Title | Many-Body Effects on Two-dimensional Materials: Electronic and Optical Properties of Hexagonal Boron Nitride and Related Systems |
Author | |
Name pinyin | ZHANG Fang
|
School number | 11853007
|
Degree | 博士
|
Discipline | Applied Physics and Materials Engineering
|
Supervisor | |
Mentor unit | 材料科学与工程系
|
Tutor of External Organizations | 汤子康
|
Tutor units of foreign institutions | 澳门大学
|
Publication Years | 2022-06-13
|
Submission date | 2022-08-01
|
University | 澳门大学
|
Place of Publication | 澳门
|
Abstract | Two-dimensional semiconductors are the excellent platforms to develop the new generation ultra-thin and small devices as well as exploring novel physics. Due to the changes in confinement and screening in reduced dimensions, the electronic and optical properties of them are highly different from the bulk materials. In this dissertation, we use ab initio calcualtions based on many-body perturbation theory to explore and predict the quasiparticle and optical properties of two-dimensional hexagonal boron nitride (h-BN) and related systems. Within the GW formalism, we describe the quasiparticle properties, while the optical properties such as correlated electron-hole pairs are taken into consideration by the GW plus Bethe Salpeter equation approach. We find monolayer h-BN is a novel insulator hosting simultaneously bright s-like and p-like excitons, of which have never been found in other materials. Moreover, by utilizing the defects in the twisted interface of two h-BN flakes, we achieve a 100% control of the single-photon emitter. Using h-BN as substrate, we successfully create the anisotropic valley excitons whose helicity parameter could change continuous from zero to one. This dissertation is organized as follows: In chapter 1, we introduce the methodologies, including the Hartree-Fock equations, density-functional theory, GW formalism and GW plus Bethe Salpeter equation. In chapter 2, we calculate the electronic and optical properties of monolayer h-BN. We find the perfect circular dichroism that present in monolayer transition-metal dichalcogenides is lost in h-BN. Moreover, we find the simultaneous bright s-like and bright p-like excitons in it, as well as an intervalley 2s-2p excitonic hybridization. In chapter 3, we present our experimental results that a very bright single photon emitter at 300 nm can be tuned at the twisted interface of two h-BN flakes. We explain this phenomenon by theoretical calcualtions while both trap and defect states are existed in the system. In chapter 4, we come up with the idea of “anisotropic valley excitons”, which are realized in h-BN/black Arsenic/h-BN heterostructure. We find the anisotropic valley excitons no longer host circular dichroism, which linear dichroism still persist. The idea of elliptical dichroism are then introduced. |
Keywords | |
Language | English
|
Training classes | 联合培养
|
Enrollment Year | 2018
|
Year of Degree Awarded | 2022-08
|
References List | 1. Watanabe, K., T. Taniguchi, and H. Kanda, Direct-bandgap properties andevidence for ultraviolet lasing of hexagonal boron nitride single crystal. Naturematerials, 2004. 3(6): p. 404-409.2. Qiu, D.Y., F.H. da Jornada, and S.G. Louie, Optical Spectrum of Mo 2: Many-Body Effects and Diversity of Exciton States. Physical Review Letters, 2013.111(21): p. 216805.3. Louie, S.G., et al., Discovering and understanding materials throughcomputation. Nat Mater, 2021. 20(6): p. 728-735.4. Qiu, D.Y., F.H. da Jornada, and S.G. Louie, Screening and many-body effectsin two-dimensional crystals: Monolayer MoS2. Physical Review B, 2016.93(23): p. 235435.5. Ando, T., A.B. Fowler, and F. Stern, Electronic properties of two-dimensionalsystems. Reviews of Modern Physics, 1982. 54(2): p. 437-672.6. Slater, J.C., The Theory of Complex Spectra. Physical Review, 1929. 34(10):p. 1293-1322.7. Hartree, D.R. and W. Hartree, Self-consistent field, with exchange, forberyllium. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935. 150(869): p. 9-33.8. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review,1964. 136(3B): p. B864-B871.9. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange andCorrelation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.10. Perdew, J.P. and A. Zunger, Self-interaction correction to density-functionalapproximations for many-electron systems. Physical Review B, 1981. 23(10):p. 5048-5079.11. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradientapproximation made simple. Physical review letters, 1996. 77(18): p. 3865.12. Hedin, L., New Method for Calculating the One-Particle Green's Functionwith Application to the Electron-Gas Problem. Physical Review, 1965.139(3A): p. A796-A823.13. Schwinger, J., On the Green's functions of quantized fields. I. Proceedings ofthe National Academy of Sciences, 1951. 37(7): p. 452-455.14. Baym, G., Field-Theoretic Approach to the Properties of the Solid State.Annals of Physics, 2000. 281: p. 143-186.15. Hedin, L. and S. Lundqvist, Effects of electron-electron and electron-phononinteractions on the one-electron states of solids, in Solid state physics. 1970,Elsevier. p. 1-181.16. Salpeter, E.E. and H.A. Bethe, A Relativistic Equation for Bound-StateProblems. Physical Review, 1951. 84(6): p. 1232-1242.17. Rohlfing, M. and S.G. Louie, Electron-hole excitations and optical spectrafrom first principles. Physical Review B, 2000. 62(8): p. 4927-4944.18. Rohlfing, M. and S.G. Louie, Electron-Hole Excitations in Semiconductorsand Insulators. Physical Review Letters, 1998. 81(11): p. 2312-2315.19. Sio, W.H., et al., Ab initio theory of polarons: Formalism and applications.Physical Review B, 2019. 99(23): p. 235139.20. Zhang, X.-X., et al., Magnetic brightening and control of dark excitons inmonolayer WSe2. Nature Nanotechnology, 2017. 12(9): p. 883-888.21. Cao, T., et al., Valley-selective circular dichroism of monolayer molybdenumdisulphide. Nature Communications, 2012. 3(1): p. 887.22. Mak, K.F., et al., Control of valley polarization in monolayer MoS2 by opticalhelicity. Nature Nanotechnology, 2012. 7(8): p. 494-498.23. Cao, T., M. Wu, and S.G. Louie, Unifying Optical Selection Rules for Excitonsin Two Dimensions: Band Topology and Winding Numbers. Physical ReviewLetters, 2018. 120(8): p. 087402.24. Ju, L., et al., Tunable excitons in bilayer graphene. Science, 2017. 358(6365):p. 907-910.25. Zhang, F., et al., Intervalley Excitonic Hybridization, Optical Selection Rules,and Imperfect Circular Dichroism in Monolayer h-BN. Physical ReviewLetters, 2022. 128(4): p. 047402.26. da Jornada, F.H., D.Y. Qiu, and S.G. Louie, Nonuniform sampling schemes ofthe Brillouin zone for many-electron perturbation-theory calculations inreduced dimensionality. Physical Review B, 2017. 95(3): p. 035109.27. Şahin, H., et al., Monolayer honeycomb structures of group-IV elements andIII-V binary compounds: First-principles calculations. Physical Review B,2009. 80(15): p. 155453.28. Rasmussen, F.A., et al., Efficient many-body calculations for two-dimensionalmaterials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene. Physical Review B, 2016. 94(15): p. 155406.29. Galvani, T., et al., Excitons in boron nitride single layer. Physical Review B,2016. 94(12): p. 125303.30. Guilhon, I., et al., Out-of-plane excitons in two-dimensional crystals. PhysicalReview B, 2019. 99(16): p. 161201.31. Mishra, H. and S. Bhattacharya, Giant exciton-phonon coupling and zero-pointrenormalization in hexagonal monolayer boron nitride. Physical Review B,2019. 99(16): p. 165201.32. Shih, B.-C., et al., Quasiparticle Band Gap of ZnO: High Accuracy from theConventional G0W0 Approach. Physical Review Letters, 2010. 105(14): p.146401.33. Li, X., et al., Wettability of Supported Monolayer Hexagonal Boron Nitride inAir. Advanced Functional Materials, 2017. 27(19): p. 1603181.34. Elias, C., et al., Direct band-gap crossover in epitaxial monolayer boronnitride. Nature Communications, 2019. 10(1): p. 2639.35. Cudazzo, P., et al., Exciton Band Structure in Two-Dimensional Materials.Physical Review Letters, 2016. 116(6): p. 066803.36. Choi, J.-H., et al., Linear Scaling of the Exciton Binding Energy versus theBand Gap of Two-Dimensional Materials. Physical Review Letters, 2015.115(6): p. 066403.37. Chernikov, A., et al., Exciton Binding Energy and Nonhydrogenic RydbergSeries in Monolayer WS2. Physical Review Letters, 2014. 113(7): p. 076802.38. Deslippe, J., et al., Electron−Hole Interaction in Carbon Nanotubes: NovelScreening and Exciton Excitation Spectra. Nano Letters, 2009. 9(4): p. 1330-1334.39. Yang, X.L., et al., Analytic solution of a two-dimensional hydrogen atom. I.Nonrelativistic theory. Physical Review A, 1991. 43(3): p. 1186-1196.40. Laturia, A., M.L. Van de Put, and W.G. Vandenberghe, Dielectric propertiesof hexagonal boron nitride and transition metal dichalcogenides: frommonolayer to bulk. npj 2D Materials and Applications, 2018. 2(1): p. 6.41. Cohen, M.L. and S.G. Louie, Fundamentals of Condensed Matter Physics.2016, Cambridge: Cambridge University Press.42. Wu, M., et al., Physical origin of giant excitonic and magneto-opticalresponses in two-dimensional ferromagnetic insulators. NatureCommunications, 2019. 10(1): p. 2371.43. Mahon, P.T., R.A. Muniz, and J.E. Sipe, Quantum interference control oflocalized carrier distributions in the Brillouin zone. Physical Review B, 2019.100(7): p. 075203.44. Xiao, D., et al., Coupled Spin and Valley Physics in Monolayers of MoS2 andOther Group-VI Dichalcogenides. Physical Review Letters, 2012. 108(19): p.196802.45. Kormányos, A., et al., Monolayer MoS2: Trigonal warping, the Γvalley, andspin-orbit coupling effects. Physical Review B, 2013. 88(4): p. 045416.46. Keldysh, L.V., Coulomb interaction in thin semiconductor and semimetal films.Soviet Journal of Experimental and Theoretical Physics Letters, 1979. 29: p.658.47. Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nature Materials,2013. 12(3): p. 207-211.48. Aharonovich, I., D. Englund, and M. Toth, Solid-state single-photon emitters.Nature Photonics, 2016. 10(10): p. 631-641.49. Leon, N.P.d., et al., Materials challenges and opportunities for quantumcomputing hardware. Science, 2021. 372(6539): p. eabb2823.50. Geiselmann, M., et al., Fast optical modulation of the fluorescence from asingle nitrogen–vacancy centre. Nature Physics, 2013. 9(12): p. 785-789.51. Sajid, A., M.J. Ford, and J.R. Reimers, Single-photon emitters in hexagonalboron nitride: a review of progress. Reports on Progress in Physics, 2020.83(4): p. 044501.52. Son, J., et al., Atomically precise graphene etch stops for three dimensionalintegrated systems from two dimensional material heterostructures. Naturecommunications, 2018. 9(1): p. 1-9.53. Khatri, P., et al., Optical Gating of Photoluminescence from Color Centers inHexagonal Boron Nitride. Nano Letters, 2020. 20(6): p. 4256-4263.54. Cao, Y., et al., Correlated insulator behaviour at half-filling in magic-anglegraphene superlattices. Nature, 2018. 556(7699): p. 80-84.55. Cao, Y., et al., Unconventional superconductivity in magic-angle graphenesuperlattices. Nature, 2018. 556(7699): p. 43-50.56. Sharpe, A.L., et al., Emergent ferromagnetism near three-quarters filling intwisted bilayer graphene. Science, 2019. 365(6453): p. 605-608.57. Tran, K., et al., Evidence for moiré excitons in van der Waals heterostructures.Nature, 2019. 567(7746): p. 71-75.58. Seyler, K.L., et al., Signatures of moiré-trapped valley excitons inMoSe2/WSe2 heterobilayers. Nature, 2019. 567(7746): p. 66-70.59. Lee, H.Y., et al., Tunable Optical Properties of Thin Films Controlled by theInterface Twist Angle. Nano Letters, 2021. 21(7): p. 2832-2839.60. Jin, C., et al., Observation of moiré excitons in WSe2/WS2 heterostructuresuperlattices. Nature, 2019. 567(7746): p. 76-80.61. Su, C., et al., Tuning color centers at a twisted interface. arXiv preprintarXiv:2108.04747, 2021.62. Giannozzi, P., et al., QUANTUM ESPRESSO: a modular and open-sourcesoftware project for quantum simulations of materials. Journal of Physics:Condensed Matter, 2009. 21(39): p. 395502.63. Hamann, D., Optimized norm-conserving Vanderbilt pseudopotentials.Physical Review B, 2013. 88(8): p. 085117.64. Deslippe, J., et al., BerkeleyGW: A massively parallel computer package forthe calculation of the quasiparticle and optical properties of materials andnanostructures. Computer Physics Communications, 2012. 183(6): p. 1269-1289.65. Bourrellier, R., et al., Bright UV Single Photon Emission at Point Defects in h-BN. Nano Letters, 2016. 16(7): p. 4317-4321.66. Katzir, A., et al., Point defects in hexagonal boron nitride. I. EPR,thermoluminescence, and thermally-stimulated-current measurements.Physical Review B, 1975. 11(6): p. 2370.67. Vuong, T., et al., Phonon-photon mapping in a color center in hexagonal boronnitride. Physical review letters, 2016. 117(9): p. 097402.68. Yoo, H., et al., Atomic and electronic reconstruction at the van der Waalsinterface in twisted bilayer graphene. Nature materials, 2019. 18(5): p. 448-453.69. Museur, L., E. Feldbach, and A. Kanaev, Defect-related photoluminescence ofhexagonal boron nitride. Physical review B, 2008. 78(15): p. 155204.70. Bourrellier, R., et al., Bright UV single photon emission at point defects in h-BN. Nano letters, 2016. 16(7): p. 4317-4321.71. Louie, S.G., et al., Discovering and understanding materials throughcomputation. Nature Materials, 2021. 20(6): p. 728-735.72. Du, X., et al., The origin of deep-level impurity transitions in hexagonal boronnitride. Applied Physics Letters, 2015. 106(2): p. 021110.73. Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor.Physical review letters, 2010. 105(13): p. 136805.74. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature nanotechnology,2011. 6(3): p. 147-150.75. Qiao, J., et al., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature communications, 2014. 5(1): p. 1-7.76. Li, L., et al., Black phosphorus field-effect transistors. Nature nanotechnology,2014. 9(5): p. 372-377.77. Cao, T., et al., Gate switchable transport and optical anisotropy in 90 twistedbilayer black phosphorus. Nano letters, 2016. 16(9): p. 5542-5546.78. Zhang, X., W.-Y. Shan, and D. Xiao, Optical selection rule of excitons ingapped chiral fermion systems. Physical review letters, 2018. 120(7): p.077401.79. Wang, X., et al., Highly anisotropic and robust excitons in monolayer blackphosphorus. Nature Nanotechnology, 2015. 10(6): p. 517-521.80. Robert, C., et al., Fine structure and lifetime of dark excitons in transition metaldichalcogenide monolayers. Physical review B, 2017. 96(15): p. 155423.81. Combescot, M., O. Betbeder-Matibet, and R. Combescot, Bose-Einsteincondensation in semiconductors: The key role of dark excitons. Physicalreview letters, 2007. 99(17): p. 176403.82. Fang Zhang, M.W., Zikang Tang, Steven G. Louie, Wenqing Zhang,Generation of anisotropic valley excitons and elliptical dichroism in two-dimensional h-BN/b-As/h-BN heterostructure. To be submitted, 2022.83. Grimme, S., Semiempirical GGA‐type density functional constructed with along‐range dispersion correction. Journal of computational chemistry, 2006.27(15): p. 1787-1799.84. Mostofi, A.A., et al., wannier90: A tool for obtaining maximally-localisedWannier functions. Computer physics communications, 2008. 178(9): p. 685-699.85. Qiu, D.Y., F.H. da Jornada, and S.G. Louie, Environmental screening effectsin 2D materials: Renormalization of the bandgap, electronic structure, andoptical spectra of few-layer black phosphorus. Nano letters, 2017. 17(8): p.4706-4712.86. Suzuki, M.T., et al., Cluster multipole theory for anomalous Hall effect inantiferromagnets. Physical Review B, 2017. 95(9): p. 094406. |
Data Source | 人工提交
|
Document Type | Thesis |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/364763 |
Department | Department of Physics |
Recommended Citation GB/T 7714 |
Zhang F. Many-Body Effects on Two-dimensional Materials: Electronic and Optical Properties of Hexagonal Boron Nitride and Related Systems[D]. 澳门. 澳门大学,2022.
|
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
11853007-张方-物理系.pdf(4594KB) | Restricted Access | -- | Fulltext Requests |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment