中文版 | English
Title

不对称催化构筑硼手性化合物

Alternative Title
ASYMMETRIC SYNTHESIS OF BORON-STEREOGENIC COMPOUNDS
Author
Name pinyin
ZU Bing
School number
11849559
Degree
博士
Discipline
0817 化学工程与技术
Subject category of dissertation
08 工学
Supervisor
何川
Mentor unit
化学系
Publication Years
2022-05-17
Submission date
2022-07-18
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

手性化合物在生物医药、功能材料、化学合成等领域发挥着非常重要的作用,其中绝大多数手性化合物都是碳手性化合物。近年来,杂原子手性化合物也吸引了很多有机化学家们的关注和研究,例如硫手性化合物、磷手性化合物、硅手性化合物等。硼是另一个重要的主族元素,有机硼化合物在合成化学中发挥着举足轻重的作用。硼原子外围有三个价电子,通常是以sp2杂化的形式形成一个含有空p轨道的有机硼化合物。值得一提的是,当有胺、膦或NHC卡宾存在时,硼原子上的空p轨道容易接受这些路易斯碱的孤对电子形成四配位有机硼化合物。四配位有机硼化合物是四面体结构,当所连接的四个基团不同时,会形成相应的硼手性化合物。手性有机硼化合物作为试剂或者催化剂应用到合成化学中。由于硼手性化合物的立体构型不稳定,关于硼手性化合物的研究鲜有报道。目前已报道的硼手性化合物都是通过手性拆分以及手性源合成的方法获得的。本论文主要是发展了两种过渡金属催化的方法,高效、高对映选择性构筑硼手性化合物。主要内容如下:

针对硼手性化合物立体构型稳定性差的问题,以双炔取代的N,N π-共轭四配位有机硼化合物作为底物,利用不对称CuAAC反应在温和的反应条件下高效、高对映选择性实现了41例硼手性化合物的合成。根据单晶数据确定了其绝对构型。该反应底物范围广,除了简单的叠氮化合物,含有叠氮取代的生物活性分子也能够很好的兼容;所得到的硼手性化合物能够通过Sonogashira偶联,Glaser偶联,Crabbe反应以及[3+2]环加成反应得到相应的衍生化产物,立体专一性也能得到很好的保持。结合理论计算以及实验数据,发现产物的消旋能垒高达34.6 kcal/mol。随后,对部分产物的分子轨道、紫外-可见吸收光谱、荧光光谱、CD光谱和CPL进行了测试N,C π-共轭四配位硼手性化合物相对于N,N π-共轭四配位硼手性化合物在紫外-可见吸收光谱以及荧光发射光谱发生了明显的蓝移。在圆偏振荧光光谱上,化合物(R)-III-20a的不对称因子(glum)为1.710-4,而化合物(R)-III-21(R)-III-22的不对称因子(glum)都为-3.410-4

氟化硼络合二吡咯甲烷(BODIPYs)作为一类典型的四配位硼化合物,通常作为染料分子被广泛应用于生物标记或者光动力治疗等领域。以双(二亚苄基丙酮)钯作为催化剂,基于TADDOL骨架的手性膦化合物作为配体,通过分子内碳氢键活化的策略对BODIPYs母核进行去对称化,以高达99%收率以及93%的对映体过量值得到多例硼手性BODIPYs。该反应具有较好的底物适用性,对于供电子基团甲基、甲氧基、胺基,以及吸电子基团氟、氯、三氟甲基都可以很好的兼容。通过实验数据得出模板产物的消旋化能垒高达36.0 kcal/mol。经过对反应条件的微调,也能得到含有七元环、八元环以及九元环的硼手性BODIPYs。通过单晶衍射确定了产物的绝对构型。随后,对所获得的硼手性BODIPYs的性质进行一系列的测试,包括分子轨道、紫外-可见吸收光谱、荧光光谱以及CD光谱等。测试结果显示六元环产物IV-8aIV-11能够达到深红/近红外区,可以用于荧光成像。衍生化产物IV-11可以作为手性荧光探针分子实现对手性环己二胺的对映选择性识别衡量对映选择性识别能力的ef值为1.95

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-05
References List

[1] Otocka S, Kwiatkowska M, Madalinska L, et al. Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: applications in asymmetric synthesis [J]. Chemical Reviews, 2017, 117(5): 4147-4181.
[2] Harvey J S, Gouverneur V. Catalytic enantioselective synthesis of P-stereogenic compounds [J]. Chemical Communications, 2010, 46(40): 7477-7485.
[3] Xu L-W, Li L, Lai G-Q, et al. The recent synthesis and application of silicon-stereogenic silanes: a renewed and significant challenge in asymmetric synthesis [J]. Chemical Society Reviews, 2011, 40(3): 1777-1790.
[4] Yang J, Li Z, Zhu S. Progresses on the application of stable borane adducts in the synthesis of organoborons [J]. Youji Huaxue, 2017, 37(10): 2481-97.
[5] Staubitz A, Robertson A P M, Sloan M E, et al. Amine- and phosphine-borane adducts: new interest in old molecules [J]. Chemical Reviews, 2010, 110(7): 4023-4078.
[6] Curran D P, Solovyev A, Brahmi M M, et al. Synthesis and reactions of N-heterocyclic carbene boranes [J]. Angewandte Chemie International Edition, 2011, 50(44): 10294-10317.
[7] Yang K, Song Q. Tetracoordinate boron intermediates enable unconventional transformations [J]. Accounts of Chemical Research, 2021, 54(9): 2298-2312.
[8] Li D, Zhang H, Wang Y. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs) [J]. Chemical Society Reviews, 2013, 42(21): 8416-8433.
[9] Frath D, Massue J, Ulrich G, et al. Luminescent materials: locking π-conjugated and heterocyclic ligands with boron(III) [J]. Angewandte Chemie International Edition, 2014, 53(9): 2290-2310.
[10] Mellerup S K, Wang S. Boron-doped molecules for optoelectronics [J]. Trends in Chemistry, 2019, 1(1): 77-89.
[11] Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties [J]. Chemical Reviews, 2007, 107(11): 4891-4932.
[12] Kamkaew A, Lim S H, Lee H B, et al. BODIPY dyes in photodynamic therapy [J]. Chemical Society Reviews, 2013, 42(1): 77-88.
[13] Lu H, Mack J, Yang Y, et al. Structural modification strategies for the rational design of red/NIR region BODIPY [J]. Chemical Society Reviews, 2014, 43(13): 4778-4823.
[14] Zhao J, Xu K, Yang W, et al. The triplet excited state of bodipy: formation, modulation and application [J]. Chemical Society Reviews, 2015, 44(24): 8904-8939.
[15] Zhang T, Ma C, Sun T, et al. Unadulterated BODIPY nanoparticles for biomedical applications [J]. Coordination Chemistry Reviews, 2019, 390(1): 76-85.
[16] Shi Z, Han X, Hu W, et al. Bioapplications of small molecule aza-BODIPY: from rational structural design to in vivo investigations [J]. Chemical Society Reviews, 2020, 49(21): 7533-7567.
[17] Charoy L, Valleix A, Le Gall T, et al. Synthesis of benzylcyanoborane adducts of amines and separation of their enantiomers; SN2 substitution at boron atom [J]. Chemical Communications, 2000, (22): 2275-2276.
[18] Toyota S, Ito F, Nitta N, et al. Substituent effects on configurational stabilities at tetrahedral boron atoms in intramolecular borane-amine complexes: structures, enantiomeric resolution, and rates of enantiomerization of
[2-(dimethylaminomethyl)phenyl]phenylboranes [J]. Bulletin of the Chemical Society of Japan, 2004, 77(11): 2081-2088.
[19] Braun M, Schlecht S, Engelmann M, et al. Boron-based diastereomerism and enantiomerism in imine complexes - determination of the absolute configuration at boron by CD spectroscopy [J]. European Journal of Organic Chemistry, 2008, 2008(31): 5221-5225.
[20] Jimenez V G, Santos F M F, Castro-Fernandez S, et al. Circularly polarized luminescence of boronic acid-derived salicylidenehydrazone complexes containing chiral boron as stereogenic unit [J]. Journal of Organic Chemistry, 2018, 83(22): 14057-14062.
[21] Imamoto T, Morishita H. An enantiomerically pure tetracoordinate boron compound: stereochemistry of substitution reactions at the chirogenic boron atom [J]. Journal of the American Chemical Society, 2000, 122(26): 6329-6330.
[22] Vedejs E, Fields S C, Hayashi R, et al. Asymmetric memory at labile, stereogenic boron: enolate alkylation of oxazaborolidinones [J]. Journal of the American Chemical Society, 1999, 121(11): 2460-2470.
[23] Kaiser P F, White J M, Hutton C A. Enantioselective preparation of a stable boronate complex stereogenic only at boron [J]. Journal of the American Chemical Society, 2008, 130(49): 16450-16451.
[24] Aupic C, Abdou Mohamed A, Figliola C, et al. Highly diastereoselective preparation of chiral NHC-boranes stereogenic at the boron atom [J]. Chemical Science, 2019, 10(26): 6524-6530.
[25] Gossauer A, Fehr F, Nydegger F, et al. Synthesis and conformational studies of urobilin difluoroboron complexes. unprecedented solvent-dependent chiroptical properties of the BF2 chelate of an urobilinoid analog [J]. Journal of the American Chemical Society, 1997, 119(7): 1599-1608.
[26] Gossauer A, Nydegger F, Kiss T, et al. Synthesis, chiroptical properties, and solid-state structure determination of two new chiral dipyrrin difluoroboryl chelates [J]. Journal of the American Chemical Society, 2004, 126(6): 1772-1780.
[27] Moczar I, Huszthy P, Maidics Z, et al. Synthesis and optical characterization of novel enantiopure BODIPY linked azacrown ethers as potential fluorescent chemosensors [J]. Tetrahedron, 2009, 65(39): 8250-8258.
[28] Sanchez-Carnerero E M, Moreno F, Maroto B L, et al. Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region [J]. Chemical Communications, 2013, 49(99): 11641-11643.
[29] Gobo Y, Yamamura M, Nakamura T, et al. Synthesis and chiroptical properties of a ring-fused BODIPY with a skewed chiral π skeleton [J]. Organic Letters, 2016, 18(11): 2719-2721.
[30] Zhao L, Zhou H, Zhou Q, et al. Biomimetic fluorescent probe for chiral glutamic acid in water and its application in living cell imaging [J]. Sensors and Actuators, B: Chemical, 2020, 320: 128383.
[31] Ma X, Abdel Azeem E, Liu X, et al. Synthesis and tunable chiroptical properties of chiral BODIPY-based D-π-A conjugated polymers [J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(6): 1076-1084.
[32] Guerrero-Corella A, Asenjo-Pascual J, Pawar T J, et al. BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions [J]. Chemical Science, 2019, 10(15): 4346-4351.
[33] Rigotti T, Asenjo-Pascual J, Martin-Somer A, et al. Boron dipyrromethene (BODIPY) as electron-withdrawing group in asymmetric copper-catalyzed
[3+2] cycloadditions for the synthesis of pyrrolidine-based biological sensors [J]. Advanced Synthesis & Catalysis, 2020, 362(6): 1345-1355.
[34] Dočekal V, Koberová T, Hrabovský J, et al. Stereoselective cyclopropanation of boron dipyrromethene (BODIPY) derivatives by an organocascade reaction [J]. Advanced Synthesis & Catalysis, 2021, 361: 1-9.
[35] Meazza M, Cruz C M, Ortuno A M, et al. Studying the reactivity of alkyl substituted BODIPY: first enantioselective addition of BODIPY to MBH carbonates [J]. Chemical Science, 2021, 12(12): 4503-4508.
[36] Lu H, Mack J, Nyokong T, et al. Optically active BODIPY [J]. Coordination Chemistry Reviews, 2016, 318(1): 1-15.
[37] Beer G, Daub J, Rurack K. Chiral discrimination with a fluorescent boron-dipyrromethene dye [J]. Chemical Communications, 2001, (12): 1138-1139.
[38] Sanchez-Carnerero E M, Moreno F, Maroto B L, et al. Circularly polarized luminescence by visible-light absorption in a chiral O-BODIPY dye: unprecedented design of CPL organic molecules from achiral chromophores [J]. Journal of the American Chemical Society, 2014, 136(9): 3346-3349.
[39] Zhang S, Wang Y, Meng F, et al. Circularly polarized luminescence of AIE-active chiral O-BODIPY induced via intramolecular energy transfer [J]. Chemical Communications, 2015, 51(43): 9014-9017.
[40] Wu Y, Wang S, Li Z, et al. Chiral binaphthyl-linked BODIPY analogues: synthesis and spectroscopic properties [J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4(21): 4668-4674.
[41] Maeda C, Nomoto S, Takaishi K, et al. Aggregation-induced circularly polarized luminescence from boron complexes with a carbazolyl schiff base [J]. Chemistry - A European Journal, 2020, 26(57): 13016-13021.
[42] Liu Z, Jiang Z, He C, et al. Circularly polarized luminescence from axially chiral binaphthalene-bridged BODIPY [J]. Dyes and Pigments, 2020, 181: 108593.
[43] Lerrick R I, Winstanley T P L, Haggerty K, et al. Axially chiral BODIPY [J]. Chemical Communications, 2014, 50(36): 4714-4716.
[44] Bruhn T, Pescitelli G, Jurinovich S, et al. Axially chiral BODIPY DYEmers: an apparent exception to the exciton chirality rule [J]. Angewandte Chemie International Edition, 2014, 53(52): 14592-14595.
[45] Kolemen S, Cakmak Y, Kostereli Z, et al. Atropisomeric dyes: axial chirality in orthogonal BODIPY oligomers [J]. Organic Letters, 2014, 16(3): 660-663.
[46] Alnoman R B, Rihn S, O'Connor D C, et al. Circularly polarized luminescence from helically chiral N,N,O,O-boron-chelated dipyrromethenes [J]. Chemistry - A European Journal, 2016, 22(1): 93-96.
[47] Clarke R, Ho K L, Abdullah Alsimaree A, et al. Circularly polarized luminescence from helically chiral "confused" N,N,O,C-boron-chelated dipyrromethenes (BODIPY) [J]. ChemPhotoChem, 2017, 1(11): 513-517.
[48] Saikawa M, Nakamura T, Uchida J, et al. Synthesis of figure-of-eight helical bisBODIPY macrocycles and their chiroptical properties [J]. Chemical Communications, 2016, 52(71): 10727-10730.
[49] Moneva Lorente P, Wallabregue A, Zinna F, et al. Synthesis and properties of chiral fluorescent helicene-BODIPY conjugates [J]. Organic & Biomolecular Chemistry, 2020, 18(38): 7677-7684.
[50] Maeda C, Nagahata K, Shirakawa T, et al. Azahelicene-fused BODIPY analogues showing circularly polarized luminescence [J]. Angewandte Chemie International Edition, 2020, 59(20): 7813-7817.
[51] Jimenez J, Diaz-Norambuena C, Serrano S, et al. BINOLated aminostyryl BODIPY: a workable organic molecular platform for NIR circularly polarized luminescence [J]. Chemical Communications, 2021, 57(47): 5750-5753.
[52] Haefele A, Zedde C, Retailleau P, et al. Boron asymmetry in a BODIPY derivative [J]. Organic Letters, 2010, 12(8): 1672-1675.
[53] Gobo Y, Matsuoka R, Chiba Y, et al. Synthesis and chiroptical properties of phenanthrene-fused N2O-type BODIPY [J]. Tetrahedron Letters, 2018, 59(47): 4149-4152.
[54] Zhao T, Han J, Jin X, et al. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework [J]. Angewandte Chemie International Edition, 2019, 58(15): 4978-4982.
[55] Schadt M. Liquid crystal materials and liquid crystal displays [J]. Annual Review of Materials Science, 1997, 27: 305-379.
[56] Yang Y, da Costa R C, Fuchter M J, et al. Circularly polarized light detection by a chiral organic semiconductor transistor [J]. Nature Photonics, 2013, 7(8): 634-638.
[57] Song F, Wei G, Jiang X, et al. Chiral sensing for induced circularly polarized luminescence using an Eu(iii)-containing polymer and d- or l-proline [J]. Chemical Communications, 2013, 49(51): 5772-5774.
[58] Geng Y, Trajkovska A, Culligan S W, et al. Origin of strong chiroptical activities in films of nonafluorenes with a varying extent of pendant chirality [J]. Journal of the American Chemical Society, 2003, 125(46): 14032-14038.
[59] Dhbaibi K, Favereau L, Srebro-Hooper M, et al. Exciton coupling in diketopyrrolopyrrole-helicene derivatives leads to red and near-infrared circularly polarized luminescence [J]. Chemical Science, 2018, 9(3): 735-742.
[60] Li M, Li S-H, Zhang D, et al. Stable enantiomers displaying thermally activated delayed fluorescence: efficient OLEDs with circularly polarized electroluminescence [J]. Angewandte Chemie International Edition, 2018, 57(11): 2889-2893.
[61] De Bonfils P, Peault L, Nun P, et al. State of the art of bodipy-based photocatalysts in organic synthesis [J]. European Journal of Organic Chemistry, 2021, 2021(12): 1809-1824.
[62] Schraff S, Sun Y, Pammer F. Tuning of electronic properties via labile N→B-coordination in conjugated organoboranes [J]. Journal of Materials Chemistry C, 2017, 5(7): 1730-41.
[63] Mellerup S K, Wang S. Boron-based stimuli responsive materials [J]. Chemical Society Reviews, 2019, 48(13): 3537-3549.
[64] Min Y, Dou C, Liu D, et al. Quadruply B←N-fused dibenzo-azaacene with high electron affinity and high electron mobility [J]. Journal of the American Chemical Society, 2019, 141(42): 17015-17021.
[65] Dou C, Long X, Ding Z, et al. An electron-deficient building block based on the B<-N unit: an electron acceptor for all-polymer solar cells [J]. Angewandte Chemie International Edition, 2016, 55(4): 1436-1440.
[66] Wang Z, Hayashi T. Rhodium-catalyzed enantioposition-selective hydroarylation of divinylphosphine oxides with aryl boroxins [J]. Angewandte Chemie International Edition, 2018, 57(6): 1702-1706.
[67] Zhang G, Li Y, Wang Y, et al. Asymmetric synthesis of silicon-stereogenic silanes by copper-catalyzed desymmetrizing protoboration of vinylsilanes [J]. Angewandte Chemie International Edition, 2020, 59(29): 11927-11931.
[68] Sadu V S, Bin H-R, Lee D-M, et al. One-pot synthesis of four-coordinate boron(III) complexes by the ligand-promoted organic group migration between boronic acids [J]. Scientific Reports, 2017, 7(1): 1-10.
[69] Fujihara T, Semba K, Terao J, et al. Regioselective transformation of alkynes catalyzed by a copper hydride or boryl copper species [J]. Catalysis Science & Technology, 2014, 4(6): 1699.
[70] Wang Z, He X, Zhang R, et al. Copper-catalyzed asymmetric hydroboration of 1,1-disubstituted alkenes [J]. Organic Letters, 2017, 19(12): 3067-3070.
[71] Bian R, Bao X. Computational insights into mechanism of Pd(0) and benzoic acid co-catalyzed hydroamination of internal alkynes [J]. Youji Huaxue, 2017, 37(1): 190-195.
[72] Xi Y, Butcher T W, Zhang J, et al. Regioselective, asymmetric formal hydroamination of unactivated internal alkenes [J]. Angewandte Chemie International Edition, 2016, 55(2): 776-780.
[73] Niljianskul N, Zhu S, Buchwald S L. Enantioselective synthesis of alpha-aminosilanes by copper-catalyzed hydroamination of vinylsilanes [J]. Angewandte Chemie International Edition, 2015, 54(5): 1638-1641.
[74] Miki Y, Hirano K, Satoh T, et al. Copper-catalyzed enantioselective formal hydroamination of oxa- and azabicyclic alkenes with hydrosilanes and hydroxylamines [J]. Organic Letters, 2014, 16(5): 1498-1501.
[75] Bandar J S, Pirnot M T, Buchwald S L. Mechanistic studies lead to dramatically improved reaction conditions for the Cu-catalyzed asymmetric hydroamination of olefins [J]. Journal of the American Chemical Society, 2015, 137(46): 14812-14818.
[76] Chen J, Lu Z. Asymmetric hydrofunctionalization of minimally functionalized alkenes via earth abundant transition metal catalysis [J]. Organic Chemistry Frontiers, 2018, 5(2): 260-272.
[77] Li Y, Cheng Y, Shan C, et al. Recent advances in alkaline-earth-metal-catalyzed hydrofunctionalization reactions [J]. Chinese Journal of Organic Chemistry, 2018, 38(8): 1885.
[78] Nishida G, Noguchi K, Hirano M, et al. Enantioselective synthesis of P-stereogenic alkynylphosphine oxides by Rh-catalyzed
[2+2+2] cycloaddition [J]. Angewandte Chemie International Edition, 2008, 47(18): 3410-3413.
[79] Shintani R, Takagi C, Ito T, et al. Rhodium-catalyzed asymmetric synthesis of silicon-stereogenic dibenzosiloles by enantioselective
[2+2+2] cycloaddition [J]. Angewandte Chemie International Edition, 2015, 54(5): 1616-1620.
[80] Shintani R, Takano R, Nozaki K. Rhodium-catalyzed asymmetric synthesis of silicon-stereogenic silicon-bridged arylpyridinones [J]. Chemical Science, 2016, 7(2): 1205-1211.
[81] Zhang Y, Zhang F, Chen L, et al. Asymmetric synthesis of P-stereogenic compounds via thulium(III)-catalyzed desymmetrization of dialkynylphosphine oxides [J]. ACS Catalysis, 2019, 9(6): 4834-4840.
[82] Zhu R-Y, Chen L, Hu X-S, et al. Enantioselective synthesis of P-chiral tertiary phosphine oxides with an ethynyl group via Cu(I)-catalyzed azide-alkyne cycloaddition [J]. Chemical Science, 2020, 11(1): 97-106.
[83] Zhou F, Tan C, Tang J, et al. Asymmetric copper(I)-catalyzed azide-alkyne cycloaddition to quaternary oxindoles [J]. Journal of the American Chemical Society, 2013, 135(30): 10994-10997.
[84] Osako T, Uozumi Y. Enantioposition-selective copper-catalyzed azide-alkyne cycloaddition for construction of chiral biaryl derivatives [J]. Organic Letters, 2014, 16(22): 5866-5869.
[85] Liu E-C, Topczewski J J. Enantioselective copper catalyzed alkyne-azide cycloaddition by dynamic kinetic resolution [J]. Journal of the American Chemical Society, 2019, 141(13): 5135-5138.
[86] Wang C, Zhu R-Y, Liao K, et al. Enantioselective Cu(I)-catalyzed cycloaddition of prochiral diazides with terminal or 1-iodoalkynes [J]. Organic Letters, 2020, 22(4): 1270-1274.
[87] Wang C, Zhou F, Zhou J. Recent advances in the enantioselective copper (I)-catalyzed azide-alkyne cycloaddition reaction [J]. Youji Huaxue, 2020, 40(10): 3065-3077.
[88] Liao K, Gong Y, Zhu R-Y, et al. Highly enantioselective CuAAC of functional tertiary alcohols featuring an ethynyl group and their kinetic resolution [J]. Angewandte Chemie International Edition, 2021, 60(15): 8488-8493.
[89] Liu K, Lalancette R A, Jakle F. Tuning the structure and electronic properties of B-N fused dipyridylanthracene and implications on the self-sensitized reactivity with singlet oxygen [J]. Journal of the American Chemical Society, 2019, 141(18): 7453-7462.
[90] Lu H, Nakamuro T, Yamashita K, et al. B/N-doped p-arylenevinylene chromophores: synthesis, properties, and microcrystal electron crystallographic study [J]. Journal of the American Chemical Society, 2020, 142(44): 18990-18996.
[91] Wang S, Yuan K, Hu M-F, et al. Cleavage of unstrained C-C bonds in acenes by boron and light: transformation of naphthalene to benzoborepin [J]. Angewandte Chemie International Edition, 2018, 57(4): 1073-1077.
[92] Wakamiya A, Taniguchi T, Yamaguchi S. Intramolecular B-N coordination as a scaffold for electron-transporting materials: synthesis and properties of boryl-substituted thienylthiazoles [J]. Angewandte Chemie International Edition, 2006, 45(19): 3170-3173.
[93] Hopfl H. The tetrahedral character of the boron atom newly defined-a useful tool to evaluate the N→B bond [J]. Journal of Organometallic Chemistry, 1999, 581(1-2): 129-149.
[94] Boens N, Verbelen B, Ortiz M J, et al. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core [J]. Coordination Chemistry Reviews, 2019, 399: 213024.
[95] Feng T, Xue Z, Yin J, et al. Application of fluoroboron fluoresceins (BODIPYS) and their derivatives in the synergistic diagnosis and treatment of tumor [J]. Youji Huaxue, 2019, 39(7): 1891-1912.
[96] Kamkaew A, Lim S H, Lee H B, et al. BODIPY dyes in photodynamic therapy [J]. Chemical Society Reviews, 2013, 42(1): 77-88.
[97] Lu H, Mack J, Yang Y, et al. Structural modification strategies for the rational design of red/NIR region BODIPY [J]. Chemical Society Reviews, 2014, 43(13): 4778-4823.
[98] Zhao X, Li N, Liu F, et al. Synthesis and application of water-soluble reaction-based boron-dipyrromethene (BODIPY) probes for fluorescent detection of peroxynitrite with high selectivity [J]. Youji Huaxue, 2020, 40(12): 4339-4343.
[99] Zhang T, Ma C, Sun T, et al. Unadulterated BODIPY nanoparticles for biomedical applications [J]. Coordination Chemistry Reviews, 2019, 390(1): 76-85.
[100] Savary D, Baudoin O. Enantioselective Pd(0)-catalyzed C(sp2)-H arylation for synthesis of chiral warped molecules [J]. Angewandte Chemie International Edition, 2021, 60(10): 5136-5140.
[101] Vyhivskyi O, Kudashev A, Miyakoshi T, et al. Chiral catalysts for Pd(0)-catalyzed enantioselective C-H activation [J]. Chemistry - A European Journal, 2021, 27(4): 1231-1257.
[102] Dailler D, Rocaboy R, Baudoin O. Synthesis of β-lactams by palladium(0)-catalyzed C(sp3)-H carbamoylation [J]. Angewandte Chemie International Edition, 2017, 56(25): 7218-7222.
[103] Pedroni J, Cramer N. Chiral γ-lactams by enantioselective palladium(0)-catalyzed cyclopropane functionalizations [J]. Angewandte Chemie International Edition, 2015, 54(40): 11826-11829.
[104] Liu L, Zhang A-A, Wang Y, et al. Asymmetric synthesis of P-stereogenic phosphinic amides via Pd(0)-catalyzed enantioselective intramolecular C-H arylation [J]. Organic Letters, 2015, 17(9): 2046-2049.
[105] Lin Z-Q, Wang W-Z, Yan S-B, et al. Palladium-catalyzed enantioselective C-H arylation for the synthesis of P-stereogenic compounds [J]. Angewandte Chemie International Edition, 2015, 54(21): 6265-6269.
[106] He C, Hou M, Zhu Z, et al. Enantioselective synthesis of indole-based biaryl atropisomers via palladium-catalyzed dynamic kinetic intramolecular C-H cyclization [J]. ACS Catalysis, 2017, 7(8): 5316-5320.
[107] Albicker M R, Cramer N. Enantioselective palladium-catalyzed direct arylations at ambient temperature: access to indanes with quaternary stereocenters [J]. Angewandte Chemie International Edition, 2009, 48(48): 9139-42, S/1-S/33.
[108] Shintani R, Otomo H, Ota K, et al. Palladium-catalyzed asymmetric synthesis of silicon-stereogenic dibenzosiloles via enantioselective C-H bond functionalization [J]. Journal of the American Chemical Society, 2012, 134(17): 7305-7308.
[109] Saget T, Cramer N. Enantioselective C-H arylation strategy for functionalized dibenzazepinones with quaternary stereocenters [J]. Angewandte Chemie International Edition, 2013, 52(30): 7865-7868.
[110] Wen K, Yu S, Huang Z, et al. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines [J]. Journal of the American Chemical Society, 2015, 137(13): 4517-4524.
[111] Zhu Y-Y, Wu X-D, Gu S-X, et al. Free amino acid recognition: a bisbinaphthyl-based fluorescent probe with high enantioselectivity [J]. Journal of the American Chemical Society, 2019, 141(1): 175-181.
[112] Thanzeel F Y, Sripada A, Wolf C. Quantitative chiroptical sensing of free amino acids, biothiols, amines, and amino alcohols with an aryl fluoride probe [J]. Journal of the American Chemical Society, 2019, 141(41): 16382-16387.
[113] Pu L. Enantioselective fluorescent recognition of free amino acids: challenges and opportunities [J]. Angewandte Chemie International Edition, 2020, 59(49): 21814-21828.
[114] Feng H-T, Zhang X, Zheng Y-S. Fluorescence turn-on enantioselective recognition of both chiral acidic compounds and α-amino acids by a chiral tetraphenylethylene macrocycle amine [J]. Journal of Organic Chemistry, 2015, 80(16): 8096-8101.
[115] Huang Z, Yu S, Wen K, et al. Zn(II) promoted dramatic enhancement in the enantioselective fluorescent recognition of functional chiral amines by a chiral aldehyde [J]. Chemical Science, 2014, 5(9): 3457-3462.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O627.51
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/355876
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
祖兵. 不对称催化构筑硼手性化合物[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849559-祖兵-化学系.pdf(14794KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[祖兵]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[祖兵]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[祖兵]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.