中文版 | English

Novel antimicrobial stainless steel: metallurgical route and applications

Name pinyin
LIU Litao
School number
Mechanical Engineering
Mentor unit
Tutor of External Organizations
Tutor units of foreign institutions
Publication Years
Submission date
Place of Publication

Stainless steel (SS) is one of the most widely used affordable materials in hospitals, food industries, and public areas but suffers from a lack of antimicrobial properties. The addition of some alloying elements such as Ag, Cu, and Zn can offer a long-term antimicrobial property for regular SS, killing the pathogen bacteria and viruses on the surface.

The present thesis aims to study the effect of microstructures and chemical composition on the antimicrobial properties of SS. Two major SS kinds are covered, i.e., Ag-containing SS and Cu-containing SS. Firstly, the effect of the size and distribution of Ag phases on the antibacterial properties of Ag-containing SS were studied. Ag-containing SS with tailored average distances between the Ag phases inside the SS matrix is prepared via the designed powder metallurgy (PM) method. It allows controlling the contact between bacteria and Ag phases. The study suggests that in addition to the released Ag ion concentration, the contact killing mechanism can significantly affect the antibacterial properties of Ag-containing SS.

Next, the antibacterial properties of Ag-containing SS under different bacterial densities were investigated. Because of the extremely low solid solubility of Ag within SS, the current casting Ag-containing SS fails to obtain an excellent antibacterial rate at elevated bacterial densities. As indicated by the importance of contact killing, this work proposes that a higher density of Ag-rich particles in SS can provide better antibacterial properties. Consequently, the work employs the ball milling technique to introduce a high density of nano-sized Ag particles in the SS matrix. It is found that this Ag-containing SS has exhibited an improved antibacterial property against high bacterial densities compared with the casting Ag-containing SS though the Ag content is the same.

The present thesis demonstrates the superiority of intensive nano-sized Ag particles for the antibacterial performances of Ag-containing SS. Hence, it is vital to develop a cost-effective way for fabrication. For solutions, the thesis proposes a novel method to prepare Ag-containing SS using the gas atomization process. The resulted Ag-containing SS powder and sintered bulk alloy contain a high density of nano-sized Ag particles in the steel matrix, confirmed by the small angle neutron scattering (SANS). It is believed that these fine Ag particles are precipitated from the steel liquid in the fast cooling process of gas atomization, as Ag barely has a solubility in solid SS.

Previous studies have mainly focused on the antibacterial properties of SS. Therefore, this thesis section intends to investigate if traditional SS can be modified to inactivate both pathogen bacteria and viruses. The stabilities of typical viruses and bacteria on the surface of Cu-containing SS, pure Cu, Ag-containing SS, and pure Ag are evaluated. It is discovered that pure Ag and Ag-containing SS surfaces do not display apparent inhibitory effects on the testing viruses. In comparison, pure Cu and Cu-containing SS with a high Cu content exhibit significant antiviral properties. Significantly, this developed antimicrobial SS is the first anti-COVID-19 SS, which may help reduce the risk of accidental infection in public areas.

Training classes
Enrollment Year
Year of Degree Awarded
References List


[1] J.P. Springston, L. Yocavitch, Existence and control of Legionella bacteria in building water systems: A review, Journal of Occupational and Environmental Hygiene 14(2) (2017) 124-134.

[2] A.W.H. Chin, J.T.S. Chu, M.R.A. Perera, K.P.Y. Hui, H.L. Yen, M.C.W. Chan, M. Peiris, L.L.M. Poon, Stability of SARS-CoV-2 in different environmental conditions, Lancet Microbe 1(1) (2020) E10-E10.

[3] C.P. Sharps, G. Kotwal, J.L. Cannon, Human Norovirus Transfer to Stainless Steel and Small Fruits during Handling, Journal of Food Protection 75(8) (2012) 1437-1446.

[4] S.L. Warnes, Z.R. Little, C.W. Keevil, Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials, Mbio 6(6) (2015).

[5] J.R. Flanders, F.H. Yildiz, Biofilms as reservoirs for disease, Microbial biofilms, American Society of Microbiology2004, pp. 314-331.

[6] L.J. Kagan, A.E. Aiello, E. Larson, The role of the home environment in the transmission of infectious diseases, Journal of community health 27(4) (2002) 247-267.

[7] A. Rampling, S. Wiseman, L. Davis, A. Hyett, A. Walbridge, G. Payne, A. Cornaby, Evidence that hospital hygiene is important in the control of methicillin-resistant Staphylococcus aureus, Journal of Hospital Infection 49(2) (2001) 109-116.

[8] S.J. Dancer, Mopping up hospital infection, Journal of hospital infection 43(2) (1999) 85-100.

[9] E.A. Zottola, K.C. Sasahara, Microbial biofilms in the food processing industry—should they be a concern?, International journal of food microbiology 23(2) (1994) 125-148.

[10] H.A. Videla, W.G. Characklis, Biofouling and microbially influenced corrosion, International Biodeterioration & Biodegradation 29(3-4) (1992) 195-212.

[11] L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu, Z.J. Shen, Dislocation network in additive manufactured steel breaks strength-ductility trade-off, Materials Today 21(4) (2018) 354-361.

[12] H.W. Huang, Z.B. Wang, J. Lu, K. Lu, Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer, Acta Materialia 87 (2015) 150-160.

[13] C. Herrera, D. Ponge, D. Raabe, Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Materialia 59(11) (2011) 4653-4664.

[14] F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles, Acta Materialia 60(3) (2012) 1059-1071.

[15] N. Lopez, M. Cid, M. Puiggali, Influence of sigma-phase on mechanical properties and corrosion resistance of duplex stainless steels, Corros Sci 41(8) (1999) 1615-1631.

[16] H.D. Kusumaningrum, G. Riboldi, W.C. Hazeleger, R.R. Beumer, Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods, Int J Food Microbiol 85(3) (2003) 227-236.

[17] S.A. Wilks, H. Michels, C.W. Keevil, The survival of Escherichia coli O157 on a range of metal surfaces, Int J Food Microbiol 105(3) (2005) 445-454.

[18] N. van Doremalen, T. Bushmaker, D.H. Morris, M.G. Holbrook, A. Gamble, B.N. Williamson, A. Tamin, J.L. Harcourt, N.J. Thornburg, S.I. Gerber, J.O. Lloyd-Smith, E. de Wit, V.J. Munster, Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1, New Engl J Med 382(16) (2020) 1564-1567.

[19] J.O. Noyce, H. Michels, C.W. Keevil, Inactivation of influenza A virus on copper versus stainless steel surfaces, Appl Environ Microbiol 73(8) (2007) 2748-50.

[20] S.M. Wu, S. Altenried, A. Zogg, F. Zuber, K. Maniura-Weber, Q. Ren, Role of the Surface Nanoscale Roughness of Stainless Steel on Bacterial Adhesion and Microcolony Formation, Acs Omega 3(6) (2018) 6456-6464.

[21] S. Bagherifard, D.J. Hickey, A.C. de Luca, V.N. Malheiro, A.E. Markaki, M. Guagliano, T.J. Webster, The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel, Biomaterials 73 (2015) 185-197.

[22] J.M. Schierholz, L.J. Lucas, A. Rump, G. Pulverer, Efficacy of silver-coated medical devices, J Hosp Infect 40(4) (1998) 257-262.

[23] M.A. Wassall, M. Santin, C. Isalberti, M. Cannas, S.P. Denyer, Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins, J Biomed Mater Res 36(3) (1997) 325-330.

[24] P. Evans, D. Sheel, Photoactive and antibacterial TiO2 thin films on stainless steel, Surface and Coatings Technology 201(22-23) (2007) 9319-9324.

[25] S. Yuan, D. Wan, B. Liang, S. Pehkonen, Y. Ting, K. Neoh, E. Kang, Lysozyme-coupled poly (poly (ethylene glycol) methacrylate)− stainless steel hybrids and their antifouling and antibacterial surfaces, Langmuir 27(6) (2011) 2761-2774.

[26] N. Hutasoit, B. Kennedy, S. Hamilton, A. Luttick, R.A.R. Rashid, S. Palanisamy, Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology, Manufacturing Letters 25 (2020) 93-97.

[27] W.J. Yang, T. Cai, K.-G. Neoh, E.-T. Kang, G.H. Dickinson, S.L.-M. Teo, D. Rittschof, Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel, Langmuir 27(11) (2011) 7065-7076.

[28] K.R. Sreekumari, K. Nandakumar, K. Takao, Y. Kikuchi, Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion, Isij Int 43(11) (2003) 1799-1806.

[29] W.C. Chiang, I.S. Tseng, P. Moller, L.R. Hilbert, T. Tolker-Nielsen, J.K. Wu, Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance, Mater Chem Phys 119(1-2) (2010) 123-130.

[30] C.F. Huang, H.J. Chiang, W.C. Lan, H.H. Chou, K.L. Ou, C.H. Yu, Development of silver-containing austenite antibacterial stainless steels for biomedical applications Part I: microstructure characteristics, mechanical properties and antibacterial mechanisms, Biofouling 27(5) (2011) 449-457.

[31] Y. Xuan, C. Zhang, N.Q. Fan, Z.G. Yang, Antibacterial Property and Precipitation Behavior of Ag-Added 304 Austenitic Stainless Steel, Acta Metall Sin-Engl 27(3) (2014) 539-545.

[32] G. Zhao, S.E. Stevens, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals 11(1) (1998) 27-32.

[33] A.D. Russell, W.B. Hugo, Antimicrobial activity and action of silver, Prog Med Chem 31 (1994) 351-70.

[34] T.J. Berger, J.A. Spadaro, R. Bierman, S.E. Chapin, R.O. Becker, Antifungal Properties of Electrically Generated Metallic-Ions, Antimicrob Agents Ch 10(5) (1976) 856-860.

[35] G. Grass, C. Rensing, M. Solioz, Metallic Copper as an Antimicrobial Surface, Appl Environ Microb 77(5) (2011) 1541-1547.

[36] T. Berger, J. Spadaro, R. Bierman, S. Chapin, R. Becker, Antifungal properties of electrically generated metallic ions, Antimicrob Agents Ch 10(5) (1976) 856-860.

[37] V.N. Golubovich, I.L. Rabotnova, Kinetics of Growth-Inhibition in Candida-Utilis by Silver Ions, Microbiology+ 43(6) (1974) 948-950.

[38] T. Yoshioka, M. Yasuda, H. Miyamura, S. Kikuchi, K. Tokumistu, Structure of Fe-Ag super-laminates fabricated by repeated rolling and mechanically alloyed Fe-Ag powder, Mater Sci Forum 386-3 (2002) 503-508.

[39] L. Liu, Y. Li, K. Yu, M. Zhu, H. Jiang, P. Yu, M. Huang, A novel stainless steel with intensive silver nanoparticles showing superior antibacterial property, Materials Research Letters 9(6) (2021) 270-277.

[40] J.K.L. Lai, C.H. Shek, K.H. Lo, Stainless steels: An introduction and their recent developments, Bentham Science Publishers2012.

[41] E. Folkhard, Welding metallurgy of stainless steels, Springer Science & Business Media2012.

[42] H. Bhadeshia, S.R. Honeycombe, 4-The effects of alloying elements on iron-carbon alloys, Steels (Third Edition) (2006) 71-93.

[43] J. Beddoes, J.G. Parr, Introduction to stainless steels, 3, (1999).

[44] A.J. Sedriks, Corrosion of stainless steel, 2, (1996).

[45] T. Xi, M.B. Shahzad, D.K. Xu, Z.Q. Sun, J.L. Zhao, C.G. Yang, M. Qi, K. Yang, Effect of copper addition on mechanical properties, and antibacterial property of 316L stainless steel corrosion resistance, Mat Sci Eng C-Mater 71 (2017) 1079-1085.

[46] J. Banas, A. Mazurkiewicz, The effect of copper on passivity and corrosion behaviour of ferritic and ferritic–austenitic stainless steels, Materials Science and Engineering: A 277(1-2) (2000) 183-191.

[47] O. Barber, A. Khan, E.M. Hartmann, D. Isheim, S. Vaynman, Q.J. Wang, Y.-W. Chung, ANTIMICROBIAL COPPER-CONTAINING STAINLESS STEELS SHOW PROMISE: Given the demonstrated antimicrobial properties of copper, it is incumbent upon materials scientists to design potent antimicrobial copper-containing stainless steels as an economical option, Advanced Materials & Processes 178(6) (2020) 25-29.

[48] C.R. Arciola, D. Campoccia, L. Montanaro, Implant infections: adhesion, biofilm formation and immune evasion, Nature Reviews Microbiology 16(7) (2018) 397-409.

[49] R.D. Klein, S.J. Hultgren, Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies, Nature Reviews Microbiology 18(4) (2020) 211-226.

[50] H.A. Videla, L.K. Herrera, Microbiologically influenced corrosion: looking to the future, International microbiology 8(3) (2005) 169.

[51] Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, Antibacterial surface design of biomedical titanium materials for orthopedic applications, Journal of Materials Science & Technology (2020).

[52] T.F. Moriarty, U. Schlegel, S. Perren, R.G. Richards, Infection in fracture fixation: can we influence infection rates through implant design?, Journal of Materials Science: Materials in Medicine 21(3) (2010) 1031-1035.

[53] J. Hendriks, J. Van Horn, H. Van Der Mei, H. Busscher, Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection, Biomaterials 25(3) (2004) 545-556.

[54] D. YACHIA, Overview: role of stents in urology, Journal of endourology 11(6) (1997) 379-382.

[55] E.M. Hetrick, M.H. Schoenfisch, Reducing implant-related infections: active release strategies, Chemical Society Reviews 35(9) (2006) 780-789.

[56] S. Yuan, S. Pehkonen, Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study, Colloids and Surfaces B: Biointerfaces 59(1) (2007) 87-99.

[57] J. Li, Z. Liu, C. Du, X. Li, Revealing bioinorganic interface in microbiologically influenced corrosion with FIB-SEM/TEM, Corros Sci 173 (2020) 108763.

[58] D. Liu, H. Yang, J. Li, J. Li, Y. Dong, C. Yang, Y. Jin, L. Yassir, Z. Li, D. Hernandez, Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy, Journal of Materials Science & Technology 79 (2021) 101-108.

[59] Y.Q. Li, Y.L. Huang, J.J. Yang, Z.H. Liu, Y.N. Li, X.T. Yao, B. Wei, Z.Z. Tang, S.D. Chen, D.C. Liu, Z. Hu, J.J. Liu, Z.H. Meng, S.F. Nie, X.B. Yang, Bacteria and poisonous plants were the primary causative hazards of foodborne disease outbreak: a seven-year survey from Guangxi, South China, Bmc Public Health 18 (2018).

[60] E.F.S. Authority, E.C.f.D. Prevention, Control, The European Union Summary REPORT on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2012, EFSA Journal 12(2) (2014) 3547.

[61] R. Fink, D. Okanovič, G. Dražič, A. Abram, M. Oder, M. Jevšnik, K. Bohinc, Bacterial adhesion capacity on food service contact surfaces, International journal of environmental health research 27(3) (2017) 169-178.

[62] E. Tuladhar, W.C. Hazeleger, M. Koopmans, M.H. Zwietering, R.R. Beumer, E. Duizer, Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection, Appl Environ Microb 78(21) (2012) 7769-7775.

[63] T. Mattila‐Sandholm, G. Wirtanen, Biofilm formation in the industry: a review, Food reviews international 8(4) (1992) 573-603.

[64] C.H. Owen, Managing Hospital Infection Control for Cost‐Effectiveness: A Strategy for Reducing Infectious Complications, Wiley Online Library, 1987.

[65] A.W. Smith, Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems?, Advanced drug delivery reviews 57(10) (2005) 1539-1550.

[66] J.W.T. Wimpenny, R. Colasanti, A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models, Fems Microbiology Ecology 22(1) (1997) 1-16.

[67] L.A. Pratt, R. Kolter, Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili, Molecular Microbiology 30(2) (1998) 285-293.

[68] G.A. O'Toole, R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Molecular Microbiology 28(3) (1998) 449-461.

[69] G.A. O'Toole, R. Kolter, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Molecular microbiology 30(2) (1998) 295-304.

[70] Y.T.N. Yu, M. Kleiner, G.J. Velicer, Spontaneous Reversions of an Evolutionary Trait Loss Reveal Regulators of a Small RNA That Controls Multicellular Development in Myxobacteria, Journal of Bacteriology 198(23) (2016) 3142-3151.

[71] L. Sbordone, C. Bortolaia, Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease, Clinical Oral Investigations 7(4) (2003) 181-188.

[72] F. Cieplik, E. Zaura, B.W. Brandt, M.J. Buijs, W. Buchalla, W. Crielaard, M.L. Laine, D.M. Deng, R.A.M. Exterkate, Microcosm biofilms cultured from different oral niches in periodontitis patients, Journal of Oral Microbiology 11(1) (2019).

[73] B. Kouidhi, Y.M.A. Al Qurashi, K. Chaieb, Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment, Microbial Pathogenesis 80 (2015) 39-49.

[74] H. Wu, C. Moser, H.Z. Wang, N. Hoiby, Z.J. Song, Strategies for combating bacterial biofilm infections, International Journal of Oral Science 7(1) (2015) 1-7.

[75] P. Zhao, T. Zhao, M. Doyle, J. Rubino, J. Meng, Development of a model for evaluation of microbial cross-contamination in the kitchen, Journal of food protection 61(8) (1998) 960-963.

[76] F. Alam, K. Balani, Adhesion force of staphylococcus aureus on various biomaterial surfaces, Journal of the mechanical behavior of biomedical materials 65 (2017) 872-880.

[77] L. Mei, H.J. Busscher, H.C. van der Mei, Y. Ren, Influence of surface roughness on streptococcal adhesion forces to composite resins, Dental Materials 27(8) (2011) 770-778.

[78] C. Wang, Y. Zhao, S. Zheng, J. Xue, J. Zhou, Y. Tang, L. Jiang, W. Li, Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria: an AFM study, Scanning 37(5) (2015) 313-321.

[79] M.P. Ortega, T. Hagiwara, H. Watanabe, T. Sakiyama, Adhesion behavior and removability of Escherichia coli on stainless steel surface, Food Control 21(4) (2010) 573-578.

[80] L.R. Hilbert, D. Bagge-Ravn, J. Kold, L. Gram, Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, International biodeterioration & biodegradation 52(3) (2003) 175-185.

[81] C. Spengler, F. Nolle, J. Mischo, T. Faidt, S. Grandthyll, N. Thewes, M. Koch, F. Müller, M. Bischoff, M.A. Klatt, Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry, Nanoscale 11(42) (2019) 19713-19722.

[82] C. De Giorgi, V. Furlan, A.G. Demir, E. Tallarita, G. Candiani, B. Previtali, Laser micropolishing of AISI 304 stainless steel surfaces for cleanability and bacteria removal capability, Appl Surf Sci 406 (2017) 199-211.

[83] J. Zhang, J. Huang, C. Say, R.L. Dorit, K. Queeney, Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates, Journal of colloid and interface science 519 (2018) 203-213.

[84] C.-W. Chan, L. Carson, G.C. Smith, A. Morelli, S. Lee, Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering, Appl Surf Sci 404 (2017) 67-81.

[85] S. Abban, M. Jakobsen, L. Jespersen, Attachment behaviour of Escherichia coli K12 and Salmonella Typhimurium P6 on food contact surfaces for food transportation, Food microbiology 31(2) (2012) 139-147.

[86] S.H. Yoon, N. Rungraeng, W. Song, S. Jun, Superhydrophobic and superhydrophilic nanocomposite coatings for preventing Escherichia coli K-12 adhesion on food contact surface, Journal of Food Engineering 131 (2014) 135-141.

[87] Q. Pan, Y. Cao, W. Xue, D. Zhu, W. Liu, Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property, Langmuir 35(35) (2019) 11414-11421.

[88] M. Mateescu, S. Knopf, F.d.r. Mermet, P. Lavalle, L. Vonna, Role of trapped air in the attachment of staphylococcus aureus on superhydrophobic silicone elastomer surfaces textured by a femtosecond laser, Langmuir 36(5) (2019) 1103-1112.

[89] X. Zhu, D. Jańczewski, S. Guo, S.S.C. Lee, F.J. Parra Velandia, S.L.-M. Teo, T. He, S.R. Puniredd, G.J. Vancso, Polyion multilayers with precise surface charge control for antifouling, ACS applied materials & interfaces 7(1) (2015) 852-861.

[90] R.J. Smith, M.G. Moule, P. Sule, T. Smith, J.D. Cirillo, J.C. Grunlan, Polyelectrolyte multilayer nanocoating dramatically reduces bacterial adhesion to polyester fabric, ACS biomaterials science & engineering 3(8) (2017) 1845-1852.

[91] X. Zhu, S. Guo, T. He, S. Jiang, D. Jańczewski, G.J. Vancso, Engineered, robust polyelectrolyte multilayers by precise control of surface potential for designer protein, cell, and bacteria Adsorption, Langmuir 32(5) (2016) 1338-1346.

[92] T. Wang, L. Huang, Y. Liu, X. Li, C. Liu, S. Handschuh-Wang, Y. Xu, Y. Zhao, Y. Tang, Robust biomimetic hierarchical diamond architecture with a self-cleaning, antibacterial, and antibiofouling surface, ACS applied materials & interfaces 12(21) (2020) 24432-24441.

[93] J. Hoque, S. Ghosh, K. Paramanandham, J. Haldar, Charge-switchable polymeric coating kills bacteria and prevents biofilm formation in vivo, ACS applied materials & interfaces 11(42) (2019) 39150-39162.

[94] Y. Wang, T.S. Corbitt, S.D. Jett, Y. Tang, K.S. Schanze, E.Y. Chi, D.G. Whitten, Direct visualization of bactericidal action of cationic conjugated polyelectrolytes and oligomers, Langmuir 28(1) (2012) 65-70.

[95] L. Liu, W. Peng, X. Zhang, J. Peng, P. Liu, J. Shen, Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates, Journal of Materials Science & Technology 62 (2021) 96-106.

[96] S. Pogodin, J. Hasan, V.A. Baulin, H.K. Webb, V.K. Truong, T.H.P. Nguyen, V. Boshkovikj, C.J. Fluke, G.S. Watson, J.A. Watson, Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces, Biophysical journal 104(4) (2013) 835-840.

[97] G.S. Watson, D.W. Green, B.W. Cribb, C.L. Brown, C.R. Meritt, M.J. Tobin, J. Vongsvivut, M. Sun, A.-P. Liang, J.A. Watson, Insect analogue to the lotus leaf: a planthopper wing membrane incorporating a low-adhesion, nonwetting, superhydrophobic, bactericidal, and biocompatible surface, ACS applied materials & interfaces 9(28) (2017) 24381-24392.

[98] D.P. Linklater, S. Juodkazis, R.J. Crawford, E.P. Ivanova, Mechanical inactivation of Staphylococcus aureus and Pseudomonas aeruginosa by titanium substrata with hierarchical surface structures, Materialia 5 (2019) 100197.

[99] M. Yang, Y. Ding, X. Ge, Y. Leng, Control of bacterial adhesion and growth on honeycomb-like patterned surfaces, Colloids and Surfaces B: Biointerfaces 135 (2015) 549-555.

[100] M.V. Graham, A.P. Mosier, T.R. Kiehl, A.E. Kaloyeros, N.C. Cady, Development of antifouling surfaces to reduce bacterial attachment, Soft Matter 9(27) (2013) 6235-6244.

[101] A. Pantazi, M. Vardaki, G. Mihai, D. Ionita, A.B. Stoian, M. Enachescu, I. Demetrescu, Understanding surface and interface properties of modified Ti50Zr with nanotubes, Appl Surf Sci 506 (2020) 144661.

[102] L.-N. Wang, J.-L. Luo, Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method, Materials Science and Engineering: C 31(4) (2011) 748-754.

[103] W. Feng, N. Liu, L. Gao, Q. Zhou, L. Yu, X. Ye, J. Huo, X. Huang, P. Li, W. Huang, Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines, Journal of Materials Science & Technology 69 (2021) 188-199.

[104] P. Tang, W. Zhang, Y. Wang, B. Zhang, H. Wang, C. Lin, L. Zhang, Effect of superhydrophobic surface of titanium on staphylococcus aureus adhesion, Journal of Nanomaterials 2011 (2011).

[105] J.K. Oh, X. Lu, Y. Min, L. Cisneros-Zevallos, M. Akbulut, Bacterially antiadhesive, optically transparent surfaces inspired from rice leaves, ACS applied materials & interfaces 7(34) (2015) 19274-19281.

[106] W.X. Tian, S. Yu, M. Ibrahim, A.W. Almonaofy, L. He, Q. Hui, Z. Bo, B. Li, G.L. Xie, Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria, J Microbiol 50(4) (2012) 586-593.

[107] H. Qin, Y. Zhao, Z. An, M. Cheng, Q. Wang, T. Cheng, Q. Wang, J. Wang, Y. Jiang, X. Zhang, Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy, Biomaterials 53 (2015) 211-220.

[108] L. Zhang, J. Guo, T. Yan, Y. Han, Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants, Appl Surf Sci 434 (2018) 633-642.

[109] Y.Z. Wan, S. Raman, F. He, Y. Huang, Surface modification of medical metals by ion implantation of silver and copper, Vacuum 81(9) (2007) 1114-1118.

[110] H.-w. Ni, H.-s. Zhang, R.-s. Chen, W.-t. Zhan, K.-f. Huo, Z.-y. Zuo, Antibacterial properties and corrosion resistance of AISI 420 stainless steels implanted by silver and copper ions, International Journal of Minerals Metallurgy and Materials 19(4) (2012) 322-327.

[111] W. Zhang, Y. Zhang, J. Ji, Q. Yan, A. Huang, P.K. Chu, Antimicrobial polyethylene with controlled copper release, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 83(3) (2007) 838-844.

[112] S. Chen, M. Lo, J. Zhang, J. Dong, K. Yang, Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel, Acta Metallurgica Sinica(China) 40(3) (2004) 314-318.

[113] D. Sun, D.K. Xu, C.G. Yang, M.B. Shahzad, Z.Q. Sun, J. Xia, J.L. Zhao, T.Y. Gu, K. Yang, G.X. Wang, An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel, Sci Rep-Uk 6 (2016).

[114] L. Nan, G. Ren, D. Wang, K. Yang, Antibacterial performance of Cu-bearing stainless steel against Staphylococcus aureus and Pseudomonas aeruginosa in whole milk, Journal of Materials Science & Technology 32(5) (2016) 445-451.

[115] H. Xiang, P. GUO, Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel I. Microstructure and evolution of copper-rich phase, Acta Metall Sin 48(9) (2012) 1081-1088.

[116] A. Hermas, K. Ogura, S. Takagi, T. Adachi, Effects of alloying additions on corrosion and passivation behaviors of type 304 stainless steel, Corrosion 51(01) (1995).

[117] H.-T. Lin, W.-T. Tsai, J.-T. Lee, C.-S. Huang, The electrochemical and corrosion behavior of austenitic stainless steel containing Cu, Corros Sci 33(5) (1992) 691-697.

[118] T. Sourisseau, E. Chauveau, B. Baroux, Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media, Corros Sci 47(5) (2005) 1097-1117.

[119] J. Jiang, D. Xu, T. Xi, M.B. Shahzad, M.S. Khan, J. Zhao, X. Fan, C. Yang, T. Gu, K. Yang, Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel, Corros Sci 113 (2016) 46-56.

[120] Z. Jiao, J. Luan, M. Miller, C.T. Liu, Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles, Acta Materialia 97 (2015) 58-67.

[121] M.D. Mulholland, D.N. Seidman, Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel, Acta Materialia 59(5) (2011) 1881-1897.

[122] M. Fine, D. Isheim, Origin of copper precipitation strengthening in steel revisited, Scripta Materialia 53(1) (2005) 115-118.

[123] T. Xi, M.B. Shahzad, D. Xu, J. Zhao, C. Yang, M. Qi, K. Yang, Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study, Materials Science and Engineering: A 675 (2016) 243-252.

[124] D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale, Acta Materialia 54(3) (2006) 841-849.

[125] R.P. Kolli, D.N. Seidman, The temporal evolution of the decomposition of a concentrated multicomponent Fe–Cu-based steel, Acta Materialia 56(9) (2008) 2073-2088.

[126] B.M. Gonzalez, C.S.B. Castro, V.T.L. Buono, J.M.C. Vilela, M.S. Andrade, J.M.D.d. Moraes, M.J. Mantel, The influence of copper addition on the formability of AISI 304 stainless steel, Materials Science and Engineering: A 343(1-2) (2003) 51-56.

[127] I.T. Hong, C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 393(1-2) (2005) 213-222.

[128] K.D. Karlin, Metalloenzymes, structural motifs, and inorganic models, Science 261(5122) (1993) 701-708.

[129] C.E. Santo, E.W. Lam, C.G. Elowsky, D. Quaranta, D.W. Domaille, C.J. Chang, G. Grass, Bacterial killing by dry metallic copper surfaces, Appl Environ Microb 77(3) (2011) 794-802.

[130] Y. Yoshida, S. Furuta, E. Niki, Effects of metal chelating agents on the oxidation of lipids induced by copper and iron, Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1210(1) (1993) 81-88.

[131] C.E. Santo, N. Taudte, D.H. Nies, G. Grass, Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces, Appl Environ Microb 74(4) (2008) 977-986.

[132] S. Warnes, S. Green, H. Michels, C. Keevil, Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs, Appl Environ Microb 76(16) (2010) 5390-5401.

[133] Y. Fujimori, T. Sato, T. Hayata, T. Nagao, M. Nakayama, T. Nakayama, R. Sugamata, K. Suzuki, Novel antiviral characteristics of nanosized copper (I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus, Appl Environ Microb 78(4) (2012) 951-955.

[134] U. Bogdanović, V. Lazić, V. Vodnik, M. Budimir, Z. Marković, S. Dimitrijević, Copper nanoparticles with high antimicrobial activity, Materials Letters 128 (2014) 75-78.

[135] M. Hans, A. Erbe, S. Mathews, Y. Chen, M. Solioz, F. Mücklich, Role of copper oxides in contact killing of bacteria, Langmuir 29(52) (2013) 16160-16166.

[136] M. Vincent, R.E. Duval, P. Hartemann, M. Engels‐Deutsch, Contact killing and antimicrobial properties of copper, Journal of applied microbiology 124(5) (2018) 1032-1046.

[137] M. Zeiger, M. Solioz, H. Edongué, E. Arzt, A.S. Schneider, Surface structure influences contact killing of bacteria by copper, MicrobiologyOpen 3(3) (2014) 327-332.

[138] I. Hong, C.H. Koo, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, Materials Science and Engineering: A 393(1-2) (2005) 213-222.

[139] J.H. Li, G. Wang, H.Q. Zhu, M. Zhang, X.H. Zheng, Z.F. Di, X.Y. Liu, X. Wang, Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Sci Rep-Uk 4 (2014).

[140] T. Yokota, M. Tochihara, M. Ohta, Silver dispersed stainless steel with antibacterial property, Kawasaki steel technical report (46) (2002) 37-41.

[141] S.M. Yang, Y.C. Chen, Y.T. Pan, D.Y. Lin, Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel, Materials Science & Engineering C-Materials for Biological Applications 63 (2016) 376-383.

[142] K.H. Liao, K.L. Ou, H.C. Cheng, C.T. Lin, P.W. Peng, Effect of silver on antibacterial properties of stainless steel, Appl Surf Sci 256(11) (2010) 3642-3646.

[143] K. Cho, J. Gurland, The law of mixtures applied to the plastic deformation of two-phase alloys of coarse microstructures, Metallurgical Transactions A 19(8) (1988) 2027-2040.

[144] W. Morrison, Influence of silver on structure and properties of low-carbon steel, Materials science and technology 1(11) (1985) 954-960.

[145] C.L. Fox, Silver sulfadiazine—a new topical therapy for pseudomonas in burns: therapy of pseudomonas infection in burns, Archives of surgery 96(2) (1968) 184-188.

[146] R.O. Becker, J. Spadaro, Treatment of orthopaedic infections with electrically generated silver ions. A preliminary report, JBJS 60(7) (1978) 871-881.

[147] J. Spadaro, T. Berger, S. Barranco, S. Chapin, R. Becker, Antibacterial effects of silver electrodes with weak direct current, Antimicrob Agents Ch 6(5) (1974) 637-642.

[148] Q.L. Feng, J. Wu, G.Q. Chen, F. Cui, T. Kim, J. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J Biomed Mater Res 52(4) (2000) 662-668.

[149] A.C. Burdusel, O. Gherasim, A.M. Grumezescu, L. Mogoanta, A. Ficai, E. Andronescu, Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview, Nanomaterials 8(9) (2018) 25.

[150] C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J Nanopart Res 12(5) (2010) 1531-1551.

[151] T. Hamouda, J. Baker Jr, Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram‐negative bacilli, Journal of applied microbiology 89(3) (2000) 397-403.

[152] R.F. Berendt, Survival of Legionella-Pneumophila in Aerosols - Effect of Relative-Humidity, J Infect Dis 141(5) (1980) 689-689.

[153] L. Gabrielyan, A. Hovhannisyan, V. Gevorgyan, M. Ananyan, A. Trchounian, Antibacterial effects of iron oxide (Fe 3 O 4) nanoparticles: Distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms, Applied microbiology and biotechnology 103(6) (2019) 2773-2782.

[154] L.J. Reed, H. Muench, A simple method of estimating fifty per cent endpoints, American journal of epidemiology 27(3) (1938) 493-497.

[155] M. Florez-Zamora, Comparative study of Al-Ni-Mo alloys obtained by mechanical alloying in different ball mills, Rev. Adv. Mater. Sci 18 (2008) 301-304.

[156] P. Gilman, J. Benjamin, Mechanical alloying, Annual review of materials science 13(1) (1983) 279-300.

[157] M.K. Miller, C.L. Fu, M. Krcmar, D.T. Hoelzer, C.T. Liu, Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels, Frontiers of Materials Science in China 3(1) (2009) 9-14.

[158] A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, M.W. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nature Materials 10(12) (2011) 922-926.

[159] J. Dawidowski, J.R. Granada, J.R. Santisteban, F. Cantargi, L.A.R. Palomino, Neutron scattering lengths and cross sections, Experimental Methods in the Physical Sciences, Elsevier2013, pp. 471-528.

[160] I.S. Anderson, A.J. Hurd, R.L. McGreevy, Neutron scattering applications and techniques, Springer2008.

[161] S.A. Briggs, P.D. Edmondson, K.C. Littrell, Y. Yamamoto, R.H. Howard, C.R. Daily, K.A. Terrani, K. Sridharan, K.G. Field, A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys, Acta Materialia 129 (2017) 217-228.

[162] M. Miller, B. Wirth, G. Odette, Precipitation in neutron-irradiated Fe–Cu and Fe–Cu–Mn model alloys: a comparison of APT and SANS data, Materials Science and Engineering: A 353(1-2) (2003) 133-139.

[163] A. Allen, D. Gavillet, J. Weertman, SANS and TEM studies of isothermal M2C carbide precipitation in ultrahigh strength AF1410 steels, Acta metallurgica et materialia 41(6) (1993) 1869-1884.

[164] G.J. Zhao, S.E. Stevens, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals 11(1) (1998) 27-32.

[165] S.A. Harris, R.J. Enger, B.L. Riggs, T.C. Spelsberg, Development and Characterization of a Conditionally Immortalized Human Fetal Osteoblastic Cell-Line, J Bone Miner Res 10(2) (1995) 178-186.

[166] N. Kurgan, Effects of sintering atmosphere on microstructure and mechanical property of sintered powder metallurgy 316L stainless steel, Mater Design 52 (2013) 995-998.

[167] N. Kurgan, R. Varol, Mechanical properties of P/M 316L stainless steel materials, Powder Technology 201(3) (2010) 242-247.

[168] K. Chandra, V. Kain, R. Tewari, Microstructural and electrochemical characterisation of heat-treated 347 stainless steel with different phases, Corros Sci 67 (2013) 118-129.

[169] J. Jiang, D.K. Xu, T. Xi, M.B. Shahzad, M.S. Khan, J.L. Zhao, X.M. Fan, C.G. Yang, T.Y. Gu, K. Yang, Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel, Corros Sci 113 (2016) 46-56.

[170] S. Esmailzadeh, M. Aliofkhazraei, H. Sarlak, Interpretation of Cyclic Potentiodynamic Polarization Test Results for Study of Corrosion Behavior of Metals: A Review, Protection of Metals and Physical Chemistry of Surfaces 54(5) (2018) 976-989.

[171] S. Arora, J. Jain, J.M. Rajwade, K.M. Paknikar, Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells, Toxicol Appl Pharm 236(3) (2009) 310-318.

[172] I.P. Mukha, A.M. Eremenko, N.P. Smirnova, A.I. Mikhienkova, G.I. Korchak, V.F. Gorchev, A.Y. Chunikhin, Antimicrobial Activity of Stable Silver Nanoparticles of a Certain Size, Appl Biochem Micro+ 49(2) (2013) 199-206.

[173] M.M. Cowan, K.Z. Abshire, S.L. Houk, S.M. Evans, Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel, J Ind Microbiol Biot 30(2) (2003) 102-106.

[174] K.S. Tweden, J.D. Cameron, A.J. Razzouk, W.R. Holmberg, S.J. Kelly, Biocompatibility of silver-modified polyester for antimicrobial protection of prosthetic valves, J Heart Valve Dis 6(5) (1997) 553-561.

[175] Y. Dong, X. Li, L. Tian, T. Bell, R.L. Sammons, H. Dong, Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding, Acta Biomater 7(1) (2011) 447-457.

[176] M. Hjelm, L.R. Hilbert, P. Møller, L. Gram, Comparison of adhesion of the food spoilage bacterium Shewanella putrefaciens to stainless steel and silver surfaces, Journal of applied microbiology 92(5) (2002) 903-911.

[177] J. Capek, M. Machova, M. Fousova, J. Kubasek, D. Vojtech, J. Fojt, E. Jablonska, J. Lipov, T. Ruml, Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting, Materials Science & Engineering C-Materials for Biological Applications 69 (2016) 631-639.

[178] M.H. Li, T.Y. Yin, Y.Z. Wang, F.F. Du, X.Z. Zou, H. Gregersen, G.X. Wang, Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro, Materials Science & Engineering C-Materials for Biological Applications 43 (2014) 641-648.

[179] R.O. Darouiche, Current concepts - Treatment of infections associated with surgical implants, New Engl J Med 350(14) (2004) 1422-1429.

[180] D. Campoccia, L. Montanaro, C.R. Arciola, The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials 27(11) (2006) 2331-2339.

[181] I. Gould, Costs of hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) and its control, Int J Antimicrob Ag 28(5) (2006) 379-384.

[182] Haley RW, Schaberg DR, Crossley KB, Von Allmen SD, M. JEJ, Managing hospital infection control for cost-effectiveness: a strategy for reducing infectious complications. , Chicago: Am Hosp Publishing; (1985).

[183] M. Wassall, M. Santin, C. Isalberti, M. Cannas, S.P. Denyer, Adhesion of bacteria to stainless steel and silver‐coated orthopedic external fixation pins, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials 36(3) (1997) 325-330.

[184] K. Mediaswanti, Bactericidal Coatings for Bone Implant Applications, J Biomim Biomater Bi 28 (2016) 53-56.

[185] X. Bai, K. More, C.M. Rouleau, A. Rabiei, Functionally graded hydroxyapatite coatings doped with antibacterial components, Acta Biomater 6(6) (2010) 2264-2273.

[186] J. Zhao, T. Xi, K. Yang, C. Yang, A kind of high-performance austenitic antibacterial stainless steel used in chemical production, China, 2019.

[187] T. Hayashi, P. Sarosi, J.H. Schneibel, M.J. Mills, Creep response and deformation processes in nanocluster-strengthened ferritic steels, Acta Materialia 56(7) (2008) 1407-1416.

[188] G. Odette, M. Alinger, B. Wirth, Recent developments in irradiation-resistant steels, Annu. Rev. Mater. Res. 38 (2008) 471-503.

[189] J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P. Sarosi, M. Heilmaier, D. Sturm, Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength, Scripta Materialia 61(8) (2009) 793-796.

[190] S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, Journal of Nuclear Materials 204 (1993) 65-73.

[191] J.J. Fischer, Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors, US, 1978.

[192] Y. Shirosaki, K. Tsuru, S. Hayakawa, A. Osaka, M.A. Lopes, J.D. Santos, M.H. Fernandes, In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes, Biomaterials 26(5) (2005) 485-493.

[193] J.Q. Wang, S. Liu, B. Xu, J.Y. Zhang, M.Y. Sun, D.A.Z. Li, Research progress on preparation technology of oxide dispersion strengthened steel for nuclear energy, International Journal of Extreme Manufacturing 3(3) (2021).

[194] C. Suryanarayana, Mechanical alloying and milling, Progress in materials science 46(1-2) (2001) 1-184.

[195] F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer, A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization, Journal of Materials Science: Materials in Medicine 16(10) (2005) 883-888.

[196] J. Hardes, A. Streitburger, H. Ahrens, T. Nusselt, C. Gebert, W. Winkelmann, A. Battmann, G. Gosheger, The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines, Sarcoma 2007 (2007).

[197] S.Y. Park, A.K. Bera, Maximum entropy autoregressive conditional heteroskedasticity model, Journal of Econometrics 150(2) (2009) 219-230.

[198] A. Shi, C. Zhu, S. Fu, R. Wang, G. Qin, D. Chen, E. Zhang, What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles?, Materials Science and Engineering: C 109 (2020) 110548.

[199] N. Ciftci, N. Ellendt, G. Coulthard, E.S. Barreto, L. Mädler, V. Uhlenwinkel, Novel cooling rate correlations in molten metal gas atomization, Metallurgical and Materials Transactions B 50(2) (2019) 666-677.

[200] G. Chen, H. FU, Advanced metal materials with inequilibrium solidification, Beijing: Science Press, 2004, p. 26−45.

[201] M.C. Flemings, Solidification processing, Metallurgical transactions 5(10) (1974) 2121-2134.

[202] A. Guinier, G. Fournet, K.L. Yudowitch, Small-angle scattering of X-rays, (1955).

[203] S.W. Lovesey, Theory of neutron scattering from condensed matter, (1984).

[204] R.J. Lu, X. Zhao, J. Li, P.H. Niu, B. Yang, H.L. Wu, W.L. Wang, H. Song, B.Y. Huang, N. Zhu, Y.H. Bi, X.J. Ma, F.X. Zhan, L. Wang, T. Hu, H. Zhou, Z.H. Hu, W.M. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J.Y. Yuan, Z.H. Xie, J.M. Ma, W.J. Liu, D.Y. Wang, W.B. Xu, E.C. Holmes, G.F. Gao, G.Z. Wu, W.J. Chen, W.F. Shi, W.J. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet 395(10224) (2020) 565-574.

[205] J.K. Taubenberger, D.M. Morens, 1918 influenza: the mother of all pandemics, Emerging Infectious Diseases 12(1) (2006) 15-22.

[206] D.K.W. Chu, Y. Pan, S.M.S. Cheng, K.P.Y. Hui, P. Krishnan, Y.Z. Liu, D.Y.M. Ng, C.K.C. Wan, P. Yang, Q.Y. Wang, M. Peiris, L.L.M. Poon, Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia, Clinical Chemistry 66(4) (2020) 549-555.

[207] K.A. Prather, C.C. Wang, R.T. Schooley, Reducing transmission of SARS-CoV-2, Science 368(6498) (2020) 1422-1424.

[208] S. Michie, R. West, M.B. Rogers, C. Bonell, G.J. Rubin, R. Amlot, Reducing SARS-CoV-2 transmission in the UK: A behavioural science approach to identifying options for increasing adherence to social distancing and shielding vulnerable people, Br J Health Psychol (2020).

[209] R. Mittal, R. Ni, J.H. Seo, The flow physics of COVID-19, Journal of Fluid Mechanics 894 (2020).

[210] A. Panacek, M. Kolar, R. Vecerova, R. Prucek, J. Soukupova, V. Krystof, P. Hamal, R. Zboril, L. Kvitek, Antifungal activity of silver nanoparticles against Candida spp., Biomaterials 30(31) (2009) 6333-6340.

[211] H.J. Klasen, Historical review of the use of silver in the treatment of burns. I. Early uses, Burns 26(2) (2000) 117-130.

[212] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol Adv 27(1) (2009) 76-83.

[213] H.H. Lara, E.N. Garza-Trevino, L. Ixtepan-Turrent, D.K. Singh, Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds, Journal of Nanobiotechnology 9 (2011).

[214] D.Q. Zhong Li, Yan Xu, Enze Zhou, Chuntian Yang, Xinyi Yuan, Yiping Lu, Ji-Dong Gu, Sand Wolfgang, Dake Xu, Fuhui Wang,, Cu-bearing high-entropy alloys with excellent antiviral properties, Journal of Materials Science & Technology 84 (2021) 59-64.

[215] R. Hirose, H. Ikegaya, Y. Naito, N. Watanabe, T. Yoshida, R. Bandou, T. Daidoji, Y. Itoh, T. Nakaya, Survival of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Influenza Virus on Human Skin: Importance of Hand Hygiene in Coronavirus Disease 2019 (COVID-19), Clinical Infectious Diseases (2020).

[216] M. Bosetti, A. Masse, E. Tobin, M. Cannas, Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity, Biomaterials 23(3) (2002) 887-892.

[217] Z.G. Dan, H.W. Ni, B.F. Xu, J. Xiong, P.Y. Xiong, Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions, Thin Solid Films 492(1-2) (2005) 93-100.

[218] S. Behzadinasab, A. Chin, M. Hosseini, L. Poon, W.A. Ducker, A Surface Coating that Rapidly Inactivates SARS-CoV-2, Acs Applied Materials & Interfaces 12(31) (2020) 34723-34727.

[219] M. Huang, L. Liu, An antimicrobial stainless steel containing Cu and its fabricaiton method. Patent Application number: 202010730748.2 China 2020.

[220] L.T. Liu, Y.Z. Li, K.P. Yu, M.Y. Zhu, H. Jiang, P. Yu, M.X. Huang, A novel stainless steel with intensive silver nanoparticles showing superior antibacterial property, Materials Research Letters 9(6) (2021) 270-277.

[221] S. Yesiltepe, M.K. Sesen, High-temperature oxidation kinetics of Cu bearing carbon steel, Sn Applied Sciences 2(4) (2020).

[222] N. Kurgan, Y. Sun, B. Cicek, H. Ahlatci, Production of 316L stainless steel implant materials by powder metallurgy and investigation of their wear properties, Chinese Science Bulletin 57(15) (2012) 1873-1878.

[223] J. Beddoes, K. Bucci, The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants, Journal of materials science: Materials in medicine 10(7) (1999) 389-394.

[224] K.-K. Chew, S.H.S. Zein, A.L. Ahmad, The corrosion scenario in human body: Stainless steel 316L orthopaedic implants, (2012).

[225] J. Walczak, F. Shahgaldi, F. Heatley, In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products, Biomaterials 19(1-3) (1998) 229-237.

[226] Y. Zhang, E. Feng, W. Mo, Y. Lv, R. Ma, S. Ye, X. Wang, P. Yu, On the microstructures and fatigue behaviors of 316L stainless steel metal injection molded with gas-and water-atomized powders, Metals 8(11) (2018) 893.

[227] R. Tellier, Y.G. Li, B.J. Cowling, J.W. Tang, Recognition of aerosol transmission of infectious agents: a commentary, Bmc Infectious Diseases 19 (2019).

[228] R.L. Hu, S.R. Li, F.J. Kong, R.J. Hou, X.L. Guan, F. Guo, Inhibition effect of silver nanoparticles on herpes simplex virus 2, Genetics and Molecular Research 13(3) (2014) 7022-7028.

[229] E.L. Zhang, C. Liu, A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property, Mat Sci Eng C-Mater 69 (2016) 134-143.

[230] K.R. Bright, E.E. Sicairos-Ruelas, P.M. Gundy, C.P. Gerba, Assessment of the Antiviral Properties of Zeolites Containing Metal Ions, Food and Environmental Virology 1(1) (2009) 37-41.

[231] L. Yang, X.S. Ning, Q.F. Xiao, K.X. Chen, H.P. Zhou, Development and characterization of porous silver-incorporated hydroxyapatite ceramic for separation and elimination of microorganisms, Journal of Biomedical Materials Research Part B-Applied Biomaterials 81B(1) (2007) 50-56.

[232] S.Y. Liau, D.C. Read, W.J. Pugh, J.R. Furr, A.D. Russell, Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions, Letters in Applied Microbiology 25(4) (1997) 279-283.

[233] Y. Mori, T. Ono, Y. Miyahira, V.Q. Nguyen, T. Matsui, M. Ishihara, Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus, Nanoscale Research Letters 8 (2013).

[234] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl Environ Microb 73(6) (2007) 1712-1720.

[235] S. Liau, D. Read, W. Pugh, J. Furr, A. Russell, Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions, Letters in applied microbiology 25(4) (1997) 279-283.

[236] J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, M.J. Yacaman, Interaction of silver nanoparticles with HIV-1, Journal of nanobiotechnology 3(1) (2005) 1-10.

[237] I.H. Hirose R, Naito Y, Watanabe N, Yoshida T, Bandou R, Daidoji T, Itoh Y, Nakaya T., Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19., Clin Infect Dis (2020).

[238] M. Horie, H. Ogawa, Y. Yoshida, K. Yamada, A. Hara, K. Ozawa, S. Matsuda, C. Mizota, M. Tani, Y. Yamamoto, M. Yamada, K. Nakamura, K. Imai, Inactivation and morphological changes of avian influenza virus by copper ions, Archives of Virology 153(8) (2008) 1467-1472.

[239] T. Ishida, Antiviral Activities of Cu2+ Ions in Viral Prevention, Replication, RNA Degradation, and for Antiviral Efficacies of Lytic Virus, ROS-Mediated Virus, Copper Chelation, 2018.

[240] S.L. Warnes, S.M. Green, H.T. Michels, C.W. Keevil, Biocidal Efficacy of Copper Alloys against Pathogenic Enterococci Involves Degradation of Genomic and Plasmid DNAs, Appl Environ Microb 76(16) (2010) 5390-5401.

[241] L. Nan, G.G. Ren, D.H. Wang, K. Yang, Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk, Journal of Materials Science & Technology 32(5) (2016) 445-451.

[242] S.L. Warnes, C.W. Keevil, Inactivation of Norovirus on Dry Copper Alloy Surfaces, Plos One 8(9) (2013).

Data Source
Document TypeThesis
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
Liu LT. Novel antimicrobial stainless steel: metallurgical route and applications[D]. 香港. 香港大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11750009-刘立涛-材料科学与工程(5179KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘立涛]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘立涛]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘立涛]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.