[1] G.B. Kauffman, I. Mayo, The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications, The Chemical Educator 2(2) (1997) 1-21.
[2] A. Nagasawa, A New Phase Transformation in the NiTi Alloy, J. Phys. Soc. Jpn. 29(5) (1970) 1386-1386.
[3] A. Nagasawa, T. Maki, J. Kakinoki, Close Packed Layer Structures of NiTi Martensite, J. Phys. Soc. Jpn. 26(6) (1969) 1560-1560.
[4] H. Lin, P. Hua, Q. Sun, Effects of grain size and partial amorphization on elastocaloric cooling performance of nanostructured NiTi, Scr. Mater. 209 (2022) 114371.
[5] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015) 56 (2014) 1078-1113.
[6] D.A. Miller, D.C. Lagoudas, Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains, Smart Materials and Structures 9(5) (2000) 640-652.
[7] B. Reedlunn, C.B. Churchill, E.E. Nelson, J.A. Shaw, S.H. Daly, Tension, compression, and bending of superelastic shape memory alloy tubes, J. Mech. Phys. Solids 63 (2014) 506-537.
[8] X. Wang, B. Verlinden, J. Van Humbeeck, R-phase transformation in NiTi alloys, Mater. Sci. Technol. 30(13) (2014) 1517-1529.
[9] P. Šittner, M. Landa, P. Lukáš, V. Novák, R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mechanics of materials 38(5-6) (2006) 475-492.
[10] https://en.wikipedia.org/wiki/Nickel_titanium.
[11] J. Tušek, K. Engelbrecht, L.P. Mikkelsen, N. Pryds, Elastocaloric effect of Ni-Ti wire for application in a cooling device, J. Appl. Phys. 117(12) (2015).
[12] S. Qian, Y. Geng, Y. Wang, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, J. Cui, A review of elastocaloric cooling: Materials, cycles and system integrations, Int. J. Refrig. 64 (2016) 1-19.
[13] S. Qian, A. Alabdulkarem, J. Ling, J. Muehlbauer, Y. Hwang, R. Radermacher, I. Takeuchi, Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs, Int. J. Refrig. 57 (2015) 62-76.
[14] S. Bilgen, Structure and environmental impact of global energy consumption, Renew. Sustain. Energy Rev. 38 (2014) 890-902.
[15] E. De Cian, I. Sue Wing, Global energy consumption in a warming climate, Environmental and resource economics 72(2) (2019) 365-410.
[16] J.S. Brown, Introduction to hydrofluoro-olefin alternatives for high global warming potential hydrofluorocarbon refrigerants, HVAC&R Research 19(6) (2013) 693-704.
[17] M.O. McLinden, J.S. Brown, R. Brignoli, A.F. Kazakov, P.A. Domanski, Limited options for low-global-warming-potential refrigerants, Nat. Commun. 8 (2017) 14476.
[18] K.-J. Park, T. Seo, D. Jung, Performance of alternative refrigerants for residential air-conditioning applications, Appl. Energy 84(10) (2007) 985-991.
[19] J. Chen, Z. Tang, S. Zhao, Giant Negative and Positive Electrocaloric Effects Coexisting in Lead-Free Na0.5Bi4.5Ti4O15 ilms Over a Broad Temperature Range, physica status solidi (RRL) - Rapid Research Letters 12(6) (2018).
[20] S. Fähler, V.K. Pecharsky, Caloric effects in ferroic materials, MRS Bulletin 43(4) (2018) 264-268.
[21] T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Making a Cool Choice: The Materials Library of Magnetic Refrigeration, Adv. Energy Mater. 9(34) (2019).
[22] H. Hou, P. Finkel, M. Staruch, J. Cui, I. Takeuchi, Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device, Nat. Commun. 9(1) (2018) 4075.
[23] S.-G. Lu, Q. Zhang, Electrocaloric Materials for Solid-State Refrigeration, Adv. Mater. 21(19) (2009) 1983-1987.
[24] Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy, Acta Mater. 151 (2018) 41-55.
[25] M. Schmidt, J. Ullrich, A. Wieczorek, J. Frenzel, G. Eggeler, A. Schutze, S. Seelecke, Experimental Methods for Investigation of Shape Memory Based Elastocaloric Cooling Processes and Model Validation, J. Vis. Exp. (111) (2016).
[26] H. Sehitoglu, Y. Wu, E. Ertekin, Elastocaloric effects in the extreme, Scr. Mater. 148 (2018) 122-126.
[27] A. Shen, D. Zhao, W. Sun, J. Liu, C. Li, Elastocaloric effect in a Co 50 Ni 20 Ga 30 single crystal, Scr. Mater. 127 (2017) 1-5.
[28] J. Steven Brown, P.A. Domanski, Review of alternative cooling technologies, Appl. Therm. Eng. 64(1-2) (2014) 252-262.
[29] I. Takeuchi, K. Sandeman, Solid-state cooling with caloric materials, Physics Today 68(12) (2015) 48-54.
[30] L. Manosa, A. Planes, Materials with Giant Mechanocaloric Effects: Cooling by Strength, Adv. Mater. 29(11) (2017).
[31] N. Abas, A.R. Kalair, N. Khan, A. Haider, Z. Saleem, M.S. Saleem, Natural and synthetic refrigerants, global warming: A review, Renew. Sustain. Energy Rev. 90 (2018) 557-569.
[32] J. Tušek, K. Engelbrecht, D. Eriksen, S. Dall’Olio, J. Tušek, N. Pryds, A regenerative elastocaloric heat pump, Nature Energy 1(10) (2016).
[33] J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires, Appl. Phys. Lett. 101(7) (2012).
[34] Y. Cao, X. Zhou, D. Cong, H. Zheng, Y. Cao, Z. Nie, Z. Chen, S. Li, N. Xu, Z. Gao, W. Cai, Y. Wang, Large tunable elastocaloric effect in additively manufactured Ni-Ti shape memory alloys, Acta Mater. (2020).
[35] L. Porenta, P. Kabirifar, A. Žerovnik, M. Čebron, B. Žužek, M. Dolenec, M. Brojan, J. Tušek, Thin-walled Ni-Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling, Appl. Mater. Today 20 (2020).
[36] J. Chen, K. Zhang, Q. Kan, H. Yin, Q. Sun, Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling, Appl. Phys. Lett. 115(9) (2019).
[37] J. Tušek, A. Žerovnik, M. Čebron, M. Brojan, B. Žužek, K. Engelbrecht, A. Cadelli, Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling, Acta Mater. 150 (2018) 295-307.
[38] K. Zhang, G. Kang, Q. Sun, High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression, Scr. Mater. 159 (2019) 62-67.
[39] M. Wagner, T. Sawaguchi, G. Kausträter, D. Höffken, G. Eggeler, Structural fatigue of pseudoelastic NiTi shape memory wires, Mater. Sci. Eng., A 378(1-2) (2004) 105-109.
[40] A. Figueiredo, P. Modenesi, V. Buono, Low-cycle fatigue life of superelastic NiTi wires, Int. J. Fatigue 31(4) (2009) 751-758.
[41] L. Zheng, Y. He, Z. Moumni, Investigation on fatigue behaviors of NiTi polycrystalline strips under stress-controlled tension via in-situ macro-band observation, Int. J. Plasticity 90 (2017) 116-145.
[42] S. Zhang, Y. He, Fatigue resistance of branching phase-transformation fronts in pseudoelastic NiTi polycrystalline strips, Int. J. Solids Struct. 135 (2018) 233-244.
[43] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Mater. 135 (2017) 158-176.
[44] L. Zheng, Y. He, Z. Moumni, Lüders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy, Scr. Mater. 123 (2016) 46-50.
[45] C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, A. Tuissi, Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, Int. J. Fatigue 66 (2014) 78-85.
[46] H. Soul, A. Isalgue, A. Yawny, V. Torra, F.C. Lovey, Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity, Smart Mater. Struct. 19(8) (2010) 085006.
[47] R.T. Watkins, B. Reedlunn, S. Daly, J.A. Shaw, Uniaxial, pure bending, and column buckling experiments on superelastic NiTi rods and tubes, Int. J. Solids Struct. 146 (2018) 1-28.
[48] D. Jiang, N.J. Bechle, C.M. Landis, S. Kyriakides, Buckling and recovery of NiTi tubes under axial compression, Int. J. Solids Struct. 80 (2016) 52-63.
[49] Y.J. He, Q.P. Sun, Scaling relationship on macroscopic helical domains in NiTi tubes, Int. J. Solids Struct. 46(24) (2009) 4242-4251.
[50] P. Hua, H. Lin, Q. Sun, Ultrahigh cycle fatigue deformation of polycrystalline NiTi micropillars, Scr. Mater. 203 (2021) 114108.
[51] A. Ahadi, Q. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size, Appl. Phys. Lett. 103(2) (2013).
[52] H. Yin, Y. He, Z. Moumni, Q. Sun, Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy, Int. J. Fatigue 88 (2016) 166-177.
[53] A. Ahadi, Q. Sun, Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi, Acta Mater. 76 (2014) 186-197.
[54] J. Chen, H. Yin, Q. Sun, Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys, Acta Mater. 195 (2020) 141-150.
[55] Y. Shen, Z. Wei, W. Sun, Y. Zhang, E. Liu, J. Liu, Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys, Acta Mater. 188 (2020) 677-685.
[56] H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cissé, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, R. Radermacher, V.I. Levitas, M.J. Kramer, M.A. Zaeem, A.P. Stebner, R.T. Ott, J. Cui, I. Takeuchi, Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing, Science 366(6469) (2019) 1116.
[57] Y. Cao, X. Zhou, D. Cong, H. Zheng, Y. Cao, Z. Nie, Z. Chen, S. Li, N. Xu, Z. Gao, Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys, Acta Mater. 194 (2020) 178-189.
[58] Q.P. Sun, H. Zhao, R. Zhou, D. Saletti, H. Yin, Recent advances in spatiotemporal evolution of thermomechanical fields during the solid–solid phase transition, Comptes Rendus Mécanique 340(4-5) (2012) 349-358.
[59] H. Yin, Q. Sun, Temperature Variation in NiTi Shape Memory Alloy During Cyclic Phase Transition, J. Mater. Eng. Perform. 21(12) (2012) 2505-2508.
[60] H. Ossmer, F. Lambrecht, M. Gültig, C. Chluba, E. Quandt, M. Kohl, Evolution of temperature profiles in TiNi films for elastocaloric cooling, Acta Mater. 81 (2014) 9-20.
[61] G.J. Pataky, E. Ertekin, H. Sehitoglu, Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl, Acta Mater. 96 (2015) 420-427.
[62] H. Hou, J. Cui, S. Qian, D. Catalini, Y. Hwang, R. Radermacher, I. Takeuchi, Overcoming fatigue through compression for advanced elastocaloric cooling, MRS Bulletin 43(4) (2018) 285-290.
[63] S.-M. Kirsch, F. Welsch, N. Michaelis, M. Schmidt, A. Wieczorek, J. Frenzel, G. Eggeler, A. Schütze, S. Seelecke, NiTi-Based Elastocaloric Cooling on the Macroscale: From Basic Concepts to Realization, Energy Technology 6(8) (2018) 1567-1587.
[64] G. Scirè Mammano, E. Dragoni, Functional fatigue of Ni–Ti shape memory wires under various loading conditions, Int. J. Fatigue 69 (2014) 71-83.
[65] P. Sedmák, P. Šittner, J. Pilch, C. Curfs, Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction, Acta Mater. 94 (2015) 257-270.
[66] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mater. Sci. Eng., A 378(1-2) (2004) 24-33.
[67] Y. Gao, L. Casalena, M.L. Bowers, R.D. Noebe, M.J. Mills, Y. Wang, An origin of functional fatigue of shape memory alloys, Acta Mater. 126 (2017) 389-400.
[68] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci 50(5) (2005) 511-678.
[69] P. Hua, K. Chu, F. Ren, Q. Sun, Cyclic phase transformation behavior of nanocrystalline NiTi at microscale, Acta Mater. 185 (2020) 507-517.
[70] J. Frenzel, G. Eggeler, E. Quandt, S. Seelecke, M. Kohl, High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices, MRS Bulletin 43(4) (2018) 280-284.
[71] C. Chluba, W. Ge, R. Lima de Miranda, J. Strobel, L. Kienle, E. Quandt, M. Wuttig, Ultralow-fatigue shape memory alloy films, Science 348(6238) (2015) 1004.
[72] Z. Xie, Y. Liu, J. Van Humbeeck, Microstructure of NiTi shape memory alloy due to tension–compression cyclic deformation, Acta Mater. 46(6) (1998) 1989-2000.
[73] K. Gall, H.J. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys, Acta Mater. 50(18) (2002) 4643-4657.
[74] R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov, H.J. Maier, Stress dependence of the hysteresis in single crystal NiTi alloys, Acta Mater. 52(11) (2004) 3383-3402.
[75] S.C. Mao, J.F. Luo, Z. Zhang, M.H. Wu, Y. Liu, X.D. Han, EBSD studies of the stress-induced B2–B19′ martensitic transformation in NiTi tubes under uniaxial tension and compression, Acta Mater. 58(9) (2010) 3357-3366.
[76] R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, Int. J. Plasticity 27(2) (2011) 282-297.
[77] P. Hua, M. Xia, Y. Onuki, Q. Sun, Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance, Nat. Nanotechnol. 16(4) (2021) 409-413.
[78] Ž. Ahčin, J. Liang, K. Engelbrecht, J. Tušek, Thermo-hydraulic evaluation of oscillating-flow shell-and-tube-like regenerators for (elasto)caloric cooling, Appl. Therm. Eng. 190 (2021) 116842.
[79] H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cisse, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, R. Radermacher, V.I. Levitas, M.J. Kramer, M.A. Zaeem, A.P. Stebner, R.T. Ott, J. Cui, I. Takeuchi, Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing, Science 366(6469) (2019) 1116-1121.
[80] H. Chen, F. Xiao, X. Liang, Z. Li, Z. Li, X. Jin, N. Min, T. Fukuda, Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement, Scr. Mater. 162 (2019) 230-234.
[81] E. Kurt, Future prospects for elastocaloric devices, Journal of Physics: Energy (2019).
[82] X. Moya, N.D. Mathur, Caloric materials for cooling and heating, 370(6518) (2020) 797-803.
[83] S.P. Timoshenko, J.M. Gere, W. Prager, Theory of Elastic Stability, Second Edition, Journal of Applied Mechanics 29(1) (1962) 220-221.
[84] E. Bonnot, R. Romero, L. Manosa, E. Vives, A. Planes, Elastocaloric effect associated with the martensitic transition in shape-memory alloys, Phys. Rev. Lett. 100(12) (2008) 125901.
[85] L. Mañosa, S. Jarque-Farnos, E. Vives, A. Planes, Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys, Appl. Phys. Lett. 103(21) (2013).
[86] P. Šittner, L. Heller, J. Pilch, C. Curfs, T. Alonso, D. Favier, Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires, J. Mater. Eng. Perform. 23(7) (2014) 2303-2314.
[87] J. Pfetzing-Micklich, R. Ghisleni, T. Simon, C. Somsen, J. Michler, G. Eggeler, Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale, Mater. Sci. Eng., A 538 (2012) 265-271.
[88] B. Ye, B.S. Majumdar, I. Dutta, Texture development and strain hysteresis in a NiTi shape-memory alloy during thermal cycling under load, Acta Mater. 57(8) (2009) 2403-2417.
[89] A. Ahadi, Q. Sun, Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction, Acta Mater. 90 (2015) 272-281.
[90] X.B. Shi, F.M. Guo, J.S. Zhang, H.L. Ding, L.S. Cui, Grain size effect on stress hysteresis of nanocrystalline NiTi alloys, J. Alloys Compd. 688 (2016) 62-68.
[91] K. Chu, Q. Sun, Reducing functional fatigue, transition stress and hysteresis of NiTi micropillars by one-step overstressed plastic deformation, Scr. Mater. 201 (2021) 113958.
[92] M.F.X. Wagner, N. Nayan, U. Ramamurty, Healing of fatigue damage in NiTi shape memory alloys, J. Phys. D: Appl. Phys. 41(18) (2008) 185408.
[93] S. Qian, D. Nasuta, A. Rhoads, Y. Wang, Y. Geng, Y. Hwang, R. Radermacher, I. Takeuchi, Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance, Int. J. Refrig. 62 (2016) 177-192.
[94] H. Hou, E. Simsek, D. Stasak, N.A. Hasan, S. Qian, R. Ott, J. Cui, I. Takeuchi, Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat, J. Phys. D: Appl. Phys. 50(40) (2017).
[95] S. Qian, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems, Int. J. Refrig. 56 (2015) 65-80.
[96] Y. Kim, M.-G. Jo, J.-W. Park, H.-K. Park, H.N. Han, Elastocaloric effect in polycrystalline Ni 50 Ti 45.3 V 4.7 shape memory alloy, Scr. Mater. 144 (2018) 48-51.
[97] H. Ossmer, F. Wendler, M. Gueltig, F. Lambrecht, S. Miyazaki, M. Kohl, Energy-efficient miniature-scale heat pumping based on shape memory alloys, Smart Materials and Structures 25(8) (2016).
[98] D. Liang, Q. Wang, K. Chu, J. Chen, P. Hua, F. Ren, Q. Sun, Ultrahigh cycle fatigue of nanocrystalline NiTi tubes for elastocaloric cooling, Appl. Mater. Today 26 (2022).
[99] K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, M. Umemoto, Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing, Scr. Mater. 60(9) (2009) 749-752.
[100] H. Yin, Y. He, Q. Sun, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy, J. Mech. Phys. Solids 67 (2014) 100-128.
[101] H. Yin, M. Li, Q. Sun, Thermomechanical coupling in cyclic phase transition of shape memory material under periodic stressing—experiment and modeling, J. Mech. Phys. Solids 149 (2021).
[102] M.A. Iadicola, J.A. Shaw, Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, Int. J. Plasticity 20(4-5) (2004) 577-605.
[103] H. Chen, F. Xiao, X. Liang, Z. Li, Z. Li, X. Jin, T. Fukuda, Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti–Ni–Cu shape memory alloy, Acta Mater. 177 (2019) 169-177.
[104] J. Tušek, K. Engelbrecht, L. Mañosa, E. Vives, N. Pryds, Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling, Shape Memory and Superelasticity 2(4) (2016) 317-329.
[105] D. Liang, P. Hua, J. Chen, F. Ren, Q. Sun, Functional Degradation and Self-enhanced Elastocaloric Cooling Performance of NiTi Tubes under Cyclic Compression, arXiv pre-print server (2021).
[106] Y. Li, D. Zhao, J. Liu, S. Qian, Z. Li, W. Gan, X. Chen, Energy-Efficient Elastocaloric Cooling by Flexibly and Reversibly Transferring Interface in Magnetic Shape-Memory Alloys, ACS Appl. Mater. Interfaces 10(30) (2018) 25438-25445.
[107] L. Bumke, C. Zamponi, J. Jetter, E. Quandt, Cu-rich Ti52.8Ni22.2Cu22.5Co2.5 shape memory alloy films with ultra-low fatigue for elastocaloric applications, J. Appl. Phys. 127(22) (2020).
[108] S. Suresh, Fatigue of materials, Cambridge university press1998.
[109] C. Sammis, M. Ashby, The failure of brittle porous solids under compressive stress states, Acta Metall. 34(3) (1986) 511-526.
[110] M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmüller, M. Wohlschlögel, H. Mughrabi, G. Eggeler, Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys, Acta Mater. 61(10) (2013) 3667-3686.
[111] C. Luo, Evolution of voids close to an inclusion in hot deformation of metals, Computational Materials Science 21(3) (2001) 360-374.
[112] D.L. Holt, Dislocation Cell Formation in Metals, J. Appl. Phys. 41(8) (1970) 3197-3201.
Edit Comment