[1] Yu S, Yu P, Tang T. Effect of thermal buoyancy on flow and heat transfer around a permeable circular cylinder with internal heat generation[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1143–1163.
[2] Wu Z, Ren Y, Ou G, et al. Influence of special water properties variation on the heat transfer of supercritical water flow around a sphere[J]. Chemical Engineering Science, 2020, 222: 115698.
[3] Walayat K, Zhang Z, Usman K, et al. Dynamics of elliptic particle sedimentation with thermal convection[J]. Physics of Fluids, 2018, 30(10): 103301.
[4] Majlesara M, Abouali O, Kamali R, et al. Numerical study of hot and cold spheroidal particles in a viscous fluid[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119206.
[5] Yu C, Wang Y, Zhang H, et al. Numerical investigation on turbulent thermal performance of parallel flow heat exchanger with a novel polyhedral longitudinal vortex generator in shell side[J]. International Journal of Thermal Sciences, 2021, 166: 106962.
[6] Maddahi M H, Hatamipour M S, Jamialahmadi M. A model for the prediction of thermal resistance of calcium sulfate crystallization fouling in a liquid–solid fluidized bed heat exchanger with cylindrical particles[J]. International Journal of Thermal Sciences, 2019, 145: 106017.
[7] Wang X Y. A SVD-GFD Method to simulate 3D Moving Boundary Flow Problems[D]. 2008.
[8] Chew C S, Yeo K S, Shu C. A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree–Cartesian grids[J]. Journal of Computational Physics, 2006, 218(2): 510–548.
[9] Yu P, Yeo K S, Shyam Sundar D, et al. A three-dimensional hybrid meshfreeCartesian scheme for fluid-body interaction[J]. International Journal for Numerical Methods in Engineering, 2011, 88(4): 385–408.
[10] Wang X Y, Yeo K S, Chew C S, et al. A SVD-GFD scheme for computing 3D incompressible viscous fluid flows[J]. Computers & Fluids, 2008, 37(6): 733–746.
[11] Yeo K S, Ang S J, Shu C. Simulation of fish swimming and manoeuvring by an SVD-GFD method on a hybrid meshfree-Cartesian grid[J]. Computers & Fluids, 2010, 39(3): 403–430.
[12] Ang S J, Yeo K S, Chew C S, et al. A singular-value decomposition (SVD)-based generalized finite difference (GFD) method for close-interaction moving boundary flow problems[J]. International Journal for Numerical Methods in Engineering, 2008, 76(12): 1892–1929.
[13] Tian F-B, Wang L. Numerical Modeling of Sperm Swimming[J]. Fluids, 2021, 6(2): 73.
[14] Hagstrom C A, Leckie D A, Smith M G. Point bar sedimentation and erosion produced by an extreme flood in a sand and gravel-bed meandering river[J]. Sedimentary Geology, 2018, 377: 1–16.
[15] Harris A D, Baumgardner S E, Sun T, et al. A Poor Relationship Between Sea Level and Deep-Water Sand Delivery[J]. Sedimentary Geology, 2018, 370: 42–51.
[16] Bruno L, Fransos D, Lo Giudice A. Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 173: 79–90.
[17] Bruno L, Coste N, Fransos D, et al. Shield for Sand: An Innovative Barrier for Windblown Sand Mitigation[J]. Recent Patents on Engineering, 2018, 12(3): 237–246.
[18] Luo Z, Zhao Y, Lv B, et al. Dry coal beneficiation technique in the gas–solid fluidized bed: a review[J]. International Journal of Coal Preparation and Utilization, 2019: 1–29.
[19] Nie C, Pei H, Jiang L, et al. Growth of large-cell and easily-sedimentation microalgae Golenkinia SDEC-16 for biofuel production and campus sewage treatment[J]. Renewable Energy, 2018, 122: 517–525.
[20] Sakalova H, Malovanyy M, Vasylinych T, et al. The Research of Ammonium Concentrations in City Stocks and Further Sedimentation of Ion-Exchange Concentrate[J]. Journal of Ecological Engineering, 2019, 20(1): 158–164.
[21] Eggleton C D, Popel A S. Large deformation of red blood cell ghosts in a simple shear flow[J]. Physics of Fluids, 1998, 10(8): 1834–1845.
[22] Matsunaga D, Imai Y, Wagner C, et al. Reorientation of a single red blood cell during sedimentation[J]. Journal of Fluid Mechanics, 2016, 806: 102–128.
[23] Lawrence J J, Coenen W, Sánchez A L, et al. On the dispersion of a drug delivered intrathecally in the spinal canal[J]. Journal of Fluid Mechanics, 2019, 861: 679–720.
[24] Coclite A, Pascazio G, de Tullio M D, et al. Predicting the vascular adhesion of deformable drug carriers in narrow capillaries traversed by blood cells[J]. Journal of Fluids and Structures, 2018, 82: 638–650.
[25] Glowinski R, Pan T-W, Periaux J. A fictitious domain method for Dirichlet problem and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 111(3–4): 283–303.
[26] Glowinski R, Pan T-W, Periaux J. A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 112(1–4): 133–148.
[27] Glowinski R, Pan T-W, Periaux J. A Lagrange multiplier/fictitious domain method for the Dirichlet problem—Generalization to some flow problems[J]. Japan Journal of Industrial and Applied Mathematics, 1995, 12(1): 87–108.
[28] Glowinski R, Pan T-W, Periaux J. A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies: (I) case where the rigid body motions are known a priori[J]. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 1997, 324(3): 361–369.
[29] Glowinski R. A distributed Lagrange multiplier/fictitious domain method for particulate flows[J]. International Journal of Multiphase Flow, 1999: 40.
[30] Sharma N, Patankar N A. A fast computation technique for the direct numerical simulation of rigid particulate flows[J]. Journal of Computational Physics, 2005, 205(2): 439–457.
[31] Yu Z, Shao X. A direct-forcing fictitious domain method for particulate flows[J]. Journal of Computational Physics, 2007, 227(1): 292–314.
[32] Yu Z, Shao X. Direct numerical simulation of particulate flows with a fictitious domain method[J]. International Journal of Multiphase Flow, 2010, 36(2): 127–134.
[33] Xia Y, Yu Z, Deng J. A fictitious domain method for particulate flows of arbitrary density ratio[J]. Computers & Fluids, 2019, 193: 104293.
[34] Yu Z, Shao X, Wachs A. A fictitious domain method for particulate flows with heat transfer[J]. Journal of Computational Physics, 2006, 217(2): 424–452.
[35] Dan C, Wachs A. Direct Numerical Simulation of particulate flow with heat transfer[J]. International Journal of Heat and Fluid Flow, 2010, 31(6): 1050–1057.
[36] Wachs A. Rising of 3D catalyst particles in a natural convection dominated flow by a parallel DNS method[J]. Computers & Chemical Engineering, 2011, 35(11): 2169–2185.
[37] Shao X, Shi Y, Yu Z. Combination of the fictitious domain method and the sharp interface method for direct numerical simulation of particulate flows with heat transfer[J]. International Journal of Heat and Mass Transfer, 2012, 55(23–24): 6775–6785.
[38] Haeri S, Shrimpton J S. A new implicit fictitious domain method for the simulation of flow in complex geometries with heat transfer[J]. Journal of Computational Physics, 2013, 237: 21–45.
[39] Thirumalaisamy R, Patankar N A, Bhalla A P S. Handling Neumann and Robin boundary conditions in a fictitious domain volume penalization framework[J]. Journal of Computational Physics, 2022, 448: 110726.
[40] 宫兆新, 鲁传敬, 黄华雄. 浸入边界法及其应用[J]. 力学季刊, 2007, 28(3): 353–362.
[41] 杨明, 刘巨保, 岳欠杯, 等.基于浸入边界-有限元法的流固耦合碰撞数值模拟方法[J]. 应用数学与力学, 2019, 40(8): 880–892.
[42] Griffith B E, Patankar N A. Immersed Methods for Fluid–Structure Interaction[J]. Annual Review of Fluid Mechanics, 2020, 52(1): 421–448.
[43] Peskin C S. Flow patterns around heart valves a numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252–271.
[44] Peskin C S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3): 220–252.
[45] Höfler K, Schwarzer S. Navier-Stokes simulation with constraint forces: Finitedifference method for particle-laden flows and complex geometries[J]. Physical Review E, 2000, 61(6): 7146–7160.
[46] Mohd-Yusof J. For simulations of flow in complex geometries[J]. Annual research briefs, 1997, 317: 35.
[47] Kim J, Kim D, Choi H. An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries[J]. Journal of Computational Physics, 2001, 171(1): 132–150.
[48] Feng Z-G, Michaelides E E. Proteus: a direct forcing method in the simulations of particulate flows[J]. Journal of Computational Physics, 2005, 202(1): 20–51.
[49] Uhlmann M. An immersed boundary method with direct forcing for the simulation of particulate flows[J]. Journal of Computational Physics, 2005, 209(2): 448–476.
[50] Colonius T, Taira K. A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(25–28): 2131–2146.
[51] Kim J, Choi H. An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries[J]. KSME International Journal, 2004, 18(6): 1026–1035.
[52] Wang Z, Fan J, Luo K, et al. Immersed boundary method for the simulation of flows with heat transfer[J]. International Journal of Heat and Mass Transfer, 2009, 52(19–20): 4510–4518.
[53] Feng Z-G, Michaelides E E. Inclusion of heat transfer computations for particle laden flows[J]. Physics of Fluids, 2008, 20(4): 040604.
[54] Feng Z-G, Michaelides E E. Heat transfer in particulate flows with Direct Numerical Simulation (DNS)[J]. International Journal of Heat and Mass Transfer, 2009, 52(3–4): 777–786.
[55] Ren W, Shu C, Yang W. An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions[J]. International Journal of Heat and Mass Transfer, 2013, 64: 694–705.
[56] Luo K, Zhuang Z, Fan J, et al. A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions[J]. International Journal of Heat and Mass Transfer, 2016, 92: 708–717.
[57] Luo K, Mao C, Zhuang Z, et al. A ghost-cell immersed boundary method for the simulations of heat transfer in compressible flows under different boundary conditions Part-II: Complex geometries[J]. International Journal of Heat and Mass Transfer, 2017, 104: 98–111.
[58] Das S, Panda A, Deen N G, et al. A sharp-interface Immersed Boundary Method to simulate convective and conjugate heat transfer through highly complex periodic porous structures[J]. Chemical Engineering Science, 2018, 191: 1–18.
[59] Liu S, Jiang L, Chong K L, et al. From Rayleigh–Bénard convection to porousmedia convection: how porosity affects heat transfer and flow structure[J]. Journal of Fluid Mechanics, 2020, 895: A18.
[60] Ge M Y, Chua K J, Shu C, et al. Analytical and numerical study of tissue cryofreezing via the immersed boundary method[J]. International Journal of Heat and Mass Transfer, 2015, 83: 1–10.
[61] Tang Y, Mu L, He Y. Numerical Simulation of Fluid and Heat Transfer in a Biological Tissue Using an Immersed Boundary Method Mimicking the Exact Structure of the Microvascular Network[J]. Fluid Dynamics & Materials Processing, 2020, 16(2): 281–296.
[62] Favre F, Antepara O, Oliet C, et al. An immersed boundary method to conjugate heat transfer problems in complex geometries. Application to an automotive antenna[J]. Applied Thermal Engineering, 2019, 148: 907–928.
[63] Lee S, Hwang W. Development of an efficient immersed-boundary method with subgrid-scale models for conjugate heat transfer analysis using large eddy simulation[J]. International Journal of Heat and Mass Transfer, 2019, 134: 198–208.
[64] Aidun C K, Clausen J R. Lattice-Boltzmann Method for Complex Flows[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 439–472.
[65] Ziegler D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics, 1993, 71(5–6): 1171–1177.
[66] Chen S, Martínez D, Mei R. On boundary conditions in lattice Boltzmann methods[J]. Physics of Fluids, 1996, 8(9): 2527–2536.
[67] Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591–1598.
[68] Zhao-Li G, Chu-Guang Z, Bao-Chang S. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4): 366–374.
[69] Guo Z, Zheng C, Shi B. An extrapolation method for boundary conditions in lattice Boltzmann method[J]. Physics of Fluids, 2002, 14(6): 2007–2010.
[70] Wang L, Zhao Y, Yang X, et al. A lattice Boltzmann analysis of the conjugate natural convection in a square enclosure with a circular cylinder[J]. Applied Mathematical Modelling, 2019, 71: 31–44.
[71] Fattahi E, Farhadi M, Sedighi K. Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus[J]. International Journal of Thermal Sciences, 2010, 49(12): 2353–2362.
[72] Tiwari A, Vanka S P. A ghost fluid Lattice Boltzmann method for complex geometries[J]. International Journal for Numerical Methods in Fluids, 2012, 69(2): 481–498.
[73] Khazaeli R, Mortazavi S, Ashrafizaadeh M. Application of a ghost fluid approach for a thermal lattice Boltzmann method[J]. Journal of Computational Physics, 2013, 250: 126–140.
[74] Mozafari-Shamsi M, Sefid M, Imani G. Developing a ghost fluid lattice Boltzmann method for simulation of thermal Dirichlet and Neumann conditions at curved boundaries[J]. Numerical Heat Transfer, Part B: Fundamentals, 2016, 70(3): 251–266.
[75] Mozafari-Shamsi M, Sefid M, Imani G. Application of the ghost fluid lattice Boltzmann method to moving curved boundaries with constant temperature or heat flux conditions[J]. Computers & Fluids, 2018, 167: 51–65.
[76] Yin X, Zhang J. An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method[J]. Journal of Computational Physics, 2012, 231(11): 4295–4303.
[77] Zhang T, Shi B, Guo Z, et al. General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method[J]. Physical Review E, 2012, 85(1): 016701.
[78] Chen Q, Zhang X, Zhang J. Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes[J]. Physical Review E, 2013, 88(3): 033304.
[79] Li L, Mei R, Klausner J F. Lattice Boltzmann models for the convectiondiffusion equation: D2Q5 vs D2Q9[J]. International Journal of Heat and Mass Transfer, 2017, 108: 41–62.
[80] Li L, Mei R, Klausner J F. Boundary conditions for thermal lattice Boltzmann equation method[J]. Journal of Computational Physics, 2013, 237: 366–395.
[81] Tao S, Xu A, He Q, et al. A curved lattice Boltzmann boundary scheme for thermal convective flows with Neumann boundary condition[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119345.
[82] Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3): 227–253.
[83] Hughes T J R, Liu W K, Zimmermann T K. Lagrangian-Eulerian finite element formulation for incompressible viscous flows[J]. Computer Methods in Applied Mechanics and Engineering, 1981, 29(3): 329–349.
[84] Donea J, Giuliani S, Halleux J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 33(1–3): 689–723.
[85] Hu H H, Joseph D D, Crochet M J. Direct simulation of fluid particle motions[J]. Theoretical and Computational Fluid Dynamics, 1992, 3(5): 285–306.
[86] Hu H H, Patankar N A, Zhu M Y. Direct Numerical Simulations of Fluid–Solid Systems Using the Arbitrary Lagrangian–Eulerian Technique[J]. Journal of Computational Physics, 2001, 169(2): 427–462.
[87] Gan H, Chang J, Feng J J, et al. Direct numerical simulation of the sedimentation of solid particles with thermal convection[J]. Journal of Fluid Mechanics, 2003, 481: 385–411.
[88] Falcone M, Bothe D, Marschall H. 3D direct numerical simulations of reactive mass transfer from deformable single bubbles: An analysis of mass transfer coefficients and reaction selectivities[J]. Chemical Engineering Science, 2018, 177: 523–536.
[89] Jia H, Xiao X, Kang Y. Investigation of a free rising bubble with mass transfer by an arbitrary Lagrangian–Eulerian method[J]. International Journal of Heat and Mass Transfer, 2019, 137: 545–557.
[90] Ismael M A. Forced convection in partially compliant channel with two alternated baffles[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118455.
[91] Mehryan S A M, Ghalambaz M, Feeoj R K, et al. Free convection in a trapezoidal enclosure divided by a flexible partition[J]. International Journal of Heat and Mass Transfer, 2020: 149: 119186.
[92] Nguyen V-T. An arbitrary Lagrangian–Eulerian discontinuous Galerkin method for simulations of flows over variable geometries[J]. Journal of Fluids and Structures, 2010, 26(2): 312–329.
[93] Zhou J, Yang X, Ye J, et al. Arbitrary Lagrangian-Eulerian method for computation of rotating target during microwave heating[J]. International Journal of Heat and Mass Transfer, 2019, 134: 271–285.
[94] Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers & Structures, 1980, 11(1–2): 83–95.
[95] Liszka T. An interpolation method for an irregular net of nodes[J]. International Journal for Numerical Methods in Engineering, 1984, 20(9): 1599–1612.
[96] Duarte C A, Oden J T. H-p clouds—an h-p meshless method[J]. Numerical Methods for Partial Differential Equations: An International Journal, 1996, 12(6): 673–705.
[97] Liszka T J, Duarte C A M, Tworzydlo W W. hp-Meshless cloud method[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 263–288.
[98] Ding H, Shu C, Yeo K S, et al. Development of least-square-based twodimensional finite-difference schemes and their application to simulate natural convection in a cavity[J]. Computers & Fluids, 2004, 33(1): 137–154.
[99] Ding H, Shu C, Yeo K S, et al. Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(9–11): 727–744.
[100] Trefethen L N, Bau I D. Numerical linear algebra[M]. Siam, 1997.
[101] Hämmerlin G, Hoffmann K H. Numerical mathematics[M]. Springer Science & Business Media, 2012.
[102] Zhao Y, Yeo K S, Yu P, et al. Simulation of C-Start and S-Start of Fishes by an ALE-GFD Method and a Curvature-Wave Backbone Model[J]. Structural Longevity, 2010, 4(1): 31–38.
[103] Wang X Y, Yu P, Yeo K S, et al. SVD–GFD scheme to simulate complex moving body problems in 3D space[J]. Journal of Computational Physics, 2010, 229(6): 2314-2338.
[104] Wu D, Yeo K S, Lim T T. A numerical study on the free hovering flight of a model insect at low Reynolds number[J]. Computers & Fluids, 2014, 103: 234–261.
[105] Yao Y, Yeo K S. Longitudinal free flight of a model insect flyer at low Reynolds number[J]. Computers & Fluids, 2018, 162: 72–90.
[106] Nguyen T T, Shyam Sundar D, Yeo K S, et al. Modeling and analysis of insectlike flexible wings at low Reynolds number[J]. Journal of Fluids and Structures, 2016, 62: 294–317.
[107] Yao Y, Yeo K S, Nguyen T T. A numerical study on free hovering fruit-fly with flexible wings[C]//IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. Springer, Cham, 2019: 15–25.
[108] Jie Y, Seng Y K. Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics[J]. 2016, 10(12): 8.
[109] Yao J, Yeo K S. A simplified dynamic model for controlled insect hovering flight and control stability analysis[J]. Bioinspiration & Biomimetics, 2019, 14(5): 056005.
[110] Yao J, Yeo K S. Free hovering of hummingbird hawkmoth and effects of wing mass and wing elevation[J]. Computers & Fluids, 2019, 186: 99–127.
[111] Yao J, Yeo K S. Forward flight and sideslip manoeuvre of a model hawkmoth[J]. Journal of Fluid Mechanics, 2020, 896: A22.
[112] Yu P, Lu R, He W, et al. Steady flow around an inclined torus at low Reynolds numbers: Lift and drag coefficients[J]. Computers & Fluids, 2018, 171: 53–64.
[113] Fortes A F, Joseph D D, Lundgren T S. Nonlinear mechanics of fluidization of beds of spherical particles[J]. Journal of Fluid Mechanics, 1987, 177: 467–483.
[114] ten Cate A, Nieuwstad C H, Derksen J J, et al. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity[J]. Physics of Fluids, 2002, 14(11): 4012–4025.
[115] Zhang Y, Muller S J. Unsteady sedimentation of a sphere in wormlike micellar fluids[J]. Physical Review Fluids, 2018, 3(4): 043301.
[116] Chu C R, Wu T R, Tu Y F, et al. Interaction of two free-falling spheres in water[J]. Physics of Fluids, 2020, 32(3): 033304.
[117] Feng J, Hu H H, Joseph D D. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation[J]. Journal of Fluid Mechanics, 1994, 261: 95–134.
[118] Dash S M, Lee T S. Two spheres sedimentation dynamics in a viscous liquid column[J]. Computers & Fluids, 2015, 123: 218–234.
[119] Lee H, Fouxon I, Lee C. Sedimentation of a small sphere in stratified fluid[J]. Physical Review Fluids, 2019, 4(10): 104101.
[120] Sobhani S M J, Bazargan S, Sadeghy K. Sedimentation of an elliptic rigid particle in a yield-stress fluid: A Lattice-Boltzmann simulation[J]. Physics of Fluids, 2019, 31(8): 081902.
[121] Ardekani M N, Costa P, Breugem W P, et al. Numerical study of the sedimentation of spheroidal particles[J]. International Journal of Multiphase Flow, 2016, 87: 16–34.
[122] Gan H, Feng J J, Hu H H. Simulation of the sedimentation of melting solid particles[J]. International Journal of Multiphase Flow, 2003, 29(5): 751–769.
[123] Chorin A J. Numerical Solution of the Navier-Stokes Equations[J]. 1968, 22(104): 745–762.
[124] Chorin A J. On the Convergence of Discrete Approximations to the NavierStokes Equations[J]. 1969, 23(106): 341–353.
[125] Clift R, Grace J R, Weber M E. Bubbles, Drops, and Particles[M]. Academic Press, New York, 1978.
[126] Kang Y-S, Kim J, Sohn D, et al. A new three-dimensional variable-node finite element and its application for fluid–solid interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 281: 81–105.
[127] Kim J, Lee C, Kim H-G, et al. The surrounding cell method based on the S-FEM for analysis of FSI problems dealing with an immersed solid[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 341: 658–694.
[128] Nie D, Lin J, Gao Q. Settling behavior of two particles with different densities in a vertical channel[J]. Computers & Fluids, 2017, 156: 353–367.
[129] Aidun C K, Ding E-J. Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state[J]. Physics of Fluids, 2003, 15(6): 1612.
[130] Bharti R P, Chhabra R P, Eswaran V. A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder[J]. Heat and Mass Transfer, 2007, 43(7): 639–648.
[131] Zhang N, Zheng Z C, Eckels S. Study of heat-transfer on the surface of a circular cylinder in flow using an immersed-boundary method[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1558–1566.
[132] Ren W W, Shu C, Wu J, et al. Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications[J]. Computers & Fluids, 2012, 57: 40–51.
[133] Pan D. A General Boundary Condition Treatment in Immersed Boundary Methods for Incompressible Navier-Stokes Equations with Heat Transfer[J]. Numerical Heat Transfer, Part B: Fundamentals, 2012, 61(4): 279–297.
[134] Wang Y, Shu C, Yang L M. Boundary condition-enforced immersed boundarylattice Boltzmann flux solver for thermal flows with Neumann boundary conditions[J]. Journal of Computational Physics, 2016, 306: 237–252.
[135] Hu Y, Li D, Shu S, et al. An Efficient Immersed Boundary-Lattice Boltzmann Method for the Simulation of Thermal Flow Problems[J]. Communications in Computational Physics, 2016, 20(5): 1210–1257.
[136] Guo T, Shen E, Lu Z, et al. Implicit heat flux correction-based immersed boundary-finite volume method for thermal flows with Neumann boundary conditions[J]. Journal of Computational Physics, 2019, 386: 64–83.
[137] Khanafer K, Aithal S M. Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder[J]. International Journal of Heat and Mass Transfer, 2013, 66: 200–209.
[138] Khanafer K, Aithal S M, Vafai K. Mixed convection heat transfer in a differentially heated cavity with two rotating cylinders[J]. International Journal of Thermal Sciences, 2019, 135: 117–132.
[139] Xu A, Shi L, Zhao T S. Thermal effects on the sedimentation behavior of elliptical particles[J]. International Journal of Heat and Mass Transfer, 2018, 126: 753–764.
[140] Wang Z, Fan J, Luo K. Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles[J]. International Journal of Multiphase Flow, 2008, 34(3): 283–302.
[141] Yang B, Chen S, Cao C, et al. Lattice Boltzmann simulation of two cold particles settling in Newtonian fluid with thermal convection[J]. International Journal of Heat and Mass Transfer, 2016, 93: 477–490.
[142] Yu Z, Phan-Thien N, Tanner R I. Dynamic simulation of sphere motion in a vertical tube[J]. Journal of Fluid Mechanics, 2004, 518: 61–93.
[143] Loisel V, Abbas M, Masbernat O, et al. The effect of neutrally buoyant finitesize particles on channel flows in the laminar-turbulent transition regime[J]. Physics of Fluids, 2013, 25(12): 123304.
[144] Lashgari I, Picano F, Breugem W P, et al. Channel flow of rigid sphere suspensions: Particle dynamics in the inertial regime[J]. International Journal of Multiphase Flow, 2016, 78: 12–24.
[145] Sheard G J, Thompson M C, Hourigan K. From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings[J]. Journal of Fluid Mechanics, 2004, 506: 45–78.
[146] Sheard G J, Thompson M C, Hourigan K. From spheres to circular cylinders: the stability and flow structures of bluff ring wakes[J]. Journal of Fluid Mechanics, 2003, 492: 147–180.
[147] Sheard G J, Thompson M C, Hourigan K. Asymmetric structure and non-linear transition behaviour of the wakes of toroidal bodies[J]. European Journal of Mechanics - B/Fluids, 2004, 23(1): 167–179.
[148] Roshko A. On the development of turbulent wakes from vortex streets[R]. 1954: 1191.
[149] Monson D R. The Effect of Transverse Curvature on the Drag and Vortex Shedding of Elongated Bluff Bodies at Low Reynolds Number[J]. Journal of Fluids Engineering, 1983, 105(3): 308–318.
[150] Leweke T, Provansal M. The flow behind rings: bluff body wakes without end effects[J]. Journal of Fluid Mechanics, 1995, 288: 265–310.
[151] Leweke T, Provansal M, Boyer L. Stability of vortex shedding modes in the wake of a ring at low Reynolds numbers[J]. Physical Review Letters, 1993, 71(21): 3469–3472.
[152] Yu P. Steady flow past a torus with aspect ratio less than 5[J]. Journal of Fluids and Structures, 2014, 48: 393–406.
[153] Majumdar S R, O’Neill M E. On axisymmetric stokes flow past a torus[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1977, 28(4): 541–550.
[154] Goren S L, O’Neill M E. Asymmetric creeping motion of an open torus[J]. Journal of Fluid Mechanics, 1980, 101(1): 97–110.
[155] Johnson R E, Wu T Y. Hydromechanics of low-Reynolds-number flow. Part 5. Motion of a slender torus[J]. Journal of Fluid Mechanics, 1979, 95(2): 263–277.
[156] Amarakoon A M D. Drag measurements for axisymmetric motion of a torus at low Reynolds number[J]. Physics of Fluids, 1982, 25(9): 1495.
[157] Sheard G J, Hourigan K, Thompson M C. Computations of the drag coefficients for low-Reynolds-number flow past rings[J]. Journal of Fluid Mechanics, 2005, 526: 257–275.
[158] Inoue Y, Yamashita S, Kumada M. An experimental study on a wake behind a torus using the UVP monitor[J]. Experiments in Fluids, 1999, 26(3): 197–207.
[159] Johnson T A, Patel V C. Flow past a sphere up to a Reynolds number of 300[J]. Journal of Fluid Mechanics, 1999, 378: 19–70.
[160] Wang L, Guo Z L, Mi J C. Drafting, kissing and tumbling process of two particles with different sizes[J]. Computers & Fluids, 2014, 96: 20–34.
[161] Daniel W B, Ecke R E, Subramanian G, et al. Clusters of sedimenting highReynolds-number particles[J]. Journal of Fluid Mechanics, 2009, 625: 371–385.
[162] Uhlmann M, Doychev T. Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion[J]. Journal of Fluid Mechanics, 2014, 752: 310–348.
[163] Verjus R, Guillou S, Ezersky A, et al. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: Multiple states and routes to chaos[J]. Physics of Fluids, 2016, 28(12): 123303.
[164] Zhang Y, Zhang Y, Pan G, et al. Numerical study of the particle sedimentation in a viscous fluid using a coupled DEM-IB-CLBM approach[J]. Journal of Computational Physics, 2018, 368: 1–20.
[165] Nie D, Lin J. Discontinuity in the sedimentation system with two particles having different densities in a vertical channel[J]. Physical Review E, 2019, 99(5): 053112.
[166] Nie D, Lin J. Simulation of sedimentation of two spheres with different densities in a square tube[J]. Journal of Fluid Mechanics, 2020, 896: A12.
[167] Nie D, Guan G, Lin J. Interaction between two unequal particles at intermediate Reynolds numbers: A pattern of horizontal oscillatory motion[J]. Physical Review E, 2021, 103(1): 013105.
[168] Fendell F E. Laminar natural convection about an isothermally heated sphere at small Grashof number[J]. Journal of Fluid Mechanics, 1968, 34(1): 163–176.
[169] Hieber C A, Gebhart B. Mixed convection from a sphere at small Reynolds and Grashof numbers[J]. Journal of Fluid Mechanics, 1969, 38(1): 137–159.
[170] Feng Z-G, Michaelides E E. Unsteady Heat Transfer From a Sphere at Small Peclet Numbers[J]. Journal of Fluids Engineering, 1996, 118(1): 96–102.
[171] Bar-Ziv E, Zhao B, Mograbi E, et al. Experimental validation of the Stokes law at nonisothermal conditions[J]. Physics of Fluids, 2002, 14(6): 2015–2018.
[172] Hashemi Z, Abouali O, Kamali R. Three dimensional thermal Lattice Boltzmann simulation of heating/cooling spheres falling in a Newtonian liquid[J]. International Journal of Thermal Sciences, 2014, 82: 23–33.
Edit Comment