Title | Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB |
Author | |
Corresponding Author | Huang,Raven H. |
Joint first author | Tian,Yannan; Zeng,Fuxing; Raybarman,Adrika; Fatma,Shirin |
Publication Years | 2022-07-19
|
DOI | |
Source Title | |
ISSN | 0027-8424
|
EISSN | 1091-6490
|
Volume | 119Issue:29 |
Abstract | RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
Important Publications | NI Journal Papers
|
SUSTech Authorship | 共同第一
; Others
|
Funding Project | NIH[
|
WOS Research Area | Science & Technology - Other Topics
|
WOS Subject | Multidisciplinary Sciences
|
WOS Accession No | WOS:000853683000001
|
Publisher | |
ESI Research Field | BIOLOGY & BIOCHEMISTRY;CLINICAL MEDICINE;MULTIDISCIPLINARY;PLANT & ANIMAL SCIENCE;ENVIRONMENT/ECOLOGY;SOCIAL SCIENCES, GENERAL;MICROBIOLOGY;ECONOMICS BUSINESS;IMMUNOLOGY;MATERIALS SCIENCE;MATHEMATICS;SPACE SCIENCE;MOLECULAR BIOLOGY & GENETICS;PHARMACOLOGY & TOXICOLOGY;CHEMISTRY;PSYCHIATRY/PSYCHOLOGY;NEUROSCIENCE & BEHAVIOR;PHYSICS;GEOSCIENCES;AGRICULTURAL SCIENCES;ENGINEERING
|
Scopus EID | 2-s2.0-85133856817
|
Data Source | Scopus
|
Citation statistics |
Cited Times [WOS]:1
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/355898 |
Department | Department of Biology 生命科学学院 |
Affiliation | 1.Department of Biochemistry,University of Illinois at Urbana-Champaign,Urbana,61801,United States 2.Department of Biology,Southern University of Science and Technology,Shenzhen,518055,China |
Recommended Citation GB/T 7714 |
Tian,Yannan,Zeng,Fuxing,Raybarman,Adrika,et al. Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,2022,119(29).
|
APA |
Tian,Yannan.,Zeng,Fuxing.,Raybarman,Adrika.,Fatma,Shirin.,Carruthers,Amy.,...&Huang,Raven H..(2022).Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,119(29).
|
MLA |
Tian,Yannan,et al."Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB".PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 119.29(2022).
|
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
pnas.2202464119.pdf(1535KB) | Restricted Access | -- |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment