中文版 | English
Title

Structure-preserving Numerical Schemes for Phase Field Models

Author
Name pinyin
FU Zhaohui
School number
11861005
Degree
博士
Discipline
数学
Supervisor
汤涛
Mentor unit
数学系
Publication Years
2022-08-11
Submission date
2022-08-26
University
英属哥伦比亚大学
Place of Publication
温哥华
Abstract

In this thesis we study how to design accurate, efficient and structure-preserving numerical schemes for phase field models including the Allen–Cahn equation, the Cahn–Hilliard equation and the molecular beam epitaxy equation. These numerical schemes include the explicit Runge–Kutta methods, exponential time differencing (ETD) Runge–Kutta methods and implicit-explicit (IMEX) Runge–Kutta methods. Note that the phase field models under consideration are gradient flows whose energy functionals decrease with time. For the Allen–Cahn equation, it is well known that the solution satisfies the maximum principle; for the Cahn–Hilliard equation, although its solution does not satisfy the maximum principle, the solution is also bounded in time. When designing numerical schemes, we wish to preserve certain stabilities satisfied by the physical solutions. We first make use of strong stability preserving (SSP) Runge-Kutta methods and apply some detailed analysis to derive a class of high-order (up to 4) explicit Runge-Kutta methods which not only decrease the discrete energy but also preserve the maximum principle for the Allen–Cahn equation. Secondly, we prove that the second-order exponential time differencing Runge-Kutta methods decrease the discrete energy for the phase field equations under investigation. Moreover, it can be shown that the ETDRK methods can also preserve the maximum bound property for the Allen–Cahn equation. What is more important is that both properties are preserved unconditionally, in the sense that the stability conditions do not depend on the size of time steps. Although the proof is only valid for second-order schemes and still open for higher-order methods, its numerical efficiency has been well observed in computations. The third approach is the implicit-explicit (IMEX) Runge–Kutta (RK) schemes, i.e. taking the linear part in the equation implicitly and the nonlinear part explicitly. A class of high-order IMEX-RK schemes are studied carefully. We demonstrate that some of the IMEX-RK schemes can preserve the energy decreasing property unconditionally for all the phase-field models under investigation.

Keywords
Language
English
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-11
References List

[1] S. M.AllenandJ.W.Cahn, A microscopictheoryforanti-phaseboundarymotionand itsapplicationtoanti-phasedomaincoarsening, ActaMetall,27(1979),pp.1085–1095.

[2] U. M.Ascher,S.J.Ruuth,andR.J.Spiteri, Implicit-explicit Runge-Kuttamethodsfortime-dependentpartialdifferentialequations, AppliedNumericalMathe-matics, 25(1997),pp.151–167.

[3] K. Burrage,W.H.Hundsdorfer,andJ.G.Verwer, A studyofB-convergenceof Runge-Kuttamethods, Computing,36(1986),p.17â34.

[4] J. C.Butcher, Numericalmethodsforordinarydifferentialequations, Wiley,(2003).

[5] J. H.Chaudhry,J.Collins,andJ.N.Shadid, A posteriorierrorestimationformulti-stage Runge-KuttaIMEXschemes, AppliedNumericalMathematics,117(2017),pp. 36–49.

[6] L. Chen, Phase-field modelsformicrostructuralevolution, Ann.Rev.Mater.Res.,32(2002), pp.113–140.

[7] L. ChenandJ.Shen, Applicationsofsemi-implicitFourier-spectralmethodtophasefield equations, Comput.Phys.Commun.,108(1998),pp.147–158.

[8] Q. ChengandJ.Shen, Multiple scalarauxiliaryvariable(MSAV)approachandits applicationtothephase-fieldvesiclemembranemodel, SIAMJournalonScientificComputing, 40(2018),pp.A3982–A4006.

[9] S. M.CoxandP.C.Matthews, Exponentialtimedifferencingforstiffsystems, J.Comput. Phys.,176(2002),pp.430–455.

[10] L. DongandQ.Zhonghua, On secondordersemi-implicitFourierspectralmethodsfor 2DCahn-Hilliardequations, J.Sci.Comp.,70(2017),pp.301–341.

[11] L. Dong,Q.Zhonghua,andT.Tao, Characterizingthestabilizationsizeforsemi-implicit Fourier-spectralmethodtophasefieldequations, SIAMJournalonNumericalAnalysis, 54(2016),pp.1653–1681.

[12] Q. Du,L.Ju,X.Li,andZ.Qiao, Maximum principlepreservingexponentialtimedifferencingschemesforthenonlocalAllen–Cahnequations, SIAMJ.Numer.Anal.,57 (2019),pp.875–898.

[13] Q. Du,L.Ju,X.Li,andZ.Qiao, Maximum boundprinciplesforaclassofsemi-linearparabolicequationsandexponentialtimedifferencingschemes, SIAMReview,63 (2021),pp.317–359.

[14] Q. DuandJ.Yang, AsymptoticallycompatibleFourierspectralapproximationsofnonlocalAllen–Cahnequations, SIAMJ.Numer.Anal.,54(2016),pp.1899–1919.

[15] Q. DuandW.Zhu, Stability analysisandapplicationoftheexponentialtimediffer-encing schemes, J.Comput.Math.,22(2004),pp.200–209.

[16] C. M.Elliott, The Cahn-Hilliardmodelforthekineticsofphaseseparation, Mathe-matical modelsforphasechangeproblems(Obidos,1988),Internat.Ser.Numer.Math.,vol.88,Birkhauser,Basel,88(1989),pp.35–73.

[17] C. M.ElliottandA.M.Stuart, The globaldynamicsofdiscretesemilinearparabolicequations, SIAMJ.Numer.Anal.,30(1993),pp.1622–1663.

[18] H. Emmerich, The diffuseinterfaceapproachinmaterialsscience, Springer,NewYork,(2003).

[19] D. J.Eyre, Anunconditionallystableone-stepschemeforgradientsystems, unpub-lished,http://www.math.utah.edu/eyre/research/methods/stable.ps.,(1997).

[20] D. J.Eyre, UnconditionallygradientstabletimemarchingtheCahn-Hilliardequation,Mater. Res.Soc.Symp.Proc.,529(1998),pp.39–46.

[21] X. Feng,T.Tang,andJ.Yang, Longtimenumericalsimulationsforphase-fieldproblemsusing p-adaptive spectraldeferredcorrectionmethods, SIAMJournalonSci-entificComputing,37(2015),pp.A271–A294.

[22] L. FerracinaandM.N.Spijker, Stepsize restrictionsforthetotal-variation-diminishing propertyingeneralRunge–Kuttamethods, SIAMJournalonNumericalAnalysis, 42(2004),pp.1073–1093.

[23] E. FriedandM.E.Gurtin, Dynamic solid-solidtransitionswithphasecharacterizedby anorderparameter, PhysicsD:NonlinearPhenomena,72(1994),pp.287–308.

[24] L. Golubovic,A.Levandovsky,andD.Moldovan, Interfacedynamicsandfar-from-equilibriumphasetransitionsinmultilayerepitaxialgrowthanderosiononcrystalsurfaces:Continuumtheoryinsights, EastAsianJ.Appl.Math.,1(2011),pp.297–371.

[25] H. Gomez,L.Cueto-Felgueroso,andR.Juanes, Three-dimensionalsimula-tion ofunstablegravity-driveninfiltrationofwaterintoaporousmedium, JournalofComputation Physics,238(2013),pp.217–239.

[26] H. GomezandT.Hughes, Provablyunconditionallystable,second-ordertime-accurate,mixedvariationalmethodsforphase-fieldmodels, J.Comput.Phys.,230(2011), pp.5310–5327.

[27] Y. Gong,Q.Wang,Y.Wang,andJ.Cai, A conservativeFourierpseudo-spectralmethodforthenonlinearSchrodingerequation, JournalofComputationalPhysics,328(2017), pp.354–370.

[28] C. Gottlieb,SamdShuandE.Tadmor, Strongstability-preservinghigh-ordertime discretizationmethods, SIAMRev.,43(2001),pp.89–112.

[29] S. Gottlieb,D.I.Ketcheson,andC.-W.Shu, StrongstabilitypreservingRunge–Kutta andmultisteptimediscretizations, WorldScientificPress,(2011).

[30] S. GottliebandC.-W.Shu, TotalvariationdiminishingRunge–Kuttaschemes,Mathematics ofComputation,67(1998),pp.73–85.

[31] Z. Guan,C.Wang,andS.Wise, A convergentconvexsplittingschemefortheperiodicnonlocalCahn–Hilliardequation, Numer.Math.,128(2014),pp.377–406.

[32] L. Ju,X.Li,Z.Qiao,andH.Zhang, Energystabilityanderrorestimatesofexpo-nential timedifferencingschemesfortheepitaxialgrowthmodelwithoutslopeselection,Math. Comp.,87(2018),pp.1859–1885.

[33] J. Kim, Phase-field modelsformulti-componentfluidflows, Commun.Comput.Phys.,12 (2012),pp.613–661.

[34] J. F.B.M.Kraaijevanger, ContractivityofRunge–Kuttamethods, BIT,31(1991),p. 482â528.

[35] L. Leibler, Theoryofmicrophaseseparationinblockcopolymers, Macromolecules,13(6) (1980),pp.1602–1617.

[36] B. LiandJ.Liu, Thin filmepitaxywithorwithoutslopeselection, EuropeanJ.Appl.Math., 14(2003),pp.713–743.

[37] J. Lili,L.Xiao,Q.Zhonghua,andJ.Yang, Maximum boundprinciplepreservingintegratingfactorRungeâKuttamethodsforsemilinearparabolicequations, J.Comp.Phys.,439(2021).

[38] O. PenroseandP.C.Fife, Thermodynamicallyconsistentmodelsofphase-fieldtypeforthekineticsofphasetransition, Phys.D,43(1990),pp.44–62.

[39] S. J.RuuthandR.J.Spiteri, Two barriersonstrong-stability-preservingtimediscretizationmethods, J.Sci.Comput.,17(2002),pp.211–220.

[40] J. Shen,T.Tang,andJ.Yang, On themaximumprinciplepreservingschemesforthe generalizedAllen–Cahnequation, Comm.Math.Sci.,14(2016),pp.1517–1534.

[41] J. Shen,J.Xu,andJ.Yang, The scalarauxiliaryvariable(SAV)approachforgradientflows, JournalofComputationalPhysics,353(2018),pp.407–416.

[42] J. Shen,J.Xu,andJ.Yang, A newclassofefficientandrobustenergystableschemes forgradientflows, SIAMRev.,61(2019),pp.474–506.

[43] J. ShenandX.Yang, NumericalapproximationsofAllen–CahnandCahn–Hilliardequations, Discret.Contin.Dyn.Syst.,28(2010),pp.1669–1691.

[44] C. Shu, Total-variation-diminishingtimediscretizations, SIAMJournalonScientificand StatisticalComputing,9(1988),pp.1073–1084.

[45] C.-W. ShuandS.Osher, Efficient implementationofessentiallynon-oscillatoryshock-capturingschemes, JournalofComputationalPhysics,77(1988),pp.439–471.

[46] T. Tang, Revisitofsemi-implicitschemesforphase-fieldequations, Anal.TheoryAppl., 36(3)(2020),pp.235–242.

[47] T. TangandJ.Yang, Implicit-explicit schemefortheAllen–Cahnequationpreservesthe maximumprinciple, J.Comput.Math.,34(2016),pp.451–461.

[48] J. D.vanderWaals, The thermodynamictheoryofcapillarityunderthehypothesisof acontinuousvariationofdensity, J.Stat.Phys.,20(1979),pp.197–244.

[49] J. G.Verwer, ConvergenceandorderreductionofdiagonallyimplicitRunge-Kuttaschemes inthemethodoflines, Proc.DundeeNumericalAnalysisConference,140(1985), pp.220–237.

[50] L. Xiao,Q.Zhonghua,andW.Cheng, Convergenceanalysisforastabilizedlinearsemi-implicit numericalschemeforthenonlocalCahnâHilliardequation, Math.Comp.,90 (2021),pp.171–188.

[51] C. XuandT.Tang, Stability analysisoflargetime-steppingmethodsforepitaxialgrowthmodels, SIAMJ.Numer.Anal.,44(2006),pp.1759–1779.

[52] J. Yang,Q.Du,andW.Zhang, Uniform lp -boundoftheAllen–Cahnequationandits numericaldiscretization, InternationalJournalofNumericalAnalysisandModeling,15 (1-2)(2018),pp.213–227.

[53] X. Yang, Linear,firstandsecond-order,unconditionallyenergystablenumericalschemes forthephasefieldmodelofhomopolymerblends, JournalofComputationalPhysics,327(2016),pp.294–316.

[54] X. Yang,J.Zhao,Q.Wang,andJ.Shen, Numericalapproximationsforathree-componentCahn–Hilliardphase-fieldmodelbasedontheinvariantenergyquadrati-zation method, MathematicalModelsandMethodsinAppliedSciences,27(2017),pp. 1993–2030.

Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/382663
DepartmentDepartment of Mathematics
Recommended Citation
GB/T 7714
Fu ZH. Structure-preserving Numerical Schemes for Phase Field Models[D]. 温哥华. 英属哥伦比亚大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11861005-傅赵晖-数学系.pdf(25010KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[傅赵晖]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[傅赵晖]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[傅赵晖]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.