中文版 | English
Title

地下水水流与污染物迁移数值模型开发及应用研究

Alternative Title
DEVELOPMENT AND APPLICATION OF THE NUMERICAL MODELS FOR GROUNDWATER FLOW AND CONTAMINANT TRANSPORT
Author
Name pinyin
GAO Yulong
School number
11749298
Degree
博士
Discipline
083001 环境科学
Subject category of dissertation
08 工学
Supervisor
易树平
Mentor unit
环境科学与工程学院
Publication Years
2022-05-16
Submission date
2022-07-21
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

地下水水流与污染物迁移数值模型是研究地下水污染物迁移的重要手段,对地下水资源管理和污染防治具有指导作用。然而,在地下水模型应用中,由于含水层空间的复杂性,以及地表水-地下水耦合模拟的需要,地下水模型的适用性遇到了更大的挑战。发展空间适应性更强、耦合应用性更高的地下水数值模型对推动地下水、地下水-地表水资源和环境的管理具有重要的意义。基于此,本文针对含水层在水平与垂向上空间尺度的差异性以及地表水-地下水耦合模拟的需求,发展并开发了两种地下水水流与污染物迁移数值模型:(1)基于有限元与有限差分耦合的地下水水流与污染物迁移模型(FE-FDM);(2)基于任意多边形网格剖分的地下水水流与污染物迁移模型(APFVM)。

论文对饱和-非饱和地下水水流与污染物迁移控制方程,在水平方向采用有限元法离散,在竖直方向采用有限差分法离散,推导得到数值离散格式,由此建立基于FE-FDM的地下水水流与污染物迁移模型,利用该模型模拟典型算例地下水水流与污染物迁移过程,通过与解析解、通用软件模拟结果进行对比,验证模型的准确性,并将其应用到垃圾填埋场地下水污染物迁移模拟研究之中。结果表明:(1)基于FE-FDM的地下水水流模型在4个典型算例的计算结果,均与解析解和通用软件计算结果有良好的一致性,说明该模型能够准确模拟饱和-非饱和水流运动规律;(2)基于FE-FDM的地下水污染物迁移数值模型在3个典型算例的模拟结果,均与常用软件的计算结果有良好的一致性,说明该模型能够准确模拟地下水污染物迁移规律;(3)某垃圾填埋场地下水污染物迁移模拟研究表明,基于FE-FDM的地下水水流与污染物迁移模型可有效应用到实际案例中,对垃圾填埋场污染物迁移规律研究及防治可起到重要技术支撑作用;(4)基于FE-FDM的地下水模型结合了有限元法边界适应性强和有限差分法计算简洁等优势,提高了模型对不规则含水系统空间的适应性。

为进一步提高地下水模型网格剖分的灵活性及耦合应用能力,论文基于有限体积法(FVM),对饱和地下水水流与污染物迁移控制方程在水平方向利用多点通量近似方法进行离散,在竖直方向采用两点近似方法进行离散,推导得到数值离散格式,由此建立基于APFVM的地下水水流与污染物迁移模型。通过典型算例验证新模型的准确性,并将其应用到平谷盆地地下水污染物迁移模拟研究之中。结果表明:(1)基于APFVM的地下水水流模型在5个典型算例的计算结果,均与解析解和常用软件的计算结果有良好的一致性,说明该模型能够准确模拟地下水水流运动规律;(2)基于APFVM的地下水污染物迁移模型在5个典型算例的计算结果,均与常用软件的计算结果有良好的一致性,说明该模型能够准确模拟地下水污染物迁移规律;(3)平谷盆地污染物迁移模拟应用表明,基于APFVM的地下水水流与污染物迁移模型可有效应用到实际案例中,对地下水污染物迁移规律研究及防治可起到重要技术支撑作用;(4)基于APFVM的地下水模型可应用于任意多边形网格剖分的地下水模拟中,极大地提高了地下水数值模拟网格剖分的灵活性及其耦合应用能力。

本文通过两种地下水模型(FE-FDMAPFVM)研究,将有限元、有限差分计算方法耦合在一起,并引入任意多边形网格剖分计算方法,提高了地下水模型空间剖分灵活性和对不规则含水层系统的适应性,拓展了地下水计算模型和理论;基于任意多边形网格的地下水水流与污染物迁移模型,可采用子流域为网格单元进行建模,为实现以子流域为统一网格单元的地表水-地下水耦合计算与应用奠定基础,对地表水-地下水污染协同防治具有重要意义。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2017
Year of Degree Awarded
2022-07
References List

[1] 支彦玲,陈军飞,王慧敏,等. 共生视角下中国区域“水-能源-粮食”复合系统适配性评估[J]. 中国人口·资源与环境. 2020,30(01):129-139.
[2] 张敏.水资源核算探讨[J]. 地下水. 2021,43(05):215-216.
[3] 韩文艳,陈兴鹏,张子龙. 基于POET模型的重庆市水资源利用影响因素分析[J]. 生态学杂志. 2018,37(03):929-936.
[4] 米勇,米秋菊,王洁,等. 我国水利建设投资分析与预测[J]. 农业工程. 2017,7(03):110-112.
[5] 王铖,王晓佳,王纪. 环境工程工业污水治理中常见问题分析与措施[J]. 环境与发展. 2018,30(05):55-56.
[6] 韩振宇,徐影,吴佳,等. 多区域气候模式集合对中国径流深的模拟评估和未来变化预估[J]. 气候变化研究进展. 2022:1-19.
[7] 屈晓娟. 基于利益相关者的引黄灌区农业水资源节水激励研究[D]. 陕西师范大学,2018.
[8] 曹文庚,南天. 地下水“银行”[J]. 地球. 2021(05):77-80.
[9] 2020年中国水资源公报[R]. 北京:中华人民共和国水利部,2021.
[10] 黄文建,陈芳,么强,等. 地下水污染现状及其修复技术研究进展[J]. 水处理技术. 2021,47(07):12-18.
[11] 王宝燕,肖巍. 地下水污染现状与防治对策研究[J]. 环境与发展. 2020,32(10):38-39.
[12] 赵华林. 科学谋划全面部署开创地下水污染防治新局面[J]. 环境保护. 2012(4):14-22.
[13] 王彦昕. 我国加速推进地下水污染防治[J]. 生态经济. 2019,35(09):9-12.
[14] VAN DAM J C. Field-scale water flow and solute transport: SWAP model concepts, parameter estimation and case studies[D]. Wageningen University,2000.
[15] BAILEY R,RATHJENS H,BIEGER K,et al. SWATMOD-Prep: Graphical user interface for preparing coupled SWAT-MODFLOW simulations[J]. Journal of the American Water Resources Association. 2017,53(2):400-410.
[16] MARKSTROM S L,NISWONGER R G,REGAN R S,et al. GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)[R]. U.S. Geological Survey Techniques and Methods 6-D1,2008.
[17] WANG F,AHMAD S,AL MDALLAL Q,et al. Natural bio-convective flow of Maxwell nanofluid over an exponentially stretching surface with slip effect and convective boundary condition[J]. Scientific Reports. 2022,12(1):1-14.
[18] SHAO J,ZHANG Q,WU X,et al. Investigation on the water flow evolution in a filled fracture under seepage-induced erosion[J]. Water. 2020,12(11):3188.
[19] ZHANG Q,YAN X,SHAO J. Fluid flow through anisotropic and deformable double porosity media with ultra-low matrix permeability: A continuum framework[J]. Journal of Petroleum Science and Engineering. 2021,200:108349.
[20] 王晓明,王秀辉,文望,等. Dupuit稳定井流公式的模型分析[J]. 煤田地质与勘探. 2014,42(06):73-75.
[21] 陈崇希. Dupuit模型的改进——具入渗补给[J]. 水文地质工程地质. 2020,47(05):1-4.
[22] THEIS C V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground‐water storage[J]. Eos, Transactions American Geophysical Union. 1935,16(2):519-524.
[23] JACOB C E. On the flow of water in an elastic artesian aquifer[J]. Eos, Transactions American Geophysical Union. 1940,21(2):574-586.
[24] BANAEI S,JAVID A H,HASSANI A H. Numerical simulation of groundwater contaminant transport in porous media[J]. International Journal of Environmental Science and Technology. 2021,18(1):151-162.
[25] 李凡,李家科,马越,等. 地下水数值模拟研究与应用进展[J]. 水资源与水工程学报. 2018,29(1):99-104.
[26] 陈风云. 爆炸载荷作用下介质痕迹特征数值模拟研究[D]. 北京理工大学,2016.
[27] 谢一凡,吴吉春,王益,等. 一种模拟节点达西流速的多尺度有限元-有限元模型[J]. 岩土工程学报. 2022,44(1):107-114.
[28] CHOO J. Large deformation poromechanics with local mass conservation: An enriched Galerkin finite element framework[J]. International Journal for Numerical Methods in Engineering. 2018,116(1):66-90.
[29] AHUSBORDE E,EL OSSMANI M,MOULAY M I. A fully implicit finite volume scheme for single phase flow with reactive transport in porous media[J]. Mathematics and Computers in Simulation. 2019,164:3-23.
[30] SCHEIDEGGER A E. Statistical hydrodynamics in porous media[J]. Journal of Applied Physics. 1954,25(8):994-1001.
[31] De JOSSELIN DE JONG G. Longitudinal and transverse diffusion in granular deposits[J]. Eos, Transactions American Geophysical Union. 1958,39(1):67-74.
[32] OGATA A. Transverse diffusion in saturated isotropic granular media[M]. US Government Printing Office,1961.
[33] COATS K H,SMITH B D. Dead-end pore volume and dispersion in porous media[J]. Society of Petroleum Engineers Journal. 1964,4(1):73-84.
[34] FREEZE R A. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media[J]. Water Resources Research. 1975,11(5):725-741.
[35] DAGAN G. Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 1. Conditional simulation and the direct problem[J]. Water Resources Research. 1982,18(4):813-833.
[36] DAGAN G. Solute transport in heterogeneous porous formations[J]. Journal of Fluid Mechanics. 1984,145:151-177.
[37] GELHAR L W,AXNESS C L. Three-dimensional stochastic analysis of macrodispersion in aquifers[J]. Water Resources Research. 1983,19(1):161-180.
[38] RUBIN J,JAMES R V. Dispersion‐affected transport of reacting solutes in saturated porous media: Galerkin method applied to equilibrium‐controlled exchange in unidirectional steady water flow[J]. Water Resources Research. 1973,9(5):1332-1356.
[39] RUBIN J. Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions[J]. Water Resources Research. 1983,19(5):1231-1252.
[40] YEH G T,TRIPATHI V S. A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components[J]. Water Resources Research. 1989,25(1):93-108.
[41] SUN L,QIU H,WU C,et al. A review of applications of fractional advection-dispersion equations for anomalous solute transport in surface and subsurface water[J]. Wiley Interdisciplinary Reviews: Water. 2020,7(4):e1448.
[42] STEEFEL C I,MACQUARRIE K T. Approaches to modeling of reactive transport in porous media[J]. Reactive Transport in Porous Media. 2018:83-130.
[43] LI Y,BIAN J,WANG Q,et al. Experiment and simulation of non-reactive solute transport in porous media[J]. Groundwater. 2021.
[44] LI L,MAHER K,NAVARRE-SITCHLER A,et al. Expanding the role of reactive transport models in critical zone processes[J]. Earth-Science Reviews. 2017,165:280-301.
[45] SEIGNEUR N,MAYER K U,STEEFEL C I. Reactive transport in evolving porous media[J]. Reviews in Mineralogy and Geochemistry. 2019,85(1):197-238.
[46] Van der ZEE S E. Transport of reactive solute in soil and groundwater[J]. Contamination of Groundwaters. 2020:27-87.
[47] SEIGNEUR N,MAYER K U,STEEFEL C I. Reactive transport in evolving porous media[J]. Reviews in Mineralogy and Geochemistry. 2019,85(1):197-238.
[48] ROLLE M,Le BORGNE T. Mixing and reactive fronts in the subsurface[J]. Reviews in Mineralogy and Geochemistry. 2019,85(1):111-142.
[49] PIETRZAK D. Modeling migration of organic pollutants in groundwater-Review of available software[J]. Environmental Modelling & Software. 2021,144:105145.
[50] 王继鹏. 常州某污染场地地下水氯苯迁移数值模拟研究[D]. 常州大学,2015.
[51] 梁少攀. 天津8·12事故后硝酸盐在土壤地下水中的迁移规律研究[D]. 天津大学,2018.
[52] 魏恒,肖洪浪. 地下水溶质迁移模拟研究进展[J]. 冰川冻土. 2013,35(6):1582-1589.
[53] PINDER G F,GRAY W G. Finite element simulation in surface and subsurface hydrology[M]. Elsevier,2013.
[54] ANDERSON M P,CHERRY J A. Using models to simulate the movement of contaminants through groundwater flow systems[J]. Critical Reviews in Environmental Science and Technology. 1979,9(2):97-156.
[55] HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics. 1997,135(2):260-278.
[56] DOMENICO P A. An analytical model for multidimensional transport of a decaying contaminant species[J]. Journal of Hydrology. 1987,91(1-2):49-58.
[57] GUO Z,FOGG G E,BRUSSEAU M L,et al. Modeling groundwater contaminant transport in the presence of large heterogeneity: a case study comparing MT3D and RWhet[J]. Hydrogeology Journal. 2019,27(4):1363-1371.
[58] RIZZO C B,NAKANO A,de BARROS F P. Par2: parallel random walk particle tracking method for solute transport in porous media[J]. Computer Physics Communications. 2019,239:265-271.
[59] BENSON D A,AQUINO T,BOLSTER D,et al. A comparison of Eulerian and Lagrangian transport and non-linear reaction algorithms[J]. Advances in Water Resources. 2017,99:15-37.
[60] HAKOUN V,COMOLLI A,DENTZ M. Upscaling and prediction of Lagrangian velocity dynamics in heterogeneous porous media[J]. Water Resources Research. 2019,55(5):3976-3996.
[61] SOLE-MARI G,FERNÀNDEZ GARCIA D. Lagrangian modeling of reactive transport in heterogeneous porous media with an automatic locally adaptive particle support volume[J]. Water Resources Research. 2018,54(10):8309-8331.
[62] PRICKETT T A,LONNQUIST C G,NAYMIK T G. A" random-walk" solute transport model for selected groundwater quality evaluations[R]. Illinois State Water Survey,Bulletin 65,Illinois,1981.
[63] LABOLLE E M,FOGG G E,TOMPSON A F. Random-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods[J]. Water Resources Research. 1996,32(3):583-593.
[64] KULKARNI N H. A new numerical model coupling modified method of characteristics and galerkin finite element method for simulation of solute transport in groundwater flow system[J]. Aquademia. 2018,2(2):4.
[65] RAMASOMANANA F,FAHS M,BAALOUSHA H M,et al. An efficient ellam implementation for modeling solute transport in fractured porous media[J]. Water, Air, & Soil Pollution. 2018,229(2):1-22.
[66] BESSONE L,GAMAZO P,DENTZ M,et al. GPU implementation of Explicit and Implicit Eulerian methods with TVD schemes for solving 2D solute transport in heterogeneous flows[J]. Computational Geosciences. 2022,26(3):517-543.
[67] DU N,GUO X,WANG H. Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations[J]. Journal of Computational Physics. 2020,405:109127.
[68] MAINA F H,ACKERER P,YOUNES A,et al. Benchmarking numerical codes for tracer transport with the aid of laboratory-scale experiments in 2D heterogeneous porous media[J]. Journal of Contaminant Hydrology. 2018,212:55-64.
[69] CELIA M A,RUSSELL T F,HERRERA I,et al. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation[J]. Advances in Water Resources. 1990,13(4):187-206.
[70] HARBAUGH A W. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process[M]. US Department of the Interior,US Geological Survey Reston,VA,2005.
[71] ZHENG C,WANG P P. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: documentation and user's guide[R]. Contract Report SERDP-99–1, U.S. Army Engineer Research and Development Center,Vicksburg,Mississippi,1999.
[72] TREFRY M G,MUFFELS C. FEFLOW: A finite-element ground water flow and transport modeling tool[J]. Groundwater. 2010,45(5):525-528.
[73] MA L,HE C,BIAN H,et al. MIKE SHE modeling of ecohydrological processes: Merits, applications, and challenges[J]. Ecological Engineering. 2016,96:137-149.
[74] KIPP JR K L. Guide to the revised heat and solute transport simulator: HST3D-Version 2[R]. U.S. Geological Survey,1997.
[75] FINSTERLE S. iTOUGH2 user's guide[R]. Lawrence Berkeley National Laboratory,1999.
[76] LIN H C J,RICHARDS D R,YEH G T,et al. FEMWATER: A three-dimensional finite element computer model for simulating density-dependent flow and transport in variably saturated media[R]. Army Engineer Waterways Experiment Station Vicksburg MS Coastal Hydraulics LAB,1997.
[77] HARIHARAN V,SHANKAR M U. A review of visual MODFLOW applications in groundwater modelling[C]. IOP Publishing,2017.
[78] HE G,ZHANG T,ZHAO Y,et al. A review of approaches on groundwater modeling with GMS[J]. Groundwater. 2007,3.
[79] 王浩,陆垂裕,秦大庸,等. 地下水数值计算与应用研究进展综述[J]. 地学前缘. 2010,17(06):1-12.
[80] CELIA M A,BOULOUTAS E T,ZARBA R L. A general mass-conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research. 1990,26(7):1483-1496.
[81] FARTHING M W,OGDEN F L. Numerical solution of Richards' equation: A review of advances and challenges[J]. Soil Science Society of America Journal. 2017,81(6):1257-1269.
[82] PHILIP J R. The theory of infiltration: 4. sorptivity and algebraic infiltration equations[J]. Soil Science. 1957,84(3):257-264.
[83] GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science. 1958,85(4):228-232.
[84] PULLAN A J. The quasilinear approximation for unsaturated porous media flow[J]. Water Resources Research. 1990,26(6):1219-1234.
[85] SRINILTA S A,NIELSEN D R,KIRKHAM D. Steady flow of water through a two‐layer soil[J]. Water Resources Research. 1969,5(5):1053-1063.
[86] RAATS P A C. Implications of some analytical solutions for drainage of soil water[J]. Agricultural Water Management. 1983,6(2):161-175.
[87] YEH T C J. One-dimensional steady state infiltration in heterogeneous soils[J]. Water Resources Research. 1989,25(10):2149-2158.
[88] WARRICK A W,YEH T C J. One-dimensional, steady vertical flow in a layered soil profile[J]. Advances in Water Resources. 1990,13(4):207-210.
[89] BRAESTER C. Moisture variation at the soil surface and the advance of the wetting front during infiltration at constant flux[J]. Water Resources Research. 1973,9(9):687-694.
[90] WARRICK A W. Analytical solutions to the one-dimensional linearized moisture flow equation for arbitrary input[J]. Soil Science. 1975,120(2):79-84.
[91] SRIVASTAVA R,YEH T C J. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layerd soils[M]. 1991.
[92] BARRY D A,PARLANGE J Y,SANDER G C,et al. A class of exact solutions for Richards' equation[J]. Journal of Hydrology. 1993,142(1-4):29-46.
[93] MENZIANI M,PUGNAGHI S,VINCENZI S. Analytical solutions of the linearized Richards equation for discrete arbitrary initial and boundary conditions[J]. Journal of Hydrology. 2007,332(1):214-225.
[94] CHEN J,TAN Y,CHEN C,et al. Analytical solutions for linearized Richards Equation with arbitrary time-dependent surface fluxes[J]. Water Resources Research. 2001,37(4):1091-1093.
[95] YUAN F,LU Z. Analytical solutions for vertical flow in unsaturated, rooted soils with variable surface fluxes[J]. Vadose Zone Journal. 2005,4(4):1210-1218.
[96] CHEN J,TAN Y,CHEN C. Analytical solutions of one-dimensional infiltration before and after ponding[J]. Hydrological Processes. 2003,17(4):815-822.
[97] CHEN J,TAN Y,CHEN C. Multidimensional infiltration with arbitrary surface fluxes[J]. Journal of Irrigation and Drainage Engineering. 2001,127(6):370-377.
[98] LIANG X,ZHAN H,ZHANG Y. Aquifer recharge using a vadose zone infiltration well[J]. Water Resources Research. 2018,54(11):8847-8863.
[99] LIANG X,ZHAN H,ZHANG Y,et al. Base flow recession from unsaturated-saturated porous media considering lateral unsaturated discharge and aquifer compressibility[J]. Water Resources Research. 2017,53(9):7832-7852.
[100] ASSOULINE S. Infiltration into soils: Conceptual approaches and solutions[J]. Water Resources Research. 2013,49(4):1755-1772.
[101] TOCCI M D,KELLEY C T,MILLER C T. Accurate and economical solution of the pressure-head form of Richards' equation by the method of lines[J]. Advances in Water Resources. 1997,20(1):1-14.
[102] ALLEN M B,MURPHY C. A finite element collocation method for variably saturated flows in porous media[J]. Numerical Methods for Partial Differential Equations. 2010,1(3):229-239.
[103] ZHA Y,YANG J,YIN L,et al. A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil[J]. Journal of Hydrology. 2017,551:56-69.
[104] TRANGENSTEIN J A. Numerical solution of elliptic and parabolic partial differential equations with CD-ROM[M]. Cambridge University Press,2013.
[105] KLAUSEN R A,RUSSELL T F. Relationships among some locally conservative discretization methods which handle discontinuous coefficients[J]. Computational Geosciences. 2004,8(4):341-377.
[106] DAWSON C,SUN S,WHEELER M F. Compatible algorithms for coupled flow and transport[J]. Computer Methods in Applied Mechanics and Engineering. 2004,193(23-26):2565-2580.
[107] CAMPBELL J C,HYMAN J M,SHASHKOV M J. Mimetic finite difference operators for second-order tensors on unstructured grids[J]. Computers & Mathematics with Applications. 2002,44(1-2):157-173.
[108] AAVATSMARK I,BARKVE T,BØE O,et al. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods[J]. Siam Journal On Scientific Computing. 1998,19(5):1700-1716.
[109] ARBOGAST T,CHEN Z. On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[J]. Mathematics of Computation. 1995,64(211):943-972.
[110] CHAVENT G,ROBERTS J E. A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems[J]. Advances in Water Resources. 1991,14(6):329-348.
[111] COMSOL. COMSOL Multiphysics user's guide[M]. Version 5.3a ed. Burlington,MA,USA:COMSOL AB,2017.
[112] SELKER J. Modelling variably saturated flow with HYDRUS-2D[J]. Vadose Zone Journal. 2004,3(2):725.
[113] LAPPALA E G,HEALY R W,WEEKS E P. Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media[M]. Department of the Interior,US Geological Survey,1987.
[114] PANICONI C,WOOD E F. A detailed model for simulation of catchment scale subsurface hydrologic processes[J]. Water Resources Research. 1993,29(6):1601-1620.
[115] ZYVOLOSKI G A,ROBINSON B A,DASH Z V,et al. Summary of the models and methods for the FEHM application-a finite-element heat-and mass-transfer code[R]. Los Alamos National Lab.,NM (US),1997.
[116] HOWINGTON S E,BERGER R C,HALLBERG J P,et al. A model to simulate the interaction between groundwater and surface water[R]. Engineer Research and Development Center Vicksburg MS,1999.
[117] BRUNNER P,SIMMONS C T. HydroGeoSphere: a fully integrated, physically based hydrological model[J]. Groundwater. 2012,50(2):170-176.
[118] MAXWELL R M,CONDON L E,KOLLET S J. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3[J]. Geoscientific Model Development. 2015,8(3):923.
[119] ORGOGOZO L. RichardsFoam2: A new version of RichardsFoam devoted to the modelling of the vadose zone[J]. Computer Physics Communications. 2015(196):619-620.
[120] YEH G,SHIH D,CHENG J C. An integrated media, integrated processes watershed model[J]. Computers & Fluids. 2011,45(1):2-13.
[121] SHEWCHUK J R. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures[Z]. 2002:73,.
[122] PAIN C C,UMPLEBY A P,OLIVEIRA C D,et al. Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations[J]. Computer Methods in Applied Mechanics & Engineering. 2001,190(29):3771-3796.
[123] MOSTAGHIMI P,PERCIVAL J R,PAVLIDIS D,et al. Anisotropic mesh adaptivity and control volume finite element methods for numerical simulation of multiphase flow in porous media[J]. Mathematical Geosciences. 2015,47(4):417-440.
[124] OR D,LEHMANN P,ASSOULINE S. Natural length scales define the range of applicability of the Richards equation for capillary flows[J]. Water Resources Research. 2015,51(9):7130-7144.
[125] HAVARD P L,PRASHER S O,BONNELL R B,et al. Linkflow, a water flow computer model for water table management: Part I. Model development[J]. Transactions of the Asae. 1995,38(2):481-488.
[126] NISWONGER R G,PRUDIC D E,REGAN R S. Documentation of the unsaturated-zone flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005[R]. U.S. Geological Survey Techniques and Methods 6-A19,2006.
[127] NISWONGER R G,PRUDIC D E. Modeling variably saturated flow using kinematic waves in MODFLOW[J]. Groundwater Recharge in a Desert Environment. American Geophysical Union (Agu), Water Science and Application. 2004,9:101-112.
[128] TWARAKAVI N K C,JIRKA ŠIMŮNEK J,SEO S. Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW[J]. Vadose Zone Journal. 2008,7(2):757-768.
[129] YAKIREVICH A,BORISOV V,SOREK S. A quasi three-dimensional model for flow and transport in unsaturated and saturated zones: 1. Implementation of the quasi two-dimensional case[J]. Advances in Water Resources. 1998,21(8):679-689.
[130] KELLEY C T. Iterative methods for linear and nonlinear equations[M]. Philadelphia:SIAM,1995:206-207.
[131] SÖDERLIND G. Time-step selection algorithms: Adaptivity, control, and signal processing[J]. Applied Numerical Mathematics. 2006,56(3-4):488-502.
[132] PANICONI C,PUTTI M. A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems[J]. Water Resources Research. 1994,30(12):3357-3374.
[133] LEHMANN F,ACKERER P. Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media[J]. Transport in Porous Media. 1998,31(3):275-292.
[134] POP I S,RADU F,KNABNER P. Mixed finite elements for the Richards' equation: linearization procedure[J]. Journal of Computational & Applied Mathematics. 2004,168(1):365-373.
[135] SLODICKA M. A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porous media[J]. Siam Journal On Scientific Computing. 2002,23(5):1593-1614.
[136] LIST F,RADU F A. A study on iterative methods for solving Richards' equation[J]. Computational Geosciences. 2015,20(2):1-13.
[137] JONES J E,WOODWARD C S. Newton-Krylov-Multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems[J]. Advances in Water Resources. 2001,24(7):763-774.
[138] KNOLL D A,KEYES D E. Jacobian-free Newton–Krylov methods: a survey of approaches and applications[J]. Journal of Computational Physics. 2004,193(2):357-397.
[139] WANG X,TCHELEPI H A. Trust-region based solver for nonlinear transport in heterogeneous porous media[J]. Journal of Computational Physics. 2013,253(45):114-137.
[140] WALKER H F,NI P. Anderson acceleration for fixed-point iterations[J]. Mathematical Sciences Faculty Publications. 2007,49(4):1715-1735.
[141] LOTT P A,WALKER H F,WOODWARD C S,et al. An accelerated Picard method for nonlinear systems related to variably saturated flow[J]. Advances in Water Resources. 2012,38(2):92-101.
[142] SAAD Y,VAN D V H A. Iterative solution of linear systems in the 20th century[M]. 2000.
[143] TOCCI M D,KELLEY C T,MILLER C T,et al. Inexact Newton methods and the method of lines for solving Richards' equation in two space dimensions[J]. Computational Geosciences. 1998,2(4):291-309.
[144] HÉNON P,RAMET P,ROMAN J. PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems[J]. Parallel Computing. 2002,28(2):301-321.
[145] FARTHING M W,KEES C E,COFFEY T S,et al. Efficient steady-state solution techniques for variably saturated groundwater flow[J]. Advances in Water Resources. 2003,26(8):833-849.
[146] JENKINS E W,KELLEY C T,MILLER C T,et al. An aggregation-based domain decomposition preconditioner for groundwater flow[J]. Siam Journal On Scientific Computing. 2001,23(2):2001.
[147] BALAY S,GROPP W D,MCINNES L C,et al. Efficient management of parallelism in object oriented numerical software libraries[M]. Modern Software Tools in Scientific Computing,Boston:Birkhäuser,1997.
[148] LIPNIKOV K,MOULTON D,SVYATSKIY D. New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards' equation[J]. Advances in Water Resources. 2016,94:11-22.
[149] EISENSTAT S C,WALKER H F. Choosing the forcing terms in an inexact Newton method[J]. Siam Journal On Scientific Computing. 1996,17(1):16-32.
[150] HIGASHINO M,ASO D,STEFAN H G. Effects of clay in a sandy soil on saturated/unsaturated pore water flow and dissolved chloride transport from road salt applications[J]. Environmental Science and Pollution Research. 2021,28(18):22693-22704.
[151] BAGHERI H,ABYANEH H Z,IZADY A,et al. Modeling the transport of nitrate and natural multi-sized colloids in natural soil and soil amended with vermicompost[J]. Geoderma. 2019,354:113889.
[152] KAMRANI S,REZAEI M,KORD M,et al. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size[J]. Water Research. 2018,133:338-347.
[153] BELTMAN W,BOESTEN J,Van der ZEE S. Analytical modelling of pesticide transport from the soil surface to a drinking water well[J]. Journal of Hydrology. 1995,169(1-4):209-228.
[154] CONNELL L D. Simple models for subsurface solute transport that combine unsaturated and saturated zone pathways[J]. Journal of Hydrology. 2007,332(3-4):361-373.
[155] KOOL J B,HUYAKORN P S,SUDICKY E A,et al. A composite modeling approach for subsurface transport of degrading contaminants from land-disposal sites[J]. Journal of Contaminant Hydrology. 1994,17(1):69-90.
[156] CHRISTIANSEN J S,THORSEN M,CLAUSEN T,et al. Modelling of macropore flow and transport processes at catchment scale[J]. Journal of Hydrology. 2004,299(1):136-158.
[157] STENEMO F,RGENSEN P R J,JARVIS N. Linking a one-dimensional pesticide fate model to a three-dimensional groundwater model to simulate pollution risks of shallow and deep groundwater underlying fractured till[J]. Journal of Contaminant Hydrology. 2005,79(1):89-106.
[158] BERGVALL M,GRIP H,SJÖSTRÖM J,et al. Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer[J]. Hydrology and Earth System Sciences. 2011,15(7):2229-2244.
[159] AAVATSMARK I. An introduction to multipoint flux approximations for quadrilateral grids[J]. Computational Geosciences. 2002,6(3):405-432.
[160] YOUNES A,FAHS M,BELFORT B. Monotonicity of the cell-centred triangular MPFA method for saturated and unsaturated flow in heterogeneous porous media[J]. Journal of Hydrology. 2013,504:132-141.
[161] YOUNES A,MAKRADI A,ZIDANE A,et al. A combination of Crouzeix-Raviart, Discontinuous Galerkin and MPFA methods for buoyancy-driven flows[J]. International Journal of Numerical Methods for Heat & Fluid Flow. 2014,24(3):735-759.
[162] AAVATSMARK I,EIGESTAD G T,KLAUSEN R A,et al. Convergence of a symmetric MPFA method on quadrilateral grids[J]. Computational Geosciences. 2007,11(4):333-345.
[163] AAVATSMARK I,EIGESTAD G T,KLAUSEN R A. Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions[M]. Compatible Spatial Discretizations,Springer,2006,1-21.
[164] SHENG Z,YUAN G. An improved monotone finite volume scheme for diffusion equation on polygonal meshes[J]. Journal of Computational Physics. 2012,231(9):3739-3754.
[165] WHEELER M F,YOTOV I. A multipoint flux mixed finite element method[J]. Siam Journal On Numerical Analysis. 2006,44(5):2082-2106.
[166] WHEELER M,XUE G,YOTOV I. A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra[J]. Numerische Mathematik. 2012,121(1):165-204.
[167] KLAUSEN R A,RADU F A,EIGESTAD G T. Convergence of MPFA on triangulations and for Richards' equation[J]. International Journal for Numerical Methods in Fluids. 2008,58(12):1327-1351.
[168] DOTLIĆ M,POKORNI B,PUŠIĆ M,et al. Non-linear multi-point flux approximation in the near-well region[J]. Filomat. 2018,32(20):6857-6867.
[169] YOUNES A,ACKERER P. Solving the advection–dispersion equation with discontinuous Galerkin and multipoint flux approximation methods on unstructured meshes[J]. International Journal for Numerical Methods in Fluids. 2008,58(6):687-708.
[170] STARNONI M,BERRE I,KEILEGAVLEN E,et al. Consistent MPFA discretization for flow in the presence of gravity[J]. Water Resources Research. 2019,55(12):10105-10118.
[171] 王洪涛. 多孔介质污染物迁移动力学[M]. 高等教育出版社,2008.
[172] ZHANG Z,WANG W,GONG C,et al. Finite analytic method for modeling variably saturated flows[J]. Science of the Total Environment. 2018,621:1151-1162.
[173] GENUCHTEN M T V. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.[J]. Soil Science Society of America Journal. 1980,44(44):892-898.
[174] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research. 1976,12(3):513-522.
[175] 薛禹群,谢春红. 地下水数值模拟[M]. 科学出版社,2007.
[176] WANG H F,ANDERSON M P. Introduction to groundwater modeling[M]. Freeman,1982:778.
[177] AKAI K,OHNISHI Y,NISHIGAKI M. Finite element analysis of saturated-unsaturated seepage in soil[J]. Doboku Gakkai Ronbunshu. 1977,1977(264):87-96.
[178] PAPADOPULOS I S. Nonsteady flow to a well in an infinite anisotropic aquifer[C]. 1965.
[179] LANCIA M,ZHENG C,YI S,et al. Analysis of groundwater resources in densely populated urban watersheds with a complex tectonic setting: Shenzhen, southern China[J]. Hydrogeology Journal. 2019,27(1):183-194.
[180] BAILEY R,RATHJENS H,BIEGER K,et al. SWATMOD-Prep: Graphical user interface for preparing coupled SWAT-MODFLOW simulations[J]. Journal of the American Water Resources Association. 2017,53(2):400-410.
[181] FORSYTH P A,UNGER A,SUDICKY E A. Nonlinear iteration methods for nonequilibrium multiphase subsurface flow[J]. Advances in Water Resources. 1998,21(6):433-449.
[182] LUO L,WU J,GAO Z. A family of linearity-preserving schemes for anisotropic diffusion problems on general grids[J]. Journal of Computational and Theoretical Transport. 2017,46(2):77-99.
[183] 杜昱,李洪君,李大利,等. 垃圾渗滤液处理亟需解决的问题及发展方向[J]. 中国给水排水. 2015,31(22):33-36.
[184] 闫佰忠,肖长来,刘泓志,等. 吉林市城区土地利用对地下水污染空间分布的影响[J]. 中国环境科学. 2015(3):934-942.
[185] 洪梅,张博,李卉,等. 生活垃圾填埋场对地下水污染的风险评价——以北京北天堂垃圾填埋场为例[J]. 环境污染与防治. 2011,33(3):88-91.
[186] 仝晓霞,宁立波,董少刚. 运用GMS模型对某垃圾场地下水污染的研究[J]. 环境科学与技术. 2012,35(7):197-201.
[187] 薛红琴. 地下水溶质运移模型应用研究现状与发展[J]. 勘察科学技术. 2008(6):17-22.
[188] 张汝壮. 基于GMS的某非正规垃圾填埋场地下水污染的模拟研究[J]. 环境卫生工程. 2020,28(3):75-79.

Academic Degree Assessment Sub committee
环境科学与工程学院
Domestic book classification number
X523
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/355969
DepartmentSchool of Environmental Science and Engineering
Recommended Citation
GB/T 7714
高玉龙. 地下水水流与污染物迁移数值模型开发及应用研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11749298-高玉龙-环境科学与工程(37034KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[高玉龙]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[高玉龙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[高玉龙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.