中文版 | English
Title

铁基非晶磁粉芯的低压成型及性能研究

Alternative Title
LOW-PRESSURE FABRICATION AND PERFORMANCE OF IRON-BASED AMORPHOUS MAGNETIC POWDER CORES
Author
Name pinyin
MA Rui
School number
11849545
Degree
博士
Discipline
080503 材料加工工程
Subject category of dissertation
08 工学
Supervisor
卢周广
Mentor unit
材料科学与工程系
Publication Years
2022-05-19
Submission date
2022-07-25
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

磁粉芯是一种采用绝缘物质将磁性金属粉末包覆后,在压力作用下成型,具有软磁特性的复合材料。磁粉芯作为一体成型电感的主要部件,广泛应用于高精密电子设备中。铁基非晶合金由于不存在晶界缺陷,且具有高电阻率、高磁导率和低矫顽力的优点,是制备磁粉芯的理想材料。然而,铁基非晶合金硬度大且变形能力差,压制成型过程通常需要施加很高的压力,易引起非晶磁粉芯的绝缘层破损、内应力过大等问题。因此,降低成型压力是制备高性能非晶磁粉芯的关键。本论文旨在开发低压成型技术制备新型铁基非晶磁粉芯,并对制备工艺及磁性能进行系统研究。

首先采用热压成型法制备铁基非晶磁粉芯。通过提高压制温度至近Fe73Si11B11C3Cr2粉末的玻璃态转变温度,提高粉末塑性,以降低磁粉芯成型压力。并且,在此温度下进行退火时,“软化”的粉末可充分释放应力,减小磁畴壁移动的阻碍,使磁粉芯磁性能提高。试验中,通过150 °C15小时的水热处理在Fe73Si11B11C3Cr2粉末表面原位生成Fe3O4绝缘层后,在600 MPa压力、430 °C温度下成型,之后在430 °C 进行真空热处理1小时以消除残余应力。所制备的非晶磁粉芯,具有最优磁性能:100 kHz50 mT下损耗498 kW/m3,有效磁导率43。与传统的冷压成型法相比,本文采用的热压成型将非晶磁粉芯成型压力降低了400 MPa以上。

为了进一步降低磁粉芯的成型压力,提高制备效率, 采用了注射成型法制备非晶磁粉芯。高分子粘结剂在熔融状态下与非晶粉末混合均匀形成喂料后,注射成型为磁粉芯。其中,粘结剂既提高了粉末流动速度,又在粉末表面形成绝缘包覆。首先研究了粘接剂的种类和含量对磁粉芯磁性能和力学性能的影响规律。结果表明,具有极性键的骨架粘结剂尼龙66能够与包覆在粉末表面的耦合剂硬脂酸形成强有力的氢键,使磁粉芯粉末颗粒表面绝缘包覆更加充分,内部结构更加均匀,磁粉芯具有最佳的磁性能和力学性能;在确保喂料具有足够流动性的前提下,提高粉末装载量可有效提高磁粉芯性能,对于D50~20 μm的非晶粉末,最大的粉末装载量为93 wt%,此时的磁粉芯在100 kHz30 mT下损耗为251 kW/m3,有效磁导率为26。和热压法相比,注射成型制备磁粉芯的成型压力显著降低,仅为80 MPa

在优化粘结剂的基础上,进一步研究了磁粉芯中粉体的组成对非晶磁粉芯磁性能的影响。第一部分,研究了非晶粉末粒径(D50分别为618 μm)对喂料流动性以及磁性能的影响。结果表明,随着细粉质量占比增加,喂料的黏度先降低,后增加,50 wt%时达到最小。细粉的引入会增大磁粉芯退磁场,导致磁导率下降,但是,由于细粉可抑制磁粉芯的涡流损耗,同时喂料黏度降低带来的较小残余应力有利于减小磁滞损耗。当细粉占比为50 wt%时,磁粉芯具有最低损耗250 kW/m3(100 kHz, 30 mT),因此最佳的细粉引入量为50 wt%。第二部分,通过Fe50Co50细粉替代铁基非晶细粉进一步改善磁粉芯的性能。随着Fe50Co50细粉含量的增加,磁粉芯的饱和磁感应强度和直流偏置性能不断提高,但当Fe50Co50细粉比例为50 wt%时,粉末的松装密度最大,且具有最大的流动性,此时喂料黏度最小,残余应力最小,因此磁粉芯损耗最低,为210 kW/m3(100 kHz, 30 mT)。第三部分,研究了纳米锰锌铁氧体的添加对磁粉芯磁性能的影响。结果表明,在超交换作用下,化学成分为Mn0.5Zn0.5Fe2O4的纳米锰锌铁氧体粉末具有最大的饱和磁化强度。当纳米铁氧体添加比例为0.1 wt%时,纳米粉末破环了粗非晶粉的“搭桥”现象,增大了粉末流动性,磁粉芯的磁性能明显提升,损耗为262 kW/m3(100 kHz, 30 mT),磁导率为25。因此粉体的粒度和成分配比是影响磁粉芯综合磁性能的关键因素。

论文还研究了注射成型制备磁粉芯中后处理对磁粉芯性能的影响,后处理可有效释放残余应力,减少磁畴壁在外磁场作用下移动的阻碍。结果表明,非晶粉末在450°C条件下真空退火3小时,能够改善非晶磁粉芯的磁性能,100 kHz下,磁导率提高约7%、损耗降低约8%。此外,非晶磁粉芯成型件经过一年老化可消除由喂料黏度引入的残余应力,显著提高磁性能,在100 kHz下,磁导率提高约16%、损耗降低约17%;将温度由室温提高至60 °C可加速老化过程,提高磁性能,并使非晶磁粉芯在短时间内达到性能稳定状态。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-07
References List

[1] Lashgari H R, Chu D, Xie S, et al. Composition Dependence of the Microstructure and Soft Magnetic Properties of Fe-Based Amorphous/Nanocrystalline Alloys: A Review Study[J]. Journal of Non-Crystalline Solids, 2014, 391: 61–82.
[2] Leary A M, Ohodnicki P R, Mchenry M E. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications[J]. Jom, 2012, 64(7): 772–781.
[3] 戴道生;钱昆明. 铁磁学[M]. 科学出版社, 1998:8-30.
[4] 姜寿亭,李卫. 凝聚态磁性物理[M]. 科学出版社, 2003:42-86.
[5] 严密,彭晓领. 磁学基础与磁性材料[M]. 磁学基础与磁性材料, 2006:101-156.
[6] 高结敏,赵修科. 开关电源中的磁性元器件[M]. 南京航空航天大学出版社, 2013.
[7] 刘银. Ni-Zn 铁氧体材料的制备, 微结构, 性能及其改性研究[M]. 中国科学技术大学出版社, 2015:21-88
[8] 周娟. Fe基纳米晶磁粉芯制备与性能研究[D]. 中南大学, 2013.
[9] 魏鼎. 铁硅系金属磁粉芯制备研究[D]. 华中科技大学, 2015.
[10] Zhang Y, Ma R, Feng S, et al. Microstructures and Magnetic Properties of Fe-35%Co Alloy Fabricated by Metal Injection Molding[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 165982.
[11] 刘胜龙. MnZn铁氧体FeSiAl复合磁粉及其磁粉芯性能研究[D]. 广东工业大学, 2016.
[12] 宛德福, 马兴隆. 磁性物理学 [M]. 电子工业出版社, 1999:46-60.
[13] 王贝. 高性能功率锰锌铁氧体的制备及磁性能研究[D]. 河北工业大学, 2015.
[14] 宣益民. 锰锌铁氧体纳米粒子的制备和磁性能研究[J]. 功能材料, 2007, 2(38): 198–203.
[15] 丁丽莉. 尖晶石结构铁氧体MxMn1-XFe2O4(M=Zn, Mg, Al)的磁有序和阳离子分布研究[D]. 河北师范大学, 2017.
[16] Yan W, Jiang W, Zhang Q, et al. Structure and Magnetic Properties of Nickel-Zinc Ferrite Microspheres Synthesized by Solvothermal Method[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 171(1–3): 144–148.
[17] Saravanan R. Ferrite Materials for Memory Applications[M]. Materials Research Forum LLC, 2017.
[18] Li H X, Lu Z C, Wang S L, et al. Fe-Based Bulk Metallic Glasses: Glass Formation, Fabrication, Properties and Applications[J]. Progress in Materials Science, 2019, 103(12): 235–318.
[19] 姜振春. Fe-Si-B非晶合金恒导磁性能的研究[D]. 东北大学, 2005.
[20] 梁晓凤. 铁基非晶结构演变对条带磁性和韧脆性的影响[D]. 沈阳工业大学, 2017.
[21] 斯佳佳. Fe-Zr-B系非晶合金的非晶形成能力与性能研究[D]. 北京科技大学, 2017.
[22] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177–351.
[23] Inoue A, Shinohara Y, Gook J S. Thermal and Magnetic Properties of Bulk Fe-Based Glassy Alloys Prepared by Copper Mold Casting[J]. Materials Transactions, JIM, 1995, 36(12): 1427–1433.
[24] Inoue A, Zhang T, Takeuchi A. Bulk Amorphous Alloys with High Mechanical Strength and Good Soft Magnetic Properties in Fe–TM–B (TM=IV-VIII Group Transition Metal) System[J]. Applied Physics Letters, 1997, 71(4): 464–466.
[25] Inoue A, Shen B. Soft Magnetic Bulk Glassy Fe-B-Si-Nb Alloys with High Saturation Magnetization above 1.5 T[J]. Materials Transactions, 2002, 43(4): 766–769.
[26] Inoue A, Shen B. Formation and Soft Magnetic Properties of Fe-B-Si-Zr Bulk Glassy Alloys with High Saturation Magnetization above 1.5 T[J]. Materials Transactions, 2005, 43(9): 2350–2353.
[27] Shen B, Inoue A, Chang C. Superhigh Strength and Good Soft-Magnetic Properties of (Fe,Co)-B-Si-Nb Bulk Glassy Alloys with High Glass-Forming Ability[J]. Applied Physics Letters, 2004, 85(21): 4911–4913.
[28] Makino A, Chang C, Kubota T, et al. Soft Magnetic Fe-Si-B-P-C Bulk Metallic Glasses without Any Glass-Forming Metal Elements[J]. Journal of Alloys and Compounds, 2009, 483(1–2): 616–619.
[29] Meng S, Ling H, Li Q, et al. Development of Fe-Based Bulk Metallic Glasses with High Saturation Magnetization[J]. Scripta Materialia, 2014, 81(11): 24–27.
[30] Jack A G, Mecrow B C, Maddison C P, et al. Claw Pole Armature Permanent Magnet Machines Exploiting Soft Iron Powder Metallurgy[J]. IEEE International Electric Machines and Drives Conference Record, IEMDC, 1997, 11(2): 48–50.
[31] 赵国梁. 高Bs低功耗铁基软磁复合材料的制备及性能研究[D]. 浙江大学, 2016.
[32] 陶龙旭. Fe/Ni-Zn铁氧体软磁复合材料及应用研究[D]. 电子科技大学, 2012.
[33] 唐坚. 金属软磁磁粉芯研究[D]. 东北大学, 2012.
[34] Liu Y, He S. Development of Low Loss Mn-Zn Ferrite Working at Frequency Higher than 3 MHz[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(23): 3318–3322.
[35] Shokrollahi H, Janghorban K. Soft Magnetic Composite Materials (SMCs)[J]. Journal of Materials Processing Technology, 2007, 189(3): 1–12.
[36] Guo Y, Zhu J G, Lin Z W, et al. 3D Vector Magnetic Properties of Soft Magnetic Composite Material[J]. Journal of Magnetism and Magnetic Materials, 2006, 302(2): 511–516.
[37] Bayramlı E, Gölgelioğlu Ö, Ertan H B. Powder Metal Development for Electrical Motor Applications[J]. Journal of Materials Processing Technology, 2005, 161(2): 83–88.
[38] 朱小辉,柏海明,许佳辉. 铁硅铝磁粉心的直流叠加特性研究[J]. 材料热处理技术, 2012, 41(40): 39–44.
[39] Birčáková Z, Füzer J, Kollár P, et al. Magnetic Properties of Fe-Based Soft Magnetic Composite with Insulation Coating by Resin Bonded Ni-Zn Ferrite Nanofibres[J]. Journal of Magnetism and Magnetic Materials, 2019, 485: 1–7.
[40] McHenry M E, Willard M A, Laughlin D E. Amorphous and Nanocrystalline Materials for Applications as Soft Magnets[J]. Progress in Materials Science, 1999, 44(4): 291–433.
[41] 刘亚丕,石康,石凯鸣,石凯翔. 软磁磁粉芯和烧结软磁材料:结构、性能、特点和应用 [J]. 磁性材料及器件, 2020, 51(3): 66–70.
[42] 刘冬. 高磁导低功耗FeSiAl软磁复合材料的显微结构及磁性能研究[D]. 浙江大学, 2018.
[43] 何开元;张雅静. 软磁合金及相关物理专题研究[M]. 北京: 冶金工业出版社, 2018: 89-121.
[44] Taghvaei A H, Shokrollahi H, Janghorban K. Structural Studies, Magnetic Properties and Loss Separation in Iron-Phenolicsilane Soft Magnetic Composites[J]. Materials and Design, 2010, 31(1): 142–148.
[45] Taghvaei A H, Shokrollahi H, Ebrahimi A, et al. Soft Magnetic Composites of Iron-Phenolic and the Influence of Silane Coupling Agent on the Magnetic Properties[J]. Materials Chemistry and Physics, 2009, 116(1): 247–253.
[46] Taghvaei A H, Shokrollahi H, Janghorban K, et al. Eddy Current and Total Power Loss Separation in the Iron-Phosphate-Polyepoxy Soft Magnetic Composites[J]. Materials and Design, 2009, 30(10): 3989–3995.
[47] Kollár P, Birčáková Z, Füzer J, et al. Power Loss Separation in Fe-Based Composite Materials[J]. Journal of Magnetism and Magnetic Materials, 2013, 327: 146–150.
[48] Bir Z, Füzer J, Kollár P, et al. Magnetic Properties of Fe-Based Soft Magnetic Composite with Insulation Coating by Resin Bonded Ni-Zn Ferrite Nano Fi Bres[J]. Journal of Magnetism and Magnetic Materials, 2019, 485(2): 1–7.
[49] Kollár P, Birčáková Z, Füzer J, et al. Power Loss Separation in Fe-Based Composite Materials[J]. Journal of Magnetism and Magnetic Materials, 2013, 327: 146–150.
[50] Jiles D C. Modelling the Effects of Eddy Current Losses on Frequency Dependent Hysteresis in Electrically Conducting Media[J]. IEEE Transactions on Magnetics, 1994, 30(6): 4326–4328.
[51] Chang L, Xie L, Liu M, et al. Novel Fe-Based Nanocrystalline Powder Cores with Excellent Magnetic Properties Produced Using Gas-Atomized Powder[J]. Journal of Magnetism and Magnetic Materials, 2018, 452: 442–446.
[52] Chang L, Zhang Y, Dong Y, et al. Enhanced Magnetic Properties of Fe-Based Nanocrystalline Composites by Addition of Carbonyl Iron Powders[J]. SN Applied Sciences, 2019, 1(8): 1–7.
[53] Yagi M, Nakanishi H, Otsuka I, et al. Magnetic Properties of Fe-Based Amorphous Powder Cores Produced by the Hot-Pressing Method.[J]. Journal of the Magnetics Society of Japan, 2007, 26(4): 513–517.
[54] Kang E Y, Kim Y B, Kim K Y, et al. Vacuum Hot Pressing of Fe-Si-B-Nb-Based Amorphous Powder Cores and Their High-Frequency Magnetic Properties[J]. Journal of Applied Physics, 2006, 99(8): 2–5.
[55] Shokrollahi H, Janghorban K. Effect of Warm Compaction on the Magnetic and Electrical Properties of Fe-Based Soft Magnetic Composites[J]. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 182–186.
[56] 张久兴,刘科高,周美玲. 放电等离子烧结技术的发展和应用[J]. 粉末冶金技术, 2002, 20(3): 129–134.
[57] Evangelista L L, Tontini G, Filho A I R, et al. Developments on Soft Magnetic Composites with Double Layer Insulating Coating:Synergy between ZnO and B2O3[J]. Journal of Magnetism and Magnetic Materials, 2020, 497(10): 166023.
[58] Singh A, Harimkar S P. Spark Plasma Sintering of in Situ and Ex Situ Iron-Based Amorphous Matrix Composites[J]. Journal of Alloys and Compounds, 2010, 497(12): 121–126.
[59] Li X, Makino A, Kato H, et al. Fe76Si9.6B8.4P6 Glassy Powder Soft-Magnetic Cores with Low Core Loss Prepared by Spark-Plasma Sintering[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176(15): 1247–1250.
[60] Li X, Lu G, Zhang Z, et al. Bulk Amorphous Powder Cores with Low Core Loss by Spark-Plasma Sintering Fe76Si9.6B8.4P6 Amorphous Powder with Small Amounts of SiO2[J]. Journal of Alloys and Compounds, 2015, 647: 917–920.
[61] Liu T, Wang M, Zhao Z. High Frequency Properties of Fe73.5Cu1Nb 3Si13.5B9/Zn0.5Ni0.5Fe2O4 Soft Magnetic Composite with Micro-Cellular Structure[J]. Science China: Physics, Mechanics and Astronomy, 2012, 55(12): 2392–2396.
[62] Zhao Z, Sun Y, Wang M, et al. Interfacial Behavior of Fe76Si9B10P5/Zn0.5Ni0.5Fe2O4 Amorphous Soft Magnetic Composite during Spark Plasma Sintering Process[J]. Progress in Natural Science: Materials International, 2016, 26(1): 85–89.
[63] Luo F, Luo Z, Hu W, et al. Preparation and Magnetic Properties of FeSiAl-Based Soft Magnetic Composites with MnO / Al 2 O 3 Insulation Layer[J/OL]. Journal of Magnetism and Magnetic Materials, 2019(October): 166084.
[64] Luo F, Luo Z, Hu W, et al. Preparation and Magnetic Properties of FeSiAl-Based Soft Magnetic Composites with MnO/Al2O3 Insulation Layer[J]. Journal of Magnetism and Magnetic Materials, 2019(10): 166084.
[65] Luo Z, Fan X, Hu W, et al. Properties of Fe2SiO4/SiO2 Coated Fe-Si Soft Magnetic Composites Prepared by Sintering Fe-6.5wt%Si/Fe3O4 Composite Particles[J]. Journal of Magnetism and Magnetic Materials, 2020, 499(12): 166278.
[66] Luo Z, Fan X, Hu W, et al. Effect of Sintering Temperature on Microstructure and Magnetic Properties for Fe-Si Soft Magnetic Composites Prepared by Water Oxidation Combined with Spark Plasma Sintering[J]. Journal of Magnetism and Magnetic Materials, 2019, 491(5): 165615.
[67] Luo F, Fan X, Luo Z, et al. Ultra-Low Inter-Particle Eddy Current Loss of Fe3 Si/Al2O3 Soft Magnetic Composites Evolved from FeSiAl/Fe3O4 Core-Shell Particles[J]. Journal of Magnetism and Magnetic Materials, 2019,484(3): 218–224.
[68] Luo Z, Fan X, Hu W, et al. High Performance Fe-Si Soft Magnetic Composites Coated with Novel Insulating-Magnetic-Insulating (IMI) Layer[J]. Journal of Magnetism and Magnetic Materials, 2020, 496(10): 165937.
[69] Zhong Z, Wang Q, Tao L, et al. Permeability Dispersion and Magnetic Loss of Fe/NixZn1-xFe2O4 Soft Magnetic Composites[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3622–3625.
[70] Xiaolong L, Yaqiang D, Min L, et al. New Fe-Based Amorphous Soft Magnetic Composites with Significant Enhancement of Magnetic Properties by Compositing with Nano-(NiZn)Fe2O4 [J]. Journal of Alloys and Compounds, 2017, 696: 1323–1328.
[71] Yi Y, Peng Y, Xia C, et al. Influence of Heat Treatment on Microstructures and Magnetic Properties of Fe-Based Soft Magnetic Composites Prepared by Co-Precipitation Method[J]. Journal of Magnetism and Magnetic Materials, 2019, 476(8): 100–105.
[72] Mori S, Mitsuoka T, Sugimura K, et al. Core-Shell Structured Mn-Zn-Fe Ferrite/Fe-Si-Cr Particles for Magnetic Composite Cores with Low Loss[J]. Advanced Powder Technology, 2018, 29(6): 1481–1486.
[73] Zhou M M, Han Y, Guan W W, et al. Magnetic Properties and Loss Mechanism of Fe-6.5wt%Si Powder Core Insulated with Magnetic Mn-Zn Ferrite Nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2019, 482(12): 148–154.
[74] Qian L, Peng J, Xiang Z, et al. Effect of Annealing on Magnetic Properties of Fe/Fe3O4 Soft Magnetic Composites Prepared by in-Situ Oxidation and Hydrogen Reduction Methods[J]. Journal of Alloys and Compounds, 2019, 778: 712–720.
[75] Zhao G, Wu C, Yan M. Fabrication and Growth Mechanism of Iron Oxide Insulation Matrix for Fe Soft Magnetic Composites with High Permeability and Low Core Loss[J]. Journal of Alloys and Compounds, 2017, 710: 138–143.
[76] Li J, Yu J, Li W, et al. The Preparation and Magnetic Performance of the Iron-Based Soft Magnetic Composites with the Fe@Fe3O4 Powder of in Situ Surface Oxidation[J]. Journal of Magnetism and Magnetic Materials, 2018, 454: 103–109.
[77] Hou Z, Yan P, Sun B, et al. An Excellent Soft Magnetic Fe/Fe3O4-FeSiAl Composite with High Permeability and Low Core Loss[J]. Results in Physics, 2019, 14(7): 102498.
[78] Liu D, Wu C, Yan M. Investigation on Sol-Gel Al2O3 and Hybrid Phosphate-Alumina Insulation Coatings for FeSiAl Soft Magnetic Composites[J]. Journal of Materials Science, 2015, 50(20): 6559–6566.
[79] Liu D, Wu C, Yan M, et al. Correlating the Microstructure , Growth Mechanism and Magnetic Properties of FeSiAl Soft Magnetic Composites Fabricated via HNO3 Oxidation[J]. Acta Materialia, 2018, 146: 294–303.
[80] Huang K yu, Dong Y qiang, Liu M, et al. Controllable SiO2 Coating Layer of FeSiBPNb Amorphous Powder Cores with Excellent Soft Magnetic Properties[J]. Journal of Iron and Steel Research International, 2018, 25(6): 624–629.
[81] Li L, Chen Q, Gao Z, et al. Fe@SiO2@(MnZn)Fe2O4 Soft Magnetic Composites with Enhanced Permeability and Low Core Loss for High-Frequency Applications[J]. Journal of Alloys and Compounds, 2019, 805: 609–616.
[82] Li W, Wang Z, Ying Y, et al. In-Situ Formation of Fe3O4 and ZrO2 Coated Fe-Based Soft Magnetic Composites by Hydrothermal Method[J]. Ceramics International, 2019, 45(3): 3864–3870.
[83] 周维娜. 磁粉粒度分布对NdFeB粘结磁体性能的影响[J]. 包头钢铁学院学报, 2004, 23(2): 141–144.
[84] Ye X, Li Y, Ai Y, et al. Novel Powder Packing Theory with Bimodal Particle Size Distribution-Application in Superalloy[J]. Advanced Powder Technology, 2018, 29(9): 2280–2287.
[85] Li Q, Chen Y, Harris V G. Particle-Size Distribution Modified Effective Medium Theory and Validation by Magneto-Dielectric Co-Ti Substituted BaM Ferrite Composites[J]. Journal of Magnetism and Magnetic Materials, 2018, 453: 44–47.
[86] Chen D, Li K, Yu H, et al. Effects of Secondary Particle Size Distribution on the Magnetic Properties of Carbonyl Iron Powder Cores[J]. Journal of Magnetism and Magnetic Materials, 2019, 497(9): 166062.
[87] Anhalt M. Systematic Investigation of Particle Size Dependence of Magnetic Properties in Soft Magnetic Composites[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(14): 366–369.
[88] 黄允凯,朱建国,胡虔生. 软磁复合材料在电机中的应用[J]. 微特电机, 2006(11): 1–4.
[89] Zhu J G, Guo Y G, Lin Z W, et al. Development of PM Transverse Flux Motors with Soft Magnetic Composite Cores[J]. IEEE Transactions on Magnetics, 2011, 47(10): 4376–4383.
[90] 窦一平, 郭有光朱建国. 软磁复合材料在电机中的应用[J]. 电工技术学报, 2007, 22(11): 46–51.
[91] 黄坤祥. 美国 MIM, PIM 及相关 PM 技术之现状[J]. 粉末冶金技术, 2006, 24(5): 384–387.
[92] Wang L, Qiao L, Zheng J, et al. Microstructure and Properties of FeSiCr/PA6 Composites by Injection Molding Using FeSiCr Powders by Phosphating and Coupling Treatment[J]. Journal of Magnetism and Magnetic Materials, 2018, 452(18): 210–218.
[93] 朱晏军,周小军,高海明. 一种用于高频磁芯的可注射成型的粒料及其制备方法[P]. 2013.
[94] 严密,陈海平,吴琛,张念伟. 一种金属磁粉芯的注射成型方法[P]. 2014.
[95] 赵宁宁,董玉欣,王帆. 一种注射成型用的软磁颗粒料制备[Z]. 2014.
[96] Lesiak B, Rangam N, Jiricek P, et al. Surface Study of Fe3O4 Nanoparticles Functionalized With Biocompatible Adsorbed Molecules[J]. Frontiers in Chemistry, 2019, 7(10): 624–640.
[97] Grosvenor A P, Kobe B A, Biesinger M C, et al. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds[J]. Surface and Interface Analysis, 2004, 36(12): 1564–1574.
[98] Yamashita T, Hayes P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials[J]. Applied Surface Science, 2008, 254(8): 2441–2449.
[99] Petran A, Radu T, Borodi G, et al. Effects of Rare Earth Doping on Multi-Core Iron Oxide Nanoparticles Properties[J]. Applied Surface Science, 2018, 428: 492–499.
[100] Jie Ma, Wei Liu, Shuping Zhang, Jiantao Zhao W L. One-Step Solvothermal Approach for Preparing Soft Magnetic Hydrophilic PFR Coated Fe3O4 Nanocrystals[J]. Journal of Alloys and Compounds, 2011, 509(30): 7895–7899.
[101] Cheng Z, Chu X Z, Yin J, et al. Surfactantless Synthesis of Fe3O4 Magnetic Nanobelts by a Simple Hydrothermal Process[J]. Materials Letters, 2012, 75: 172–174.
[102] Zhang Q, Zhang W, Peng K. In-Situ Synthesis and Magnetic Properties of Core-Shell Structured Fe/Fe3O4 Composites[J]. Journal of Magnetism & Magnetic Materials, 2019, 484: 418–423.
[103] Chi Q, Chang L, Dong Y, et al. Enhanced High Frequency Properties of FeSiBPC Amorphous Soft Magnetic Powder Cores with Novel Insulating Layer[J]. Advanced Powder Technology, 2021, 32(5): 1602–1610.
[104] Alvarez K L, Baghbaderani H A, Martín J M, et al. Novel Fe-Based Amorphous and Nanocrystalline Powder Cores for High-Frequency Power Conversion[J]. Journal of Magnetism and Magnetic Materials, 2020, 501(1): 166457.
[105] Shi L, Qin X, Yao K. Tailoring Soft Magnetic Properties of Fe-Based Amorphous Alloys through C Addition[J]. Progress in Natural Science: Materials International, 2020, 30(2): 208–212.
[106] Zhao C C, Inoue A, Kong F L, et al. Novel Phase Decomposition, Good Soft-Magnetic and Mechanical Properties for High-Entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100-xBx (x=9-13) Amorphous Alloys[J]. Journal of Alloys and Compounds, 2020, 843(30): 155917.
[107] Zhou Y, Yao X, Lu W, et al. Heat Treatment of Hot-Isostatic-Pressed 60NiTi Shape Memory Alloy: Microstructure, Phase Transformation and Mechanical Properties[J]. Journal of Materials Science & Technology, 2022, 107: 124–135.
[108] 刘芳范文捷,江世景. XRD方法在聚晶金刚石复合片界面应力表征中应用的研究[J]. 稀有金属材料与工程, 2007, 36(2): 340–342.
[109] Shin D S, Oh J W, Kim H J, et al. Microstructural and Core Loss Behaviors of Addictive Fe-17 at% P Based on Fe-3.5 wt% Si Alloys in Powder Injection Molding[J/OL]. Journal of Alloys and Compounds, 2018, 749: 758–767.
[110] Ali M, Ahmad F, Melor P S, et al. Influence of Powder Loading on Densification and Microstructure of Injection Molded Fe-50Ni Soft Magnetic Alloys[J]. Materialwissenschaft Und Werkstofftechnik, 2019, 50(3): 274–282.
[111] Guo J, Dong Y, Man Q, et al. Fabrication of FeSiBPNb Amorphous Powder Cores with High DC-Bias and Excellent Soft Magnetic Properties[J]. Journal of Magnetism and Magnetic Materials, 2016, 401: 432–435.
[112] Wang J, Liu X, Mo J, et al. The Influence of Doping Ti on the Microstructure and Magnetic Performances of Fe-6.5Si Soft Magnetic Composites[J]. Journal of Alloys and Compounds, 2018, 766: 769–774.
[113] Liu M, Huang K, Liu L, et al. Fabrication and Magnetic Properties of Novel Fe-Based Amorphous Powder and Corresponding Powder Cores[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 6092–6097.
[114] Guo R, Wang S, Yu Z, et al. FeSiCr@NiZn SMCs with Ultra-Low Core Losses, High Resistivity for High Frequency Applications[J]. Journal of Alloys and Compounds, 2020, 830: 154736.
[115] Xu X, Li B, Lu H, et al. The Interface Structure of Nano-SiO2/PA66 Composites and Its Influence on Material’s Mechanical and Thermal Properties[J]. Applied Surface Science, 2007, 254(5): 1456–1462.
[116] Meng H, Sui G X, Fang P F, et al. Effects of Acid- and Diamine-Modified MWNTs on the Mechanical Properties and Crystallization Behavior of Polyamide 6[J]. Polymer, 2008, 49(2): 610–620.
[117] Dasari A, Yu Z Z, Mai Y W, et al. Clay Exfoliation and Organic Modification on Wear of Nylon 6 Nanocomposites Processed by Different Routes[J]. Composites Science and Technology, 2005, 65(15): 2314–2328.
[118] Barkoula N M, Alcock B, Cabrera N O, et al. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene[J]. Polymers and Polymer Composites, 2008, 16(2): 101–113.
[119] Kim H S, Jin H J, Myung S J, et al. Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes of Nylon 6[J]. Macromolecular Rapid Communications, 2006, 27(2): 146–151.
[120] Guan X, Zheng G, Dai K, et al. Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility[J]. ACS Applied Materials and Interfaces, 2016, 8(22): 14150–14159.
[121] Li C, Xiang M, Ye L. Intercalation Structure and Highly Enhancing Tribological Performance of Monomer Casting Nylon-6/Graphene Nano-Composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 274–285.
[122] Zhang Y T, Li Y, Li L, et al. The Study on the Preparation and Properties of PPO/PA66 Alloy with a New Type of Compatibtlizer B[J]. Key Engineering Materials, 2012, 501: 99–103.
[123] Chen T, Liu H, Wang X, et al. Properties and Fabrication of PA66/Surface-Modified Multi-Walled Nanotubes Composite Fibers by Ball Milling and Melt-Spinning[J]. Polymers, 2018, 10(5): 5–12.
[124] Xiang T, Zhong R N, Yao B, et al. Particle Size Influence on the Effective Permeability of Composite Materials[J]. Communications in Theoretical Physics, 2018, 69(5): 598–609.
[125] Schubert D W, Werner S, Hahn I, et al. Effect of Particle Size and Size Distribution on the Permeability of Soft Magnetic Liquid Silicone Rubber Composites[J]. Composites Science and Technology, 2019, 177(3): 26–33.
[126] Gheiratmand T, Madaah Hosseini H R, Shalbaf F, et al. Effect of Iron Particles Size on the High-Frequency Magnetic Properties of Iron-Borosilicate Soft Magnetic Composites[J]. Journal of Superconductivity and Novel Magnetism, 2017, 30(11): 3085–3090.
[127] Guo Z, Wang J, Chen W, et al. Crystal-like Microstructural Finemet/FeSi Compound Powder Core with Excellent Soft Magnetic Properties and Its Loss Separation Analysis[J]. Materials and Design, 2020, 192: 108769.
[128] 杨文海. 溶胶-凝胶法合成Co、Sm系列掺杂NiCuZn铁氧体磁性研究[D]. 广西师范大学, 2011.
[129] 王博. 锰锌铁氧体软磁复合材料的粉末冶金工艺研究[D]. 哈尔滨工业大学, 2009.
[130] Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717–2730.
[131] Murugesan C, Ugendar K, Okrasa L, et al. Zinc Substitution Effect on the Structural, Spectroscopic and Electrical Properties of Nanocrystalline MnFe2O4 Spinel Ferrite[J]. Ceramics International, 2021, 47(2): 1672–1685.
[132] Bennet J, Tholkappiyan R, Vishista K, et al. Attestation in Self-Propagating Combustion Approach of Spinel AFe2O4 (A=Co, Mg and Mn) Complexes Bearing Mixed Oxidation States: Magnetostructural Properties[J]. Applied Surface Science, 2016, 383: 113–125.
[133] Zhao G, Deng Z, Jin C, et al. A Study of Nano-Structured Zn-Mn Soft Spinel Ferrites by the Citrate Precursor Method[J]. Physica Scripta, 2008, 77(045701): 1–6.
[134] 近角聪信. 铁磁性物理[M]. 兰州大学出版社, 2002.
[135] Kostic B, Zhang T, Evans J R G. Effect of Molding Conditions on Residual Stress in Powder Injection Molding[J]. International Journal of Powder Metallurgy, 1993, 29(3): 251–257.
[136] 岳建岭. 粉末注射成形工艺尺寸精度控制的研究[D]. 中南大学, 2004.
[137] Zhou B, Chi Q, Dong Y, et al. Effects of Annealing on the Magnetic Properties of Fe-Based Amorphous Powder Cores with Inorganic-Organic Hybrid Insulating Layer[J]. Journal of Magnetism and Magnetic Materials, 2020, 494(9): 165827.
[138] Zhou B, Dong Y, Liu L, et al. Enhanced Soft Magnetic Properties of the Fe-Based Amorphous Powder Cores with Novel TiO2 Insulation Coating Layer[J]. Journal of Magnetism and Magnetic Materials, 2019, 474(12): 1–8.
[139] Zhou B, Dong Y, Liu L, et al. The Core-Shell Structured Fe-Based Amorphous Magnetic Powder Cores with Excellent Magnetic Properties[J]. Advanced Powder Technology, 2019, 30(8): 1504–1512.
[140] 李明哲. 磁性非晶合金结构非均匀性和磁性的关系及磁性能调控[D]. 中国科学院物理研究所, 2018.

Academic Degree Assessment Sub committee
材料科学与工程系
Domestic book classification number
TG146.2
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/356268
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
马睿. 铁基非晶磁粉芯的低压成型及性能研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849545-马睿-材料科学与工程系(17456KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[马睿]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[马睿]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[马睿]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.