energy & Environmental Science, 2012, 5(6): 7368-7375.
[43] LOURENÇO M A O, NUNES C, GOMES J R B, et al. Pyrolyzed chitosan-based materials for CO2/CH4 separation[J]. Chemical Engineering Journal, 2019, 362: 364-374.
[44] SEREJO M L, POSADAS E, BONCZ M A, et al. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes[J]. Environmental Science & Technology, 2015, 49(5): 3228-3236.
[45] CHAEMCHUEN S, KABIR N A, ZHOU K, et al. Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy[J]. Chemical Society Reviews, 2013, 42(24): 9304-9332.
[46] TOLEDO-CERVANTES A, MADRID-CHIRINOS C, CANTERA S, et al. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors[J]. Bioresource Technology, 2017, 225: 336-342.
[47] VARGHESE A M, KARANIKOLOS G N. CO2 capture adsorbents functionalized by amine – bearing polymers: A review[J]. International Journal of Greenhouse Gas Control, 2020, 96: 103005.
[48] LI K, JIANG J, TIAN S, et al. Polyethyleneimine-nano silica composites: A low-cost and promising adsorbent for CO2 capture[J]. Journal of Materials Chemistry A, 2015, 3(5): 2166-2175.
[49] MENG Y, JIANG J, GAO Y, et al. Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents[J]. Journal of CO2 Utilization, 2018, 27: 89-98.
[50] ZHANG P, ZHONG Y, DING J, et al. A new choice of polymer precursor for solvent-free method: Preparation of N-enriched porous carbons for highly selective CO2 capture[J]. Chemical Engineering Journal, 2019, 355: 963-973.
[51] MENG Y, JIANG J, GAO Y, et al. Biogas upgrading to methane: Application of a regenerable polyethyleneimine-impregnated polymeric resin (NKA-9) via CO2 sorption[J]. Chemical Engineering Journal, 2019, 361: 294-303.
[52] PARDAKHTI M, JAFARI T, TOBIN Z, et al. Trends in solid adsorbent materials development for CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34533-34559.
[53] LI K, JIANG J, YAN F, et al. The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents[J]. Applied Energy, 2014, 136: 750-755.
[54] ZHOU L, FAN J, CUI G, et al. Highly efficient and reversible CO2 adsorption by amine-grafted platelet SBA-15 with expanded pore diameters and short mesochannels[J]. Greem Chemistry, 2014, 16(8): 4009-4016.
[55] WILFONG W C, KAIL B W, JONES C W, et al. Spectroscopic investigation of the mechanisms responsible for the superior stability of hybrid class 1/class 2 CO2 sorbents: A new class 4 category[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12780-12791.
[56] HICKS J C, DRESE J H, FAUTH D J, et al. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J]. Journal of the American Chemical Society, 2008, 130: 2902-2903.
[57] SUJAN A R, KUMAR D R, SAKWA-NOVAK M, et al. Poly(glycidyl amine)-loaded SBA-15 sorbents for CO2 capture from dilute and ultradilute gas mixtures[J]. ACS Applied Polymer Materials, 2019, 1(11): 3137-3147.
[58] CHENG H, SONG H, TOAN S, et al. Experimental investigation of CO2 adsorption and desorption on multi-type amines loaded HZSM-5 zeolites[J]. Chemical Engineering Journal, 2021, 406: 126882.
[59] KELLER L, OHS B, ABDULY L, et al. Carbon nanotube silica composite hollow fibers impregnated with polyethylenimine for CO2 capture[J]. Chemical Engineering Journal, 2019, 359: 476-484.
[60] YANG H, LI W, LIU J, et al. Polyethylenimine-impregnated resins: The effect of support structures on selective adsorption for CO2 from simulated biogas[J]. Chemical Engineering Journal, 2019, 355: 822-829.
[61] KANG J H, YOON T-U, KIM S-Y, et al. Extraordinarily selective adsorption of CO2 over N2 in a polyethyleneimine-impregnated NU-1000 material[J]. Microporous and Mesoporous Materials, 2019, 281: 84-91.
[62] SAKWA-NOVAK M A, JONES C W. Steam induced structural changes of a poly(ethylenimine) impregnated gamma-alumina sorbent for CO2 extraction from ambient air[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9245-9255.
[63] WANG J, HUANG L, YANG R, et al. Recent advances in solid sorbents for CO2 capture and new development trends[J]. Energy & Environmental Science, 2014, 7(11): 3478-3518.
[64] LOPEZ-ARANGUREN P, VEGA L F, DOMINGO C. A new method using compressed CO2 for the in situ functionalization of mesoporous silica with hyperbranched polymers[J]. Chemical Communications, 2013, 49: 11776-11778.
[65] LINNEEN N N, PFEFFER R, LIN Y S. CO2 adsorption performance for amine grafted particulate silica aerogels[J]. Chemical Engineering Journal, 2014, 254: 190-197.
[66] SIEGELMAN R L, MILNER P J, KIM E J, et al. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions[J]. Energy & Environmental Science, 2019, 12(7): 2161-2173.
[67] LOU F, ZHANG A, ZHANG G, et al. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure[J]. Applied Energy, 2020, 264: 114637.
[68] JO D H, JUNG H, SHIN D K, et al. Effect of amine structure on CO2 adsorption over tetraethylenepentamine impregnated poly methyl methacrylate supports[J]. Separation and Purification Technology, 2014, 125: 187-193.
[69] WANG Y, GUO T, HU X, et al. Mechanism and kinetics of CO2 adsorption for tepa-impregnated hierarchical mesoporous carbon in the presence of water vapor[J]. Powder Technology, 2020, 368: 227-236.
[70] GOEPPERT A, METH S, PRAKASH G K S, et al. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents[J]. Energy & Environmental Science, 2010, 3(12): 1949-1960.
[71] Kim C, Cho H S, Chang S, et al. An ethylenediamine-grafted y zeolite: A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation[J]. Energy & Environmental Science, 2016, 9(5): 1803-1811.
[72] HEDIN N, ANDERSSON L, BERGSTRÖM L, et al. Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption[J]. Applied Energy, 2013, 104: 418-433.
[73] YILDIZ M G, DAVRAN-CANDAN T, GÜNAY M E, et al. CO2 capture over amine-functionalized MCM-41 and SBA-15: Exploratory analysis and decision tree classification of past data[J]. Journal of CO2 Utilization, 2019, 31: 27-42.
[74] ZHANG S, RAVI S, LEE Y-R, et al. Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 241-249.
[75] SUN Y, LIU X, SUN C, et al. Synthesis and functionalisation of spherical meso-, hybrid meso/macro- and macro-porous cellular silica foam materials with regulated pore sizes for CO2 capture[J]. Journal of Materials Chemistry A, 2018, 6: 23587-23601.
[76] SANZ R, CALLEJA G, ARENCIBIA A, et al. CO2 capture with pore-expanded MCM-41 silica modified with amino groups by double functionalization[J]. Microporous and Mesoporous Materials, 2015, 209: 165-171.
[77] PATIL U, FIHRI A, EMWAS A-H, et al. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO2 capture with excellent stability and regenerability[J]. Chemical Science, 2012, 3(7): 2224-2229.
[78] QIAN X, YANG J, FEI Z, et al. A simple strategy to improve PEI dispersion on MCM-48 with long-alkyl chains template for efficient CO2 adsorption[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10975-10983.
[79] XU X, SONG C, ANDRESEN J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy & Fuels, 2002, 16: 1463-1469.
[80] SON W-J, CHOI J-S, AHN W-S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Microporous and Mesoporous Materials, 2008, 113: 31-40.
[81] YAN X, ZHANG L, ZHANG Y, et al. Amine-modified SBA-15: Effect of pore structure on the performance for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3220-3226.
[82] HEYDARI-GORJI A, YONG Y, SAYARI A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas[J]. Energy & Fuels, 2011, 25: 4206-4210.
[83] QI G, WANG Y, ESTEVEZ L, et al. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules [J]. Energy & Environmental Science, 2011, 4(2): 444-452.
[84] HAN Y, HWANG G, KIM H, et al. Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous–macroporous structure for CO2 capture[J]. Chemical Engineering Journal, 2015, 259: 653-662.
[85] SANZ-PÉREZ E S, DANTAS T C M, ARENCIBIA A, et al. Reuse and recycling of amine-functionalized silica materials for CO2 adsorption[J]. Chemical Engineering Journal, 2017, 308: 1021-1033.
[86] THI LE M U, LEE S-Y, PARK S-J. Preparation and characterization of PEI-loaded MCM-41 for CO2 capture[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12340-12346.
[87] LIU Z, TENG Y, ZHANG K, et al. CO2 adsorption performance of different amine-based siliceous MCM-41 materials[J]. Journal of Energy Chemistry, 2015, 24(3): 322-330.
[88] ZHAO P, ZHANG G, YAN H, et al. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review[J]. Chinese Journal of Chemical Engineering, 2021, 35: 17-43.
[89] CHEN C, KIM S-S, CHO W-S, et al. Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture[J]. Applied Surface Science, 2015, 332: 167-171.
[90] WANG Y, DU T, SONG Y, et al. Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture[J]. Solid State Sciences, 2017, 73: 27-35.
[91] WANG Y, DU T, QIU Z, et al. CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash[J]. Materials Chemistry and Physics, 2018, 207: 105-113.
[92] DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications[J]. Energy & Environmental Science, 2014, 7(11): 3574-3592.
[93] TANG Z, HAN Z, YANG G, et al. Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture[J]. Applied Surface Science, 2013, 277: 47-52.
[94] PENG H, ZHANG J, ZHANG J, et al. Chitosan-derived mesoporous carbon with ultrahigh pore volume for amine impregnation and highly efficient CO2 capture[J]. Chemical Engineering Journal, 2019, 359: 1159-1165.
[95] CHEN Z, DENG S, WEI H, et al. Polyethylenimine-impregnated resin for high CO2 adsorption: An efficient adsorbent for CO2 capture from simulated flue gas and ambient air[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6937-6945.
[96] MENG Y, JU T, MENG F, et al. Insights into the critical role of abundant-porosity supports in polyethylenimine functionalization as efficient and stable CO2 adsorbents[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54018-54031.
[97] LEE W R, HWANG S Y, RYU D W, et al. Diamine-functionalized metal–organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism[J]. Energy & Environmental Science, 2014, 7(2): 744-751.
[98] CHEN C, AHN W-S. CO2 capture using mesoporous alumina prepared by a sol–gel process[J]. Chemical Engineering Journal, 2011, 166(2): 646-651.
[99] YAN F, JIANG J, LIU N, et al. Green synthesis of mesoporous gamma-Al2O3 from coal fly ash with simultaneous on-site utilization of CO2[J]. Journal of Hazardous materials, 2018, 359: 535-543.
[100] 赵琰. 氧化铝(拟薄水铝石)的孔结构研究[J]. 工业催化, 2002, 10(1): 55-63.
[101] TOLEDO-CHÁVEZ G, PANIAGUA-RODRÍGUEZ J-C, ZÁRATE-MEDINA J, et al. Reactions analysis during the synthesis of pseudo-boehmite as precursor of gamma-alumina[J]. Catalysis Today, 2016, 271: 207-212.
[102] YAN X, ZHANG Y, QIAO K, et al. Clover leaf-shaped Al2O3 extrudate as a support for high-capacity and cost-effective CO2 sorbent[J]. Journal of Hazardous materials, 2011, 192: 1505-1508.
[103] BALI S, CHEN T, CHAIKITTISILP W, et al. Oxidative stability of amino polymer–alumina hybrid adsorbents for carbon dioxide capture[J]. Energy & Fuels, 2013, 27(3): 1547-1554.
[104] BHOWMIK K, CHAKRAVARTY A, BYSAKH S, et al. γ-alumina nanorod/reduced graphene oxide as support for poly(ethylenimine) to capture carbon dioxide from flue gas[J]. Energy Technology, 2016, 4(11): 1409-1419.
[105] YANG Y, XU Y, HAN B, et al. Effects of synthetic conditions on the textural structure of pseudo-boehmite[J]. Journal of Colloid and Interface Science, 2016, 469: 1-7.
[106] CHAIKITTISILP W, KIM H-J, JONES C W. Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air[J]. Energy & Fuels, 2011, 25(11): 5528-5537.
[107] GUNATHILAKE C, GANGODA M, JARONIEC M. Mesoporous alumina with amidoxime groups for CO2 sorption at ambient and elevated temperatures[J]. Industrial & Engineering Chemistry Research, 2016, 55(19): 5598-5607.
[108] YAMADA H, DAO D, FUJIKI J, et al., Mesoporous silica sorbents impregnated with blends of tetraethylenepentamine and alkanolamine for CO2 separation[J]. Separation Science and Technology, 2015, 50: 2948–2953.
[109] LIU X, ZHOU K, FARNDON M, et al. Mesocellular silica foam supported polyamine adsorbents for dry CO2 scrubbing: Performance of single versus blended polyamines for impregnation[J]. Applied Energy, 2019, 255: 113643.
[110] CHOI S, DRESE J H, JONES C W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources[J]. ChemSusChem, 2010, 2(9): 796-854.
[111] YAMADA H, CHOWDHURY F, FUJIKI J, et al. Enhancement mechanism of the CO2 adsorption–desorption efficiency of silica-supported tetraethylenepentamine by chemical modification of amino groups[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9574-9581.
[112] GADIPELLI S, PATEL H A, GUO Z. An ultrahigh pore volume drives up the amine stability and cyclic CO2 capacity of a solid-amine@carbon sorbent[J]. Advanced Materials, 2015, 27(33): 4903-4909.
[113] KISHOR R, GHOSHAL A K. High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO2 separation[J]. Chemical Engineering Journal, 2016, 300: 236-244.
[114] JEON S, JUNG H, KIM S H, et al. Double-layer structured CO2 adsorbent functionalized with modified polyethyleneimine for high physical and chemical stability[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21213-21223.
[115] SAYARI A, HEYDARI-GORJI A, YANG Y. CO2-induced degradation of amine-containing adsorbents: Reaction products and pathways[J]. Journal of the American Chemical Society, 2012, 134(33): 13834-13842.
[116] FAYAZ M, SAYARI A. Long-term effect of steam exposure on CO2 capture performance of amine-grafted silica[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43747-43754.
[117] LI W, BOLLINI P, DIDAS S A, et al. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3363-3372.
[118] CHOI W, MIN K, KIM C, et al. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption[J]. Nature Communications, 2016, 7: 12640.
[119] YANG C, DU Z, JIN J, et al. Epoxide-functionalized tetraethylenepentamine encapsulated into porous copolymer spheres for CO2 capture with superior stability[J]. Applied Energy, 2020, 260: 114265.
[120] POTTER M E, CHO K M, LEE J J, et al. Role of alumina basicity in CO2 uptake in 3-aminopropylsilyl-grafted alumina adsorbents[J]. ChemSusChem, 2017, 10(10): 2192-2201.
[121] SRINIVASAN P D, KHIVANTSEV K, TENGCO J M M, et al. Enhanced ethanol dehydration on γ-Al2O3 supported cobalt catalyst[J]. Journal of Catalysis, 2019, 373: 276-296.
[122] ZAKHAROVA M V, MASOUMIFARD N, HU Y, et al. Designed synthesis of mesoporous solid-supported lewis acid-base pairs and their CO2 adsorption behaviors[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 13199-13210.
[123] ZENG W, BAI H. Swelling-agent-free synthesis of rice husk derived silica materials with large mesopores for efficient CO2 capture[J]. Chemical Engineering Journal, 2014, 251: 1-9.
[124] PANEK R, WDOWIN M, FRANUS W, et al. Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture[J]. Journal of CO2 Utilization, 2017, 22: 81-90.
[125] WANG J, YANG Y, JIA Q, et al. Solid-waste-derived carbon dioxide-capturing materials[J]. ChemSusChem, 2019, 12(10): 2055-2082.
[126] 中华人民共和国工业和信息化部. 大宗工业固体废物综合利用“十二五”规划[R]. 2011.
[127] BLISSETT R S, ROWSON N A. A review of the multi-component utilisation of coal fly ash[J]. Fuel, 2012, 97: 1-23.
[128] CHANDRASEKAR G, SON W-J, AHN W-S. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption[J]. Journal of Porous Materials, 2008, 16(5): 545-551.
[129] 刘捷, 王泽黎, 张佳馨, 等. 高铝粉煤灰综合利用研究进展[J]. 化工设计通讯, 2020, 46(09): 147+191.
[130] 中华人民共和国国家发展和改革委员会. 关于加强高铝粉煤灰资源开发利用的指导意见[R]. 2011.
[131] 杨静, 蒋周青, 马鸿文, 等. 中国铝资源与高铝粉煤灰提取氧化铝研究进展[J]. 地学前缘, 2014, 21(05): 313-324.
[132] 颜枫. 粉煤灰合成有序介孔硅铝材料及残渣吸附CO2技术研究[D]. 清华大学, 2018.
[133] LOGANATHAN S, TIKMANI M, GHOSHAL A K. Novel pore-expanded MCM-41 for CO2 capture: Synthesis and characterization[J]. Langmuir, 2013, 29(10): 3491-3499.
[134] ZUKAL A, DOMINGUEZ I, MAYEROVA J, et al. Functionalization of delaminated zeolite ITQ-6 for the adsorption of carbon dioxide[J]. Langmuir, 2009, 25(17): 10314-10321.
[135] LIU H, LI Y, YIN C, et al. One-pot synthesis of ordered mesoporous nimo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2016, 198: 493-507.
[136] WAN Y, LIU Y, WANG Y, et al. Preparation of large-pore-volume γ-alumina nanofibers with a narrow pore size distribution in a membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(31): 8888-8894.
[137] HAO B, FANG K, XIANG L, et al. Synthesization and crystallization mechanism of nano-scale γ-AlOOH with various morphologies[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(3): 376-379.
[138] CASTELLAZZI P, NOTARO M, BUSCA G, et al. CO2 capture by functionalized alumina sorbents: Diethanolamine on γ-alumina[J]. Microporous and Mesoporous Materials, 2016, 226: 444-453.
[139] CERVENY S, SCHWARTZ G A, OTEGUI J, et al. Dielectric study of hydration water in silica nanoparticles[J]. The Journal of Physical Chemistry C, 2012, 116(45): 24340-24349.
[140] MENG X, DUAN L, XIE X, et al. Synthesis of macro-mesostructured γ-Al2O3 with large pore volume and high surface area by a facile secondary reforming method[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(2): 20-28.
[141] YAN F, JIANG J, LI K, et al. Green synthesis of nanosilica from coal fly ash and its stabilizing effect on CaO sorbents for CO2 capture[J]. Environmental Science & Technology, 2017, 51(13): 7606-7615.
[142] HUANG X, LI B, WANG S, et al. Facile in-situ synthesis of PEI-Pt modified bacterial cellulose bio-adsorbent and its distinctly selective adsorption of anionic dyes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124163.
[143] SHEN X, YAN F, LI C, et al. A green synthesis of PEI@nano-SiO2 adsorbent from coal fly ash: Selective and efficient CO2 adsorption from biogas[J]. Sustainable Energy & Fuels, 2021, 5(4): 1014-1025.
[144] 李凯敏. 固废源SiO2基固态胺材料用于CO2捕集技术及机理研究[D]. 清华大学, 2017.
[145] LAI Q, DIAO Z, KONG L, et al. Amine-impregnated silicic acid composite as an efficient adsorbent for CO2 capture[J]. Applied Energy, 2018, 223: 293-301.
[146] OUYANG J, GU W, ZHANG Y, et al. CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization[J]. Chemical Engineering Journal, 2018, 341: 432-440.
[147] YANG S, ZHAN L, XU X, et al. Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture[J]. Advanced Materials, 2013, 25(15): 2130-2134.
[148] LEE D, JIN Y, JUNG N, et al. Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array[J]. Environmental Science & Technology, 2011, 45(13): 5704-5709.
[149] JEON S, MIN J, KIM S H, et al. Introduction of cross-linking agents to enhance the performance and chemical stability of polyethyleneimine-impregnated CO2 adsorbents: Effect of different alkyl chain lengths[J]. Chemical Engineering Journal, 2020, 398: 125531.
[150] SAKWA-NOVAK M A, YOO C J, TAN S, et al. Poly(ethylenimine)-functionalized monolithic alumina honeycomb adsorbents for CO2 capture from air[J]. ChemSusChem, 2016, 9(14): 1859-1868.
[151] JUNG H, JEON S, JO D H, et al. Effect of crosslinking on the CO2 adsorption of polyethyleneimine-impregnated sorbents[J]. Chemical Engineering Journal, 2017, 307: 836-844.
[152] LAI F, YAN F, WANG P, et al. Efficient conversion of carbohydrates and biomass into furan compounds by chitin/Ag co-modified H3PW12O40 catalysts[J]. Journal of Cleaner Production, 2021, 316: 128243.
[153] SANZ-PÉREZ E S, FERNÁNDEZ A, ARENCIBIA A, et al. Hybrid amine-silica materials: Determination of N content by 29Si NMR and application to direct CO2 capture from air[J]. Chemical Engineering Journal, 2019, 373: 1286-1294.
[154] MARSHALL C P, SCHOLZ G, BRAUN T, et al. Strong lewis acidic catalysts for C-F bond activation by fluorination of activated γ-Al2O3[J]. Catalysis Science & Technology, 2019, 10(2): 391-402.
[155] YANG H, LIU M, JING O. Novel synthesis and characterization of nanosized γ-Al2O3 from kaolin[J]. Applied Clay Science, 2010, 47(3-4): 438-443.
[156] WAN C, HU M Y, JAEGERS N R, et al. Investigating the surface structure of γ-Al2O3 supported wox catalysts by high field 27Al MAS NMR and electronic structure calculations[J]. The Journal of Physical Chemistry C, 2016, 120(40): 23093-23103.
[157] FITZGERALD J J, PIEDRA G, DEC S F, et al. Dehydration studies of a high-surface-area alumina (pseudo-boehmite) using solid-state 1h and 27Al NMR[J]. Journal of the American Chemical Society, 1997, 119: 7832-7842..
[158] HARPE A V, PETERSEN H, LI Y, et al. Characterization of commercially available and synthesized polyethylenimines for gene delivery[J]. Journal of Controlled Release, 2000, 69(2): 309-322.
[159] HOLYCROSS D R, CHAI M. Comprehensive NMR studies of the structures and properties of PEI polymers[J]. Macromolecules, 2013, 46(17): 6891-6897.
[160] GUO M, LIANG S, LIU J, et al. Epoxide-functionalization of grafted tetraethylenepentamine on the framework of an acrylate copolymer as a CO2 sorbent with long cycle stability[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3853-3864.
[161] CHEN C, XU H, JIANG Q, et al. Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents[J]. Energy, 2021, 214: 119093.
[162] 蔡卫权, 余小锋. 高比表面大中孔拟薄水铝石和γ-Al2O3的制备研究[J].化学进展, 2007, 19(09): 1322-1330.
[163] CAI W, LI H, ZHANG Y. Influences of processing techniques of the H2O2-precipitated pseudoboehmite on the structural and textural properties of γ-Al2O3[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295(1-3): 185-192.
[164] CAI W, LI H, ZHANG Y. Azeotropic distillation-assisted preparation of macro-mesostructured γ-Al2O3 nanofibres of crumpled sheet-like morphology[J]. Materials Chemistry and Physics, 2006, 96(1): 136-139.
[165] KALISZEWSKI M S, HEUER A H. Alcohol interaction with zirconia powders[J]. Journal of the American Ceramic Society, 1990, 73(6): 1504-1509.
[166] JONES S L, NORMAN C J. Dehydration of hydrous zirconia with methanol[J]. Journal of the American Ceramic Society, 1988, 71(4): C190-C191.
[167] MASKARA A, SMITH D M. Agglomeration during the drying of fine silica powders, part II: The role of particle solubility[J]. Journal of the American Ceramic Society, 1997, 80(7): 1715-1722.
[168] MARESZ K, CIEMIĘGA A, MALINOWSKI J J, et al. Effect of support structure and polyamine type on CO2 capture in hierarchically structured monolithic sorbents[J]. Chemical Engineering Journal, 2019, 383: 123175.
[169] ZHANG L, ZHAN N, JIN Q, et al. Impregnation of polyethylenimine in mesoporous multilamellar silica vesicles for CO2 capture: A kinetic study[J]. Industrial & Engineering Chemistry Research, 2016, 55(20): 5885-5891.
[170] LIU Q, SHI J, ZHENG S, et al. Kinetics studies of CO2 adsorption/desorption on amine-functionalized multiwalled carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2014, 53(29): 11677-11683.
[171] MIN K, CHOI W, KIM C, et al. Rational design of the polymeric amines in solid adsorbents for postcombustion carbon dioxide capture[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23825-23833.
[172] MELLO M R, PHANON D, SILVEIRA G Q, et al. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture[J]. Microporous and Mesoporous Materials, 2011, 143(1): 174-179.
[173] ZHANG H, YANG L, GANZ E. Adsorption properties and microscopic mechanism of CO2 capture in 1,1-dimethyl-1,2-ethylenediamine-grafted metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18533-18540.
[174] WAN M, ZHU H, LI Y, et al. Novel CO2-capture derived from the basic ionic liquids orientated on mesoporous materials[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12947-12955.
[175] JI W, TANG Q, SHEN Z, et al. The adsorption of phosphate on hydroxylated alpha-SiO2 (0 0 1) surface and influence of typical anions: A theoretical study[J]. Applied Surface Science, 2020, 501: 144233.
[176] LI K, LU L, XU Y, et al. The use of metal nitrate-modified amorphous nano silica for synthesizing solid amine CO2 adsorbents with resistance to urea linkage formation[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103289.
[177] LI K, JIANG J, CHEN X, et al. Research on urea linkages formation of amine functional adsorbents during CO2 capture process: Two key factors analysis, temperature and moisture[J]. The Journal of Physical Chemistry C, 2016, 120(45): 25892-25902.
[178] ZHAO P, ZHANG G, XU Y, et al. Amine functionalized hierarchical bimodal mesoporous silicas as a promising nanocomposite for highly efficient CO2 capture[J]. Journal of CO2 Utilization, 2019, 34: 543-557.
[179] MILLER D D, YU J, CHUANG S S C. Unraveling the structure and binding energy of adsorbed CO2/H2O on amine sorbents[J]. The Journal of Physical Chemistry C, 2020, 124(45): 24677-24689.
[180] ZHANG G, ZHAO P, HAO L, et al. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support[J]. Separation and Purification Technology, 2019, 209: 516-527.
[181] ZHANG G, ZHAO P, HAO L, et al. Amine-modified SBA-15: A promising adsorbent for CO2 capture[J]. Journal of CO2 Utilization, 2018, 24: 22-33.
[182] MIN K, CHOI W, CHOI M. Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent[J]. ChemSusChem, 2017, 10(11): 2518-2526.
[183] SAYARI A, BELMABKHOUT Y. Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor[J]. Journal of the American Chemical Society, 2010, 132(18): 6312-6314.
[184] LIU L, JIN S, KO K, et al. Alkyl-functionalization of (3-aminopropyl)triethoxysilane-grafted zeolite beta for carbon dioxide capture in temperature swing adsorption[J]. Chemical Engineering Journal, 2020, 382: 122834.
[185] HAMDY L B, WAKEHAM R J, TADDEI M, et al. Epoxy cross-linked polyamine CO2 sorbents enhanced via hydrophobic functionalization[J]. Chemistry of Materials, 2019, 31(13): 4673-4684.
[186] MIN K, CHOI W, KIM C, et al. Oxidation-stable amine-containing adsorbents for carbon dioxide capture[J]. Nature Communications, 2018, 9(1): 726.
[187] VU Q T, YAMADA H, YOGO K. Effects of amine structures on oxidative degradation of amine-functionalized adsorbents for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2021, 60(13): 4942-4950.
[188] MENG Y, JIANG J, AIHEMAITI A, et al. Feasibility of CO2 capture from O2-containing flue gas using a poly(ethylenimine)-functionalized sorbent: Oxidative stability in long-term operation[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33781-33791.
[189] BOLLINI P, CHOI S, DRESE J H, et al. Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO2 capture[J]. Energy & Fuels, 2011, 25(5): 2416-2425.
[190] AHMADALINEZHAD A, SAYARI A. Oxidative degradation of silica-supported polyethylenimine for CO2 adsorption: Insights into the nature of deactivated species[J]. Physical Chemistry Chemical Physics, 2014, 16(4): 1529-1535.
[191] SRIKANTH C S, CHUANG S S. Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO2 capture[J]. ChemSusChem, 2012, 5(8): 1435-1442.
[192] MENG Y, JU T, HAN S, et al. Discovering the interference of hydrogen sulfide on polyethylenimine-functionalized porous resin for biogas upgrading via CO2 adsorption[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(44): 14722-14734.
[193] THOMPSON S J, SOUKRI M, LAIL M. Phosphorous dendrimer bound polyethyleneimine as solid sorbents for post-combustion CO2 capture[J]. Chemical Engineering Journal, 2018, 350: 1056-1065.

Academic Degree Assessment Sub committee
环境科学与工程学院
Domestic book classification number
TQ028.8
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/355656
DepartmentSchool of Environmental Science and Engineering
Recommended Citation
GB/T 7714
沈雪华. 粉煤灰源铝基固态胺CO2吸附剂制备及其用于沼气纯化研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849588-沈雪华-环境科学与工程(20665KB) Open Access--View Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[沈雪华]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[沈雪华]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[沈雪华]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 11849588-沈雪华-环境科学与工程学院.pdf
Format: Adobe PDF
File name: 11849588-沈雪华-环境科学与工程学院.pdf
Format: Adobe PDF
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.