[1] Lashgari H R, Chu D, Xie S, et al. Composition Dependence of the Microstructure and Soft Magnetic Properties of Fe-Based Amorphous/Nanocrystalline Alloys: A Review Study[J]. Journal of Non-Crystalline Solids, 2014, 391: 61–82.
[2] Leary A M, Ohodnicki P R, Mchenry M E. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications[J]. Jom, 2012, 64(7): 772–781.
[3] 戴道生;钱昆明. 铁磁学[M]. 科学出版社, 1998:8-30.
[4] 姜寿亭,李卫. 凝聚态磁性物理[M]. 科学出版社, 2003:42-86.
[5] 严密,彭晓领. 磁学基础与磁性材料[M]. 磁学基础与磁性材料, 2006:101-156.
[6] 高结敏,赵修科. 开关电源中的磁性元器件[M]. 南京航空航天大学出版社, 2013.
[7] 刘银. Ni-Zn 铁氧体材料的制备, 微结构, 性能及其改性研究[M]. 中国科学技术大学出版社, 2015:21-88
[8] 周娟. Fe基纳米晶磁粉芯制备与性能研究[D]. 中南大学, 2013.
[9] 魏鼎. 铁硅系金属磁粉芯制备研究[D]. 华中科技大学, 2015.
[10] Zhang Y, Ma R, Feng S, et al. Microstructures and Magnetic Properties of Fe-35%Co Alloy Fabricated by Metal Injection Molding[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 165982.
[11] 刘胜龙. MnZn铁氧体FeSiAl复合磁粉及其磁粉芯性能研究[D]. 广东工业大学, 2016.
[12] 宛德福, 马兴隆. 磁性物理学 [M]. 电子工业出版社, 1999:46-60.
[13] 王贝. 高性能功率锰锌铁氧体的制备及磁性能研究[D]. 河北工业大学, 2015.
[14] 宣益民. 锰锌铁氧体纳米粒子的制备和磁性能研究[J]. 功能材料, 2007, 2(38): 198–203.
[15] 丁丽莉. 尖晶石结构铁氧体MxMn1-XFe2O4(M=Zn, Mg, Al)的磁有序和阳离子分布研究[D]. 河北师范大学, 2017.
[16] Yan W, Jiang W, Zhang Q, et al. Structure and Magnetic Properties of Nickel-Zinc Ferrite Microspheres Synthesized by Solvothermal Method[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 171(1–3): 144–148.
[17] Saravanan R. Ferrite Materials for Memory Applications[M]. Materials Research Forum LLC, 2017.
[18] Li H X, Lu Z C, Wang S L, et al. Fe-Based Bulk Metallic Glasses: Glass Formation, Fabrication, Properties and Applications[J]. Progress in Materials Science, 2019, 103(12): 235–318.
[19] 姜振春. Fe-Si-B非晶合金恒导磁性能的研究[D]. 东北大学, 2005.
[20] 梁晓凤. 铁基非晶结构演变对条带磁性和韧脆性的影响[D]. 沈阳工业大学, 2017.
[21] 斯佳佳. Fe-Zr-B系非晶合金的非晶形成能力与性能研究[D]. 北京科技大学, 2017.
[22] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177–351.
[23] Inoue A, Shinohara Y, Gook J S. Thermal and Magnetic Properties of Bulk Fe-Based Glassy Alloys Prepared by Copper Mold Casting[J]. Materials Transactions, JIM, 1995, 36(12): 1427–1433.
[24] Inoue A, Zhang T, Takeuchi A. Bulk Amorphous Alloys with High Mechanical Strength and Good Soft Magnetic Properties in Fe–TM–B (TM=IV-VIII Group Transition Metal) System[J]. Applied Physics Letters, 1997, 71(4): 464–466.
[25] Inoue A, Shen B. Soft Magnetic Bulk Glassy Fe-B-Si-Nb Alloys with High Saturation Magnetization above 1.5 T[J]. Materials Transactions, 2002, 43(4): 766–769.
[26] Inoue A, Shen B. Formation and Soft Magnetic Properties of Fe-B-Si-Zr Bulk Glassy Alloys with High Saturation Magnetization above 1.5 T[J]. Materials Transactions, 2005, 43(9): 2350–2353.
[27] Shen B, Inoue A, Chang C. Superhigh Strength and Good Soft-Magnetic Properties of (Fe,Co)-B-Si-Nb Bulk Glassy Alloys with High Glass-Forming Ability[J]. Applied Physics Letters, 2004, 85(21): 4911–4913.
[28] Makino A, Chang C, Kubota T, et al. Soft Magnetic Fe-Si-B-P-C Bulk Metallic Glasses without Any Glass-Forming Metal Elements[J]. Journal of Alloys and Compounds, 2009, 483(1–2): 616–619.
[29] Meng S, Ling H, Li Q, et al. Development of Fe-Based Bulk Metallic Glasses with High Saturation Magnetization[J]. Scripta Materialia, 2014, 81(11): 24–27.
[30] Jack A G, Mecrow B C, Maddison C P, et al. Claw Pole Armature Permanent Magnet Machines Exploiting Soft Iron Powder Metallurgy[J]. IEEE International Electric Machines and Drives Conference Record, IEMDC, 1997, 11(2): 48–50.
[31] 赵国梁. 高Bs低功耗铁基软磁复合材料的制备及性能研究[D]. 浙江大学, 2016.
[32] 陶龙旭. Fe/Ni-Zn铁氧体软磁复合材料及应用研究[D]. 电子科技大学, 2012.
[33] 唐坚. 金属软磁磁粉芯研究[D]. 东北大学, 2012.
[34] Liu Y, He S. Development of Low Loss Mn-Zn Ferrite Working at Frequency Higher than 3 MHz[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(23): 3318–3322.
[35] Shokrollahi H, Janghorban K. Soft Magnetic Composite Materials (SMCs)[J]. Journal of Materials Processing Technology, 2007, 189(3): 1–12.
[36] Guo Y, Zhu J G, Lin Z W, et al. 3D Vector Magnetic Properties of Soft Magnetic Composite Material[J]. Journal of Magnetism and Magnetic Materials, 2006, 302(2): 511–516.
[37] Bayramlı E, Gölgelioğlu Ö, Ertan H B. Powder Metal Development for Electrical Motor Applications[J]. Journal of Materials Processing Technology, 2005, 161(2): 83–88.
[38] 朱小辉,柏海明,许佳辉. 铁硅铝磁粉心的直流叠加特性研究[J]. 材料热处理技术, 2012, 41(40): 39–44.
[39] Birčáková Z, Füzer J, Kollár P, et al. Magnetic Properties of Fe-Based Soft Magnetic Composite with Insulation Coating by Resin Bonded Ni-Zn Ferrite Nanofibres[J]. Journal of Magnetism and Magnetic Materials, 2019, 485: 1–7.
[40] McHenry M E, Willard M A, Laughlin D E. Amorphous and Nanocrystalline Materials for Applications as Soft Magnets[J]. Progress in Materials Science, 1999, 44(4): 291–433.
[41] 刘亚丕,石康,石凯鸣,石凯翔. 软磁磁粉芯和烧结软磁材料:结构、性能、特点和应用 [J]. 磁性材料及器件, 2020, 51(3): 66–70.
[42] 刘冬. 高磁导低功耗FeSiAl软磁复合材料的显微结构及磁性能研究[D]. 浙江大学, 2018.
[43] 何开元;张雅静. 软磁合金及相关物理专题研究[M]. 北京: 冶金工业出版社, 2018: 89-121.
[44] Taghvaei A H, Shokrollahi H, Janghorban K. Structural Studies, Magnetic Properties and Loss Separation in Iron-Phenolicsilane Soft Magnetic Composites[J]. Materials and Design, 2010, 31(1): 142–148.
[45] Taghvaei A H, Shokrollahi H, Ebrahimi A, et al. Soft Magnetic Composites of Iron-Phenolic and the Influence of Silane Coupling Agent on the Magnetic Properties[J]. Materials Chemistry and Physics, 2009, 116(1): 247–253.
[46] Taghvaei A H, Shokrollahi H, Janghorban K, et al. Eddy Current and Total Power Loss Separation in the Iron-Phosphate-Polyepoxy Soft Magnetic Composites[J]. Materials and Design, 2009, 30(10): 3989–3995.
[47] Kollár P, Birčáková Z, Füzer J, et al. Power Loss Separation in Fe-Based Composite Materials[J]. Journal of Magnetism and Magnetic Materials, 2013, 327: 146–150.
[48] Bir Z, Füzer J, Kollár P, et al. Magnetic Properties of Fe-Based Soft Magnetic Composite with Insulation Coating by Resin Bonded Ni-Zn Ferrite Nano Fi Bres[J]. Journal of Magnetism and Magnetic Materials, 2019, 485(2): 1–7.
[49] Kollár P, Birčáková Z, Füzer J, et al. Power Loss Separation in Fe-Based Composite Materials[J]. Journal of Magnetism and Magnetic Materials, 2013, 327: 146–150.
[50] Jiles D C. Modelling the Effects of Eddy Current Losses on Frequency Dependent Hysteresis in Electrically Conducting Media[J]. IEEE Transactions on Magnetics, 1994, 30(6): 4326–4328.
[51] Chang L, Xie L, Liu M, et al. Novel Fe-Based Nanocrystalline Powder Cores with Excellent Magnetic Properties Produced Using Gas-Atomized Powder[J]. Journal of Magnetism and Magnetic Materials, 2018, 452: 442–446.
[52] Chang L, Zhang Y, Dong Y, et al. Enhanced Magnetic Properties of Fe-Based Nanocrystalline Composites by Addition of Carbonyl Iron Powders[J]. SN Applied Sciences, 2019, 1(8): 1–7.
[53] Yagi M, Nakanishi H, Otsuka I, et al. Magnetic Properties of Fe-Based Amorphous Powder Cores Produced by the Hot-Pressing Method.[J]. Journal of the Magnetics Society of Japan, 2007, 26(4): 513–517.
[54] Kang E Y, Kim Y B, Kim K Y, et al. Vacuum Hot Pressing of Fe-Si-B-Nb-Based Amorphous Powder Cores and Their High-Frequency Magnetic Properties[J]. Journal of Applied Physics, 2006, 99(8): 2–5.
[55] Shokrollahi H, Janghorban K. Effect of Warm Compaction on the Magnetic and Electrical Properties of Fe-Based Soft Magnetic Composites[J]. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 182–186.
[56] 张久兴,刘科高,周美玲. 放电等离子烧结技术的发展和应用[J]. 粉末冶金技术, 2002, 20(3): 129–134.
[57] Evangelista L L, Tontini G, Filho A I R, et al. Developments on Soft Magnetic Composites with Double Layer Insulating Coating:Synergy between ZnO and B2O3[J]. Journal of Magnetism and Magnetic Materials, 2020, 497(10): 166023.
[58] Singh A, Harimkar S P. Spark Plasma Sintering of in Situ and Ex Situ Iron-Based Amorphous Matrix Composites[J]. Journal of Alloys and Compounds, 2010, 497(12): 121–126.
[59] Li X, Makino A, Kato H, et al. Fe76Si9.6B8.4P6 Glassy Powder Soft-Magnetic Cores with Low Core Loss Prepared by Spark-Plasma Sintering[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176(15): 1247–1250.
[60] Li X, Lu G, Zhang Z, et al. Bulk Amorphous Powder Cores with Low Core Loss by Spark-Plasma Sintering Fe76Si9.6B8.4P6 Amorphous Powder with Small Amounts of SiO2[J]. Journal of Alloys and Compounds, 2015, 647: 917–920.
[61] Liu T, Wang M, Zhao Z. High Frequency Properties of Fe73.5Cu1Nb 3Si13.5B9/Zn0.5Ni0.5Fe2O4 Soft Magnetic Composite with Micro-Cellular Structure[J]. Science China: Physics, Mechanics and Astronomy, 2012, 55(12): 2392–2396.
[62] Zhao Z, Sun Y, Wang M, et al. Interfacial Behavior of Fe76Si9B10P5/Zn0.5Ni0.5Fe2O4 Amorphous Soft Magnetic Composite during Spark Plasma Sintering Process[J]. Progress in Natural Science: Materials International, 2016, 26(1): 85–89.
[63] Luo F, Luo Z, Hu W, et al. Preparation and Magnetic Properties of FeSiAl-Based Soft Magnetic Composites with MnO / Al 2 O 3 Insulation Layer[J/OL]. Journal of Magnetism and Magnetic Materials, 2019(October): 166084.
[64] Luo F, Luo Z, Hu W, et al. Preparation and Magnetic Properties of FeSiAl-Based Soft Magnetic Composites with MnO/Al2O3 Insulation Layer[J]. Journal of Magnetism and Magnetic Materials, 2019(10): 166084.
[65] Luo Z, Fan X, Hu W, et al. Properties of Fe2SiO4/SiO2 Coated Fe-Si Soft Magnetic Composites Prepared by Sintering Fe-6.5wt%Si/Fe3O4 Composite Particles[J]. Journal of Magnetism and Magnetic Materials, 2020, 499(12): 166278.
[66] Luo Z, Fan X, Hu W, et al. Effect of Sintering Temperature on Microstructure and Magnetic Properties for Fe-Si Soft Magnetic Composites Prepared by Water Oxidation Combined with Spark Plasma Sintering[J]. Journal of Magnetism and Magnetic Materials, 2019, 491(5): 165615.
[67] Luo F, Fan X, Luo Z, et al. Ultra-Low Inter-Particle Eddy Current Loss of Fe3 Si/Al2O3 Soft Magnetic Composites Evolved from FeSiAl/Fe3O4 Core-Shell Particles[J]. Journal of Magnetism and Magnetic Materials, 2019,484(3): 218–224.
[68] Luo Z, Fan X, Hu W, et al. High Performance Fe-Si Soft Magnetic Composites Coated with Novel Insulating-Magnetic-Insulating (IMI) Layer[J]. Journal of Magnetism and Magnetic Materials, 2020, 496(10): 165937.
[69] Zhong Z, Wang Q, Tao L, et al. Permeability Dispersion and Magnetic Loss of Fe/NixZn1-xFe2O4 Soft Magnetic Composites[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3622–3625.
[70] Xiaolong L, Yaqiang D, Min L, et al. New Fe-Based Amorphous Soft Magnetic Composites with Significant Enhancement of Magnetic Properties by Compositing with Nano-(NiZn)Fe2O4 [J]. Journal of Alloys and Compounds, 2017, 696: 1323–1328.
[71] Yi Y, Peng Y, Xia C, et al. Influence of Heat Treatment on Microstructures and Magnetic Properties of Fe-Based Soft Magnetic Composites Prepared by Co-Precipitation Method[J]. Journal of Magnetism and Magnetic Materials, 2019, 476(8): 100–105.
[72] Mori S, Mitsuoka T, Sugimura K, et al. Core-Shell Structured Mn-Zn-Fe Ferrite/Fe-Si-Cr Particles for Magnetic Composite Cores with Low Loss[J]. Advanced Powder Technology, 2018, 29(6): 1481–1486.
[73] Zhou M M, Han Y, Guan W W, et al. Magnetic Properties and Loss Mechanism of Fe-6.5wt%Si Powder Core Insulated with Magnetic Mn-Zn Ferrite Nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2019, 482(12): 148–154.
[74] Qian L, Peng J, Xiang Z, et al. Effect of Annealing on Magnetic Properties of Fe/Fe3O4 Soft Magnetic Composites Prepared by in-Situ Oxidation and Hydrogen Reduction Methods[J]. Journal of Alloys and Compounds, 2019, 778: 712–720.
[75] Zhao G, Wu C, Yan M. Fabrication and Growth Mechanism of Iron Oxide Insulation Matrix for Fe Soft Magnetic Composites with High Permeability and Low Core Loss[J]. Journal of Alloys and Compounds, 2017, 710: 138–143.
[76] Li J, Yu J, Li W, et al. The Preparation and Magnetic Performance of the Iron-Based Soft Magnetic Composites with the Fe@Fe3O4 Powder of in Situ Surface Oxidation[J]. Journal of Magnetism and Magnetic Materials, 2018, 454: 103–109.
[77] Hou Z, Yan P, Sun B, et al. An Excellent Soft Magnetic Fe/Fe3O4-FeSiAl Composite with High Permeability and Low Core Loss[J]. Results in Physics, 2019, 14(7): 102498.
[78] Liu D, Wu C, Yan M. Investigation on Sol-Gel Al2O3 and Hybrid Phosphate-Alumina Insulation Coatings for FeSiAl Soft Magnetic Composites[J]. Journal of Materials Science, 2015, 50(20): 6559–6566.
[79] Liu D, Wu C, Yan M, et al. Correlating the Microstructure , Growth Mechanism and Magnetic Properties of FeSiAl Soft Magnetic Composites Fabricated via HNO3 Oxidation[J]. Acta Materialia, 2018, 146: 294–303.
[80] Huang K yu, Dong Y qiang, Liu M, et al. Controllable SiO2 Coating Layer of FeSiBPNb Amorphous Powder Cores with Excellent Soft Magnetic Properties[J]. Journal of Iron and Steel Research International, 2018, 25(6): 624–629.
[81] Li L, Chen Q, Gao Z, et al. Fe@SiO2@(MnZn)Fe2O4 Soft Magnetic Composites with Enhanced Permeability and Low Core Loss for High-Frequency Applications[J]. Journal of Alloys and Compounds, 2019, 805: 609–616.
[82] Li W, Wang Z, Ying Y, et al. In-Situ Formation of Fe3O4 and ZrO2 Coated Fe-Based Soft Magnetic Composites by Hydrothermal Method[J]. Ceramics International, 2019, 45(3): 3864–3870.
[83] 周维娜. 磁粉粒度分布对NdFeB粘结磁体性能的影响[J]. 包头钢铁学院学报, 2004, 23(2): 141–144.
[84] Ye X, Li Y, Ai Y, et al. Novel Powder Packing Theory with Bimodal Particle Size Distribution-Application in Superalloy[J]. Advanced Powder Technology, 2018, 29(9): 2280–2287.
[85] Li Q, Chen Y, Harris V G. Particle-Size Distribution Modified Effective Medium Theory and Validation by Magneto-Dielectric Co-Ti Substituted BaM Ferrite Composites[J]. Journal of Magnetism and Magnetic Materials, 2018, 453: 44–47.
[86] Chen D, Li K, Yu H, et al. Effects of Secondary Particle Size Distribution on the Magnetic Properties of Carbonyl Iron Powder Cores[J]. Journal of Magnetism and Magnetic Materials, 2019, 497(9): 166062.
[87] Anhalt M. Systematic Investigation of Particle Size Dependence of Magnetic Properties in Soft Magnetic Composites[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(14): 366–369.
[88] 黄允凯,朱建国,胡虔生. 软磁复合材料在电机中的应用[J]. 微特电机, 2006(11): 1–4.
[89] Zhu J G, Guo Y G, Lin Z W, et al. Development of PM Transverse Flux Motors with Soft Magnetic Composite Cores[J]. IEEE Transactions on Magnetics, 2011, 47(10): 4376–4383.
[90] 窦一平, 郭有光朱建国. 软磁复合材料在电机中的应用[J]. 电工技术学报, 2007, 22(11): 46–51.
[91] 黄坤祥. 美国 MIM, PIM 及相关 PM 技术之现状[J]. 粉末冶金技术, 2006, 24(5): 384–387.
[92] Wang L, Qiao L, Zheng J, et al. Microstructure and Properties of FeSiCr/PA6 Composites by Injection Molding Using FeSiCr Powders by Phosphating and Coupling Treatment[J]. Journal of Magnetism and Magnetic Materials, 2018, 452(18): 210–218.
[93] 朱晏军,周小军,高海明. 一种用于高频磁芯的可注射成型的粒料及其制备方法[P]. 2013.
[94] 严密,陈海平,吴琛,张念伟. 一种金属磁粉芯的注射成型方法[P]. 2014.
[95] 赵宁宁,董玉欣,王帆. 一种注射成型用的软磁颗粒料制备[Z]. 2014.
[96] Lesiak B, Rangam N, Jiricek P, et al. Surface Study of Fe3O4 Nanoparticles Functionalized With Biocompatible Adsorbed Molecules[J]. Frontiers in Chemistry, 2019, 7(10): 624–640.
[97] Grosvenor A P, Kobe B A, Biesinger M C, et al. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds[J]. Surface and Interface Analysis, 2004, 36(12): 1564–1574.
[98] Yamashita T, Hayes P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials[J]. Applied Surface Science, 2008, 254(8): 2441–2449.
[99] Petran A, Radu T, Borodi G, et al. Effects of Rare Earth Doping on Multi-Core Iron Oxide Nanoparticles Properties[J]. Applied Surface Science, 2018, 428: 492–499.
[100] Jie Ma, Wei Liu, Shuping Zhang, Jiantao Zhao W L. One-Step Solvothermal Approach for Preparing Soft Magnetic Hydrophilic PFR Coated Fe3O4 Nanocrystals[J]. Journal of Alloys and Compounds, 2011, 509(30): 7895–7899.
[101] Cheng Z, Chu X Z, Yin J, et al. Surfactantless Synthesis of Fe3O4 Magnetic Nanobelts by a Simple Hydrothermal Process[J]. Materials Letters, 2012, 75: 172–174.
[102] Zhang Q, Zhang W, Peng K. In-Situ Synthesis and Magnetic Properties of Core-Shell Structured Fe/Fe3O4 Composites[J]. Journal of Magnetism & Magnetic Materials, 2019, 484: 418–423.
[103] Chi Q, Chang L, Dong Y, et al. Enhanced High Frequency Properties of FeSiBPC Amorphous Soft Magnetic Powder Cores with Novel Insulating Layer[J]. Advanced Powder Technology, 2021, 32(5): 1602–1610.
[104] Alvarez K L, Baghbaderani H A, Martín J M, et al. Novel Fe-Based Amorphous and Nanocrystalline Powder Cores for High-Frequency Power Conversion[J]. Journal of Magnetism and Magnetic Materials, 2020, 501(1): 166457.
[105] Shi L, Qin X, Yao K. Tailoring Soft Magnetic Properties of Fe-Based Amorphous Alloys through C Addition[J]. Progress in Natural Science: Materials International, 2020, 30(2): 208–212.
[106] Zhao C C, Inoue A, Kong F L, et al. Novel Phase Decomposition, Good Soft-Magnetic and Mechanical Properties for High-Entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100-xBx (x=9-13) Amorphous Alloys[J]. Journal of Alloys and Compounds, 2020, 843(30): 155917.
[107] Zhou Y, Yao X, Lu W, et al. Heat Treatment of Hot-Isostatic-Pressed 60NiTi Shape Memory Alloy: Microstructure, Phase Transformation and Mechanical Properties[J]. Journal of Materials Science & Technology, 2022, 107: 124–135.
[108] 刘芳范文捷,江世景. XRD方法在聚晶金刚石复合片界面应力表征中应用的研究[J]. 稀有金属材料与工程, 2007, 36(2): 340–342.
[109] Shin D S, Oh J W, Kim H J, et al. Microstructural and Core Loss Behaviors of Addictive Fe-17 at% P Based on Fe-3.5 wt% Si Alloys in Powder Injection Molding[J/OL]. Journal of Alloys and Compounds, 2018, 749: 758–767.
[110] Ali M, Ahmad F, Melor P S, et al. Influence of Powder Loading on Densification and Microstructure of Injection Molded Fe-50Ni Soft Magnetic Alloys[J]. Materialwissenschaft Und Werkstofftechnik, 2019, 50(3): 274–282.
[111] Guo J, Dong Y, Man Q, et al. Fabrication of FeSiBPNb Amorphous Powder Cores with High DC-Bias and Excellent Soft Magnetic Properties[J]. Journal of Magnetism and Magnetic Materials, 2016, 401: 432–435.
[112] Wang J, Liu X, Mo J, et al. The Influence of Doping Ti on the Microstructure and Magnetic Performances of Fe-6.5Si Soft Magnetic Composites[J]. Journal of Alloys and Compounds, 2018, 766: 769–774.
[113] Liu M, Huang K, Liu L, et al. Fabrication and Magnetic Properties of Novel Fe-Based Amorphous Powder and Corresponding Powder Cores[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 6092–6097.
[114] Guo R, Wang S, Yu Z, et al. FeSiCr@NiZn SMCs with Ultra-Low Core Losses, High Resistivity for High Frequency Applications[J]. Journal of Alloys and Compounds, 2020, 830: 154736.
[115] Xu X, Li B, Lu H, et al. The Interface Structure of Nano-SiO2/PA66 Composites and Its Influence on Material’s Mechanical and Thermal Properties[J]. Applied Surface Science, 2007, 254(5): 1456–1462.
[116] Meng H, Sui G X, Fang P F, et al. Effects of Acid- and Diamine-Modified MWNTs on the Mechanical Properties and Crystallization Behavior of Polyamide 6[J]. Polymer, 2008, 49(2): 610–620.
[117] Dasari A, Yu Z Z, Mai Y W, et al. Clay Exfoliation and Organic Modification on Wear of Nylon 6 Nanocomposites Processed by Different Routes[J]. Composites Science and Technology, 2005, 65(15): 2314–2328.
[118] Barkoula N M, Alcock B, Cabrera N O, et al. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene[J]. Polymers and Polymer Composites, 2008, 16(2): 101–113.
[119] Kim H S, Jin H J, Myung S J, et al. Carbon Nanotube-Adsorbed Electrospun Nanofibrous Membranes of Nylon 6[J]. Macromolecular Rapid Communications, 2006, 27(2): 146–151.
[120] Guan X, Zheng G, Dai K, et al. Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility[J]. ACS Applied Materials and Interfaces, 2016, 8(22): 14150–14159.
[121] Li C, Xiang M, Ye L. Intercalation Structure and Highly Enhancing Tribological Performance of Monomer Casting Nylon-6/Graphene Nano-Composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 274–285.
[122] Zhang Y T, Li Y, Li L, et al. The Study on the Preparation and Properties of PPO/PA66 Alloy with a New Type of Compatibtlizer B[J]. Key Engineering Materials, 2012, 501: 99–103.
[123] Chen T, Liu H, Wang X, et al. Properties and Fabrication of PA66/Surface-Modified Multi-Walled Nanotubes Composite Fibers by Ball Milling and Melt-Spinning[J]. Polymers, 2018, 10(5): 5–12.
[124] Xiang T, Zhong R N, Yao B, et al. Particle Size Influence on the Effective Permeability of Composite Materials[J]. Communications in Theoretical Physics, 2018, 69(5): 598–609.
[125] Schubert D W, Werner S, Hahn I, et al. Effect of Particle Size and Size Distribution on the Permeability of Soft Magnetic Liquid Silicone Rubber Composites[J]. Composites Science and Technology, 2019, 177(3): 26–33.
[126] Gheiratmand T, Madaah Hosseini H R, Shalbaf F, et al. Effect of Iron Particles Size on the High-Frequency Magnetic Properties of Iron-Borosilicate Soft Magnetic Composites[J]. Journal of Superconductivity and Novel Magnetism, 2017, 30(11): 3085–3090.
[127] Guo Z, Wang J, Chen W, et al. Crystal-like Microstructural Finemet/FeSi Compound Powder Core with Excellent Soft Magnetic Properties and Its Loss Separation Analysis[J]. Materials and Design, 2020, 192: 108769.
[128] 杨文海. 溶胶-凝胶法合成Co、Sm系列掺杂NiCuZn铁氧体磁性研究[D]. 广西师范大学, 2011.
[129] 王博. 锰锌铁氧体软磁复合材料的粉末冶金工艺研究[D]. 哈尔滨工业大学, 2009.
[130] Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717–2730.
[131] Murugesan C, Ugendar K, Okrasa L, et al. Zinc Substitution Effect on the Structural, Spectroscopic and Electrical Properties of Nanocrystalline MnFe2O4 Spinel Ferrite[J]. Ceramics International, 2021, 47(2): 1672–1685.
[132] Bennet J, Tholkappiyan R, Vishista K, et al. Attestation in Self-Propagating Combustion Approach of Spinel AFe2O4 (A=Co, Mg and Mn) Complexes Bearing Mixed Oxidation States: Magnetostructural Properties[J]. Applied Surface Science, 2016, 383: 113–125.
[133] Zhao G, Deng Z, Jin C, et al. A Study of Nano-Structured Zn-Mn Soft Spinel Ferrites by the Citrate Precursor Method[J]. Physica Scripta, 2008, 77(045701): 1–6.
[134] 近角聪信. 铁磁性物理[M]. 兰州大学出版社, 2002.
[135] Kostic B, Zhang T, Evans J R G. Effect of Molding Conditions on Residual Stress in Powder Injection Molding[J]. International Journal of Powder Metallurgy, 1993, 29(3): 251–257.
[136] 岳建岭. 粉末注射成形工艺尺寸精度控制的研究[D]. 中南大学, 2004.
[137] Zhou B, Chi Q, Dong Y, et al. Effects of Annealing on the Magnetic Properties of Fe-Based Amorphous Powder Cores with Inorganic-Organic Hybrid Insulating Layer[J]. Journal of Magnetism and Magnetic Materials, 2020, 494(9): 165827.
[138] Zhou B, Dong Y, Liu L, et al. Enhanced Soft Magnetic Properties of the Fe-Based Amorphous Powder Cores with Novel TiO2 Insulation Coating Layer[J]. Journal of Magnetism and Magnetic Materials, 2019, 474(12): 1–8.
[139] Zhou B, Dong Y, Liu L, et al. The Core-Shell Structured Fe-Based Amorphous Magnetic Powder Cores with Excellent Magnetic Properties[J]. Advanced Powder Technology, 2019, 30(8): 1504–1512.
[140] 李明哲. 磁性非晶合金结构非均匀性和磁性的关系及磁性能调控[D]. 中国科学院物理研究所, 2018.
Edit Comment