[1] S. M.AllenandJ.W.Cahn, A microscopictheoryforanti-phaseboundarymotionand itsapplicationtoanti-phasedomaincoarsening, ActaMetall,27(1979),pp.1085–1095.
[2] U. M.Ascher,S.J.Ruuth,andR.J.Spiteri, Implicit-explicit Runge-Kuttamethodsfortime-dependentpartialdifferentialequations, AppliedNumericalMathe-matics, 25(1997),pp.151–167.
[3] K. Burrage,W.H.Hundsdorfer,andJ.G.Verwer, A studyofB-convergenceof Runge-Kuttamethods, Computing,36(1986),p.17â34.
[4] J. C.Butcher, Numericalmethodsforordinarydifferentialequations, Wiley,(2003).
[5] J. H.Chaudhry,J.Collins,andJ.N.Shadid, A posteriorierrorestimationformulti-stage Runge-KuttaIMEXschemes, AppliedNumericalMathematics,117(2017),pp. 36–49.
[6] L. Chen, Phase-field modelsformicrostructuralevolution, Ann.Rev.Mater.Res.,32(2002), pp.113–140.
[7] L. ChenandJ.Shen, Applicationsofsemi-implicitFourier-spectralmethodtophasefield equations, Comput.Phys.Commun.,108(1998),pp.147–158.
[8] Q. ChengandJ.Shen, Multiple scalarauxiliaryvariable(MSAV)approachandits applicationtothephase-fieldvesiclemembranemodel, SIAMJournalonScientificComputing, 40(2018),pp.A3982–A4006.
[9] S. M.CoxandP.C.Matthews, Exponentialtimedifferencingforstiffsystems, J.Comput. Phys.,176(2002),pp.430–455.
[10] L. DongandQ.Zhonghua, On secondordersemi-implicitFourierspectralmethodsfor 2DCahn-Hilliardequations, J.Sci.Comp.,70(2017),pp.301–341.
[11] L. Dong,Q.Zhonghua,andT.Tao, Characterizingthestabilizationsizeforsemi-implicit Fourier-spectralmethodtophasefieldequations, SIAMJournalonNumericalAnalysis, 54(2016),pp.1653–1681.
[12] Q. Du,L.Ju,X.Li,andZ.Qiao, Maximum principlepreservingexponentialtimedifferencingschemesforthenonlocalAllen–Cahnequations, SIAMJ.Numer.Anal.,57 (2019),pp.875–898.
[13] Q. Du,L.Ju,X.Li,andZ.Qiao, Maximum boundprinciplesforaclassofsemi-linearparabolicequationsandexponentialtimedifferencingschemes, SIAMReview,63 (2021),pp.317–359.
[14] Q. DuandJ.Yang, AsymptoticallycompatibleFourierspectralapproximationsofnonlocalAllen–Cahnequations, SIAMJ.Numer.Anal.,54(2016),pp.1899–1919.
[15] Q. DuandW.Zhu, Stability analysisandapplicationoftheexponentialtimediffer-encing schemes, J.Comput.Math.,22(2004),pp.200–209.
[16] C. M.Elliott, The Cahn-Hilliardmodelforthekineticsofphaseseparation, Mathe-matical modelsforphasechangeproblems(Obidos,1988),Internat.Ser.Numer.Math.,vol.88,Birkhauser,Basel,88(1989),pp.35–73.
[17] C. M.ElliottandA.M.Stuart, The globaldynamicsofdiscretesemilinearparabolicequations, SIAMJ.Numer.Anal.,30(1993),pp.1622–1663.
[18] H. Emmerich, The diffuseinterfaceapproachinmaterialsscience, Springer,NewYork,(2003).
[19] D. J.Eyre, Anunconditionallystableone-stepschemeforgradientsystems, unpub-lished,http://www.math.utah.edu/eyre/research/methods/stable.ps.,(1997).
[20] D. J.Eyre, UnconditionallygradientstabletimemarchingtheCahn-Hilliardequation,Mater. Res.Soc.Symp.Proc.,529(1998),pp.39–46.
[21] X. Feng,T.Tang,andJ.Yang, Longtimenumericalsimulationsforphase-fieldproblemsusing p-adaptive spectraldeferredcorrectionmethods, SIAMJournalonSci-entificComputing,37(2015),pp.A271–A294.
[22] L. FerracinaandM.N.Spijker, Stepsize restrictionsforthetotal-variation-diminishing propertyingeneralRunge–Kuttamethods, SIAMJournalonNumericalAnalysis, 42(2004),pp.1073–1093.
[23] E. FriedandM.E.Gurtin, Dynamic solid-solidtransitionswithphasecharacterizedby anorderparameter, PhysicsD:NonlinearPhenomena,72(1994),pp.287–308.
[24] L. Golubovic,A.Levandovsky,andD.Moldovan, Interfacedynamicsandfar-from-equilibriumphasetransitionsinmultilayerepitaxialgrowthanderosiononcrystalsurfaces:Continuumtheoryinsights, EastAsianJ.Appl.Math.,1(2011),pp.297–371.
[25] H. Gomez,L.Cueto-Felgueroso,andR.Juanes, Three-dimensionalsimula-tion ofunstablegravity-driveninfiltrationofwaterintoaporousmedium, JournalofComputation Physics,238(2013),pp.217–239.
[26] H. GomezandT.Hughes, Provablyunconditionallystable,second-ordertime-accurate,mixedvariationalmethodsforphase-fieldmodels, J.Comput.Phys.,230(2011), pp.5310–5327.
[27] Y. Gong,Q.Wang,Y.Wang,andJ.Cai, A conservativeFourierpseudo-spectralmethodforthenonlinearSchrodingerequation, JournalofComputationalPhysics,328(2017), pp.354–370.
[28] C. Gottlieb,SamdShuandE.Tadmor, Strongstability-preservinghigh-ordertime discretizationmethods, SIAMRev.,43(2001),pp.89–112.
[29] S. Gottlieb,D.I.Ketcheson,andC.-W.Shu, StrongstabilitypreservingRunge–Kutta andmultisteptimediscretizations, WorldScientificPress,(2011).
[30] S. GottliebandC.-W.Shu, TotalvariationdiminishingRunge–Kuttaschemes,Mathematics ofComputation,67(1998),pp.73–85.
[31] Z. Guan,C.Wang,andS.Wise, A convergentconvexsplittingschemefortheperiodicnonlocalCahn–Hilliardequation, Numer.Math.,128(2014),pp.377–406.
[32] L. Ju,X.Li,Z.Qiao,andH.Zhang, Energystabilityanderrorestimatesofexpo-nential timedifferencingschemesfortheepitaxialgrowthmodelwithoutslopeselection,Math. Comp.,87(2018),pp.1859–1885.
[33] J. Kim, Phase-field modelsformulti-componentfluidflows, Commun.Comput.Phys.,12 (2012),pp.613–661.
[34] J. F.B.M.Kraaijevanger, ContractivityofRunge–Kuttamethods, BIT,31(1991),p. 482â528.
[35] L. Leibler, Theoryofmicrophaseseparationinblockcopolymers, Macromolecules,13(6) (1980),pp.1602–1617.
[36] B. LiandJ.Liu, Thin filmepitaxywithorwithoutslopeselection, EuropeanJ.Appl.Math., 14(2003),pp.713–743.
[37] J. Lili,L.Xiao,Q.Zhonghua,andJ.Yang, Maximum boundprinciplepreservingintegratingfactorRungeâKuttamethodsforsemilinearparabolicequations, J.Comp.Phys.,439(2021).
[38] O. PenroseandP.C.Fife, Thermodynamicallyconsistentmodelsofphase-fieldtypeforthekineticsofphasetransition, Phys.D,43(1990),pp.44–62.
[39] S. J.RuuthandR.J.Spiteri, Two barriersonstrong-stability-preservingtimediscretizationmethods, J.Sci.Comput.,17(2002),pp.211–220.
[40] J. Shen,T.Tang,andJ.Yang, On themaximumprinciplepreservingschemesforthe generalizedAllen–Cahnequation, Comm.Math.Sci.,14(2016),pp.1517–1534.
[41] J. Shen,J.Xu,andJ.Yang, The scalarauxiliaryvariable(SAV)approachforgradientflows, JournalofComputationalPhysics,353(2018),pp.407–416.
[42] J. Shen,J.Xu,andJ.Yang, A newclassofefficientandrobustenergystableschemes forgradientflows, SIAMRev.,61(2019),pp.474–506.
[43] J. ShenandX.Yang, NumericalapproximationsofAllen–CahnandCahn–Hilliardequations, Discret.Contin.Dyn.Syst.,28(2010),pp.1669–1691.
[44] C. Shu, Total-variation-diminishingtimediscretizations, SIAMJournalonScientificand StatisticalComputing,9(1988),pp.1073–1084.
[45] C.-W. ShuandS.Osher, Efficient implementationofessentiallynon-oscillatoryshock-capturingschemes, JournalofComputationalPhysics,77(1988),pp.439–471.
[46] T. Tang, Revisitofsemi-implicitschemesforphase-fieldequations, Anal.TheoryAppl., 36(3)(2020),pp.235–242.
[47] T. TangandJ.Yang, Implicit-explicit schemefortheAllen–Cahnequationpreservesthe maximumprinciple, J.Comput.Math.,34(2016),pp.451–461.
[48] J. D.vanderWaals, The thermodynamictheoryofcapillarityunderthehypothesisof acontinuousvariationofdensity, J.Stat.Phys.,20(1979),pp.197–244.
[49] J. G.Verwer, ConvergenceandorderreductionofdiagonallyimplicitRunge-Kuttaschemes inthemethodoflines, Proc.DundeeNumericalAnalysisConference,140(1985), pp.220–237.
[50] L. Xiao,Q.Zhonghua,andW.Cheng, Convergenceanalysisforastabilizedlinearsemi-implicit numericalschemeforthenonlocalCahnâHilliardequation, Math.Comp.,90 (2021),pp.171–188.
[51] C. XuandT.Tang, Stability analysisoflargetime-steppingmethodsforepitaxialgrowthmodels, SIAMJ.Numer.Anal.,44(2006),pp.1759–1779.
[52] J. Yang,Q.Du,andW.Zhang, Uniform lp -boundoftheAllen–Cahnequationandits numericaldiscretization, InternationalJournalofNumericalAnalysisandModeling,15 (1-2)(2018),pp.213–227.
[53] X. Yang, Linear,firstandsecond-order,unconditionallyenergystablenumericalschemes forthephasefieldmodelofhomopolymerblends, JournalofComputationalPhysics,327(2016),pp.294–316.
[54] X. Yang,J.Zhao,Q.Wang,andJ.Shen, Numericalapproximationsforathree-componentCahn–Hilliardphase-fieldmodelbasedontheinvariantenergyquadrati-zation method, MathematicalModelsandMethodsinAppliedSciences,27(2017),pp. 1993–2030.
Edit Comment