Title | Electron-Irradiation-Induced Degradation of Transfer Characteristics in Super-Junction VDMOSFET |
Author | |
Corresponding Author | Tan,Chunjian |
Publication Years | 2022-07-01
|
DOI | |
Source Title | |
EISSN | 2079-9292
|
Volume | 11Issue:13 |
Abstract | High electric-field stress is an effective solution to the recovery of irradiated devices. In this paper, the dependence of the recovery level on the magnitude of gate voltage and duration is investigated. Compared with the scheme of high gate-bias voltage with a short stress time, the transfer characteristics are significantly recovered by applying a low electric field with a long duration. When the electric field and stress time are up to a certain value, the threshold voltage almost approaches the limitation, which is less than that before irradiation. Meanwhile, the effect of temperature on the recovery of the irradiated devices is also demonstrated. The result indicates that a high temperature of 175 degrees C used for the irradiated devices' annealing does not play a role in promoting the recovery of transfer characteristics. In addition, to obtain a deep-level understanding of threshold degradation, the first-principles calculations of three Si/SiO2 interfaces are performed. It is found that new electronic states can be clearly observed in the conduction bans and valence bands after the Si-H/-OH bonds are broken by electron irradiation. However, their distribution depends on the selection of the passivation scheme. Ultimately, it can be observed that the threshold voltage linearly decreases with the increase in interface charge density. These results can provide helpful guidance in the deep interpretation of threshold degradation and the recovery of the irradiated super-junction devices. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Corresponding
|
Funding Project | National Key R&D Program of China[2018YFE0204600]
; Shenzhen Fundamental Research Program["JCYJ20200109140822796","K21799119"]
; Key Technology Projects in Shenzhen[JSGG20201201100406019]
|
WOS Research Area | Computer Science
; Engineering
; Physics
|
WOS Subject | Computer Science, Information Systems
; Engineering, Electrical & Electronic
; Physics, Applied
|
WOS Accession No | WOS:000824008500001
|
Publisher | |
Scopus EID | 2-s2.0-85133127224
|
Data Source | Web of Science
|
Citation statistics |
Cited Times [WOS]:0
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/355909 |
Department | SUSTech Institute of Microelectronics |
Affiliation | 1.Academy for Engineering & Technology,Fudan University,Shanghai,200433,China 2.Faculty of EEMCS,Delft University of Technology,Delft,Mekelweg 4,2628 CD,Netherlands 3.School of Microelectronics,Southern University of Science and Technology,Shenzhen,518055,China 4.Sky Chip Interconnection Technology Co.,Ltd,Shenzhen,518117,China 5.College of Opto-electronic Engineering,Chongqing University,Chongqing,400044,China |
Corresponding Author Affilication | SUSTech Institute of Microelectronics |
Recommended Citation GB/T 7714 |
Jiang,Jing,Wang,Shaogang,Liu,Xu,et al. Electron-Irradiation-Induced Degradation of Transfer Characteristics in Super-Junction VDMOSFET[J]. ELECTRONICS,2022,11(13).
|
APA |
Jiang,Jing.,Wang,Shaogang.,Liu,Xu.,Liu,Jianhui.,Li,Jun.,...&Tan,Chunjian.(2022).Electron-Irradiation-Induced Degradation of Transfer Characteristics in Super-Junction VDMOSFET.ELECTRONICS,11(13).
|
MLA |
Jiang,Jing,et al."Electron-Irradiation-Induced Degradation of Transfer Characteristics in Super-Junction VDMOSFET".ELECTRONICS 11.13(2022).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment