中文版 | English
Title

Compressive Fatigue and Elastocaloric Cooling performance of NiTi Tubes

Alternative Title
镍钛管的压缩疲劳和弹热冷却性能
Author
Name pinyin
LIANG Dingshan
School number
11851013
Degree
博士
Discipline
机械工程
Supervisor
任富增
Mentor unit
材料科学与工程系
Tutor of External Organizations
孙庆平
Tutor units of foreign institutions
Hongkong University of Science and Technology
Publication Years
2022-08-19
Submission date
2022-08-31
University
香港科技大学
Place of Publication
香港
Abstract

Superelastic nanocrystalline NiTi tubes are promising candidates for eco-friendly elastocaloric cooling, but their cyclic stability suffers severely from functional degradation and the limited fatigue life of conventional coarse-grained NiTi remains a crucial bottleneck. First, the functional degradation and its effect on elastocaloric cooling performance were investigated. The results show that the functional degradation accompanies with progressive accumulation of residual strain and significant reduction in both hysteresis loop area (D) and forward transformation stress (σftr ). Such functional degradation arises from phase transition-induced dislocations and dislocation-pinned residual martensite. The dislocations partition the original austenite grains into much smaller nanodomains, leading to the macroscopic residual strain and reduced D . The nanosized residual martensite can directly grow without overcoming martensite nucleation barrier and induce compressive residual stress in the austenite phase, contributing to the decrease in σftr . As a result of functional degradation, the material coefficient of performance was doubled for full phase transition and enhanced by 40% for partial phase transition compared with the first cycle, mainly due to the cyclically-decreased D. The study shows that the cyclic stability and elastocaloric cooling performance of NiTi can be improved via training at a suitable stress.

Then, the ultrahigh fatigue life of nanocrystalline NiTi tubes was achieved via high frequency fatigue test after training, exceeding 120 million cycles under 800 MPa. The NiTi tubes demonstrate stable cyclic stress-strain responses and a stable adiabatic temperature drop of 6.6 °C in the lifespan. The material coefficient of performance increases from the initial 8.8 to 11.6 of the 108th compressive cycle. The high resistance to nucleation and growth of compression-parallel cracks results in the ultrahigh fatigue life of the tubes. The research shows the great potentials of nanocrystalline NiTi tubes with both stable thermomechanical properties and long compressive fatigue life for reliable elastocaloric cooling.

Keywords
Language
English
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022
References List

[1] G.B. Kauffman, I. Mayo, The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications, The Chemical Educator 2(2) (1997) 1-21.
[2] A. Nagasawa, A New Phase Transformation in the NiTi Alloy, J. Phys. Soc. Jpn. 29(5) (1970) 1386-1386.
[3] A. Nagasawa, T. Maki, J. Kakinoki, Close Packed Layer Structures of NiTi Martensite, J. Phys. Soc. Jpn. 26(6) (1969) 1560-1560.
[4] H. Lin, P. Hua, Q. Sun, Effects of grain size and partial amorphization on elastocaloric cooling performance of nanostructured NiTi, Scr. Mater. 209 (2022) 114371.
[5] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015) 56 (2014) 1078-1113.
[6] D.A. Miller, D.C. Lagoudas, Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains, Smart Materials and Structures 9(5) (2000) 640-652.
[7] B. Reedlunn, C.B. Churchill, E.E. Nelson, J.A. Shaw, S.H. Daly, Tension, compression, and bending of superelastic shape memory alloy tubes, J. Mech. Phys. Solids 63 (2014) 506-537.
[8] X. Wang, B. Verlinden, J. Van Humbeeck, R-phase transformation in NiTi alloys, Mater. Sci. Technol. 30(13) (2014) 1517-1529.
[9] P. Šittner, M. Landa, P. Lukáš, V. Novák, R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mechanics of materials 38(5-6) (2006) 475-492.
[10] https://en.wikipedia.org/wiki/Nickel_titanium.
[11] J. Tušek, K. Engelbrecht, L.P. Mikkelsen, N. Pryds, Elastocaloric effect of Ni-Ti wire for application in a cooling device, J. Appl. Phys. 117(12) (2015).
[12] S. Qian, Y. Geng, Y. Wang, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, J. Cui, A review of elastocaloric cooling: Materials, cycles and system integrations, Int. J. Refrig. 64 (2016) 1-19.
[13] S. Qian, A. Alabdulkarem, J. Ling, J. Muehlbauer, Y. Hwang, R. Radermacher, I. Takeuchi, Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs, Int. J. Refrig. 57 (2015) 62-76.
[14] S. Bilgen, Structure and environmental impact of global energy consumption, Renew. Sustain. Energy Rev. 38 (2014) 890-902.
[15] E. De Cian, I. Sue Wing, Global energy consumption in a warming climate, Environmental and resource economics 72(2) (2019) 365-410.
[16] J.S. Brown, Introduction to hydrofluoro-olefin alternatives for high global warming potential hydrofluorocarbon refrigerants, HVAC&R Research 19(6) (2013) 693-704.
[17] M.O. McLinden, J.S. Brown, R. Brignoli, A.F. Kazakov, P.A. Domanski, Limited options for low-global-warming-potential refrigerants, Nat. Commun. 8 (2017) 14476.
[18] K.-J. Park, T. Seo, D. Jung, Performance of alternative refrigerants for residential air-conditioning applications, Appl. Energy 84(10) (2007) 985-991.
[19] J. Chen, Z. Tang, S. Zhao, Giant Negative and Positive Electrocaloric Effects Coexisting in Lead-Free Na0.5Bi4.5Ti4O15 ilms Over a Broad Temperature Range, physica status solidi (RRL) - Rapid Research Letters 12(6) (2018).
[20] S. Fähler, V.K. Pecharsky, Caloric effects in ferroic materials, MRS Bulletin 43(4) (2018) 264-268.
[21] T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Making a Cool Choice: The Materials Library of Magnetic Refrigeration, Adv. Energy Mater. 9(34) (2019).
[22] H. Hou, P. Finkel, M. Staruch, J. Cui, I. Takeuchi, Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device, Nat. Commun. 9(1) (2018) 4075.
[23] S.-G. Lu, Q. Zhang, Electrocaloric Materials for Solid-State Refrigeration, Adv. Mater. 21(19) (2009) 1983-1987.
[24] Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy, Acta Mater. 151 (2018) 41-55.
[25] M. Schmidt, J. Ullrich, A. Wieczorek, J. Frenzel, G. Eggeler, A. Schutze, S. Seelecke, Experimental Methods for Investigation of Shape Memory Based Elastocaloric Cooling Processes and Model Validation, J. Vis. Exp. (111) (2016).
[26] H. Sehitoglu, Y. Wu, E. Ertekin, Elastocaloric effects in the extreme, Scr. Mater. 148 (2018) 122-126.
[27] A. Shen, D. Zhao, W. Sun, J. Liu, C. Li, Elastocaloric effect in a Co 50 Ni 20 Ga 30 single crystal, Scr. Mater. 127 (2017) 1-5.
[28] J. Steven Brown, P.A. Domanski, Review of alternative cooling technologies, Appl. Therm. Eng. 64(1-2) (2014) 252-262.
[29] I. Takeuchi, K. Sandeman, Solid-state cooling with caloric materials, Physics Today 68(12) (2015) 48-54.
[30] L. Manosa, A. Planes, Materials with Giant Mechanocaloric Effects: Cooling by Strength, Adv. Mater. 29(11) (2017).
[31] N. Abas, A.R. Kalair, N. Khan, A. Haider, Z. Saleem, M.S. Saleem, Natural and synthetic refrigerants, global warming: A review, Renew. Sustain. Energy Rev. 90 (2018) 557-569.
[32] J. Tušek, K. Engelbrecht, D. Eriksen, S. Dall’Olio, J. Tušek, N. Pryds, A regenerative elastocaloric heat pump, Nature Energy 1(10) (2016).
[33] J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires, Appl. Phys. Lett. 101(7) (2012).
[34] Y. Cao, X. Zhou, D. Cong, H. Zheng, Y. Cao, Z. Nie, Z. Chen, S. Li, N. Xu, Z. Gao, W. Cai, Y. Wang, Large tunable elastocaloric effect in additively manufactured Ni-Ti shape memory alloys, Acta Mater. (2020).
[35] L. Porenta, P. Kabirifar, A. Žerovnik, M. Čebron, B. Žužek, M. Dolenec, M. Brojan, J. Tušek, Thin-walled Ni-Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling, Appl. Mater. Today 20 (2020).
[36] J. Chen, K. Zhang, Q. Kan, H. Yin, Q. Sun, Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling, Appl. Phys. Lett. 115(9) (2019).
[37] J. Tušek, A. Žerovnik, M. Čebron, M. Brojan, B. Žužek, K. Engelbrecht, A. Cadelli, Elastocaloric effect vs fatigue life: Exploring the durability limits of Ni-Ti plates under pre-strain conditions for elastocaloric cooling, Acta Mater. 150 (2018) 295-307.
[38] K. Zhang, G. Kang, Q. Sun, High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression, Scr. Mater. 159 (2019) 62-67.
[39] M. Wagner, T. Sawaguchi, G. Kausträter, D. Höffken, G. Eggeler, Structural fatigue of pseudoelastic NiTi shape memory wires, Mater. Sci. Eng., A 378(1-2) (2004) 105-109.
[40] A. Figueiredo, P. Modenesi, V. Buono, Low-cycle fatigue life of superelastic NiTi wires, Int. J. Fatigue 31(4) (2009) 751-758.
[41] L. Zheng, Y. He, Z. Moumni, Investigation on fatigue behaviors of NiTi polycrystalline strips under stress-controlled tension via in-situ macro-band observation, Int. J. Plasticity 90 (2017) 116-145.
[42] S. Zhang, Y. He, Fatigue resistance of branching phase-transformation fronts in pseudoelastic NiTi polycrystalline strips, Int. J. Solids Struct. 135 (2018) 233-244.
[43] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Mater. 135 (2017) 158-176.
[44] L. Zheng, Y. He, Z. Moumni, Lüders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy, Scr. Mater. 123 (2016) 46-50.
[45] C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, A. Tuissi, Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, Int. J. Fatigue 66 (2014) 78-85.
[46] H. Soul, A. Isalgue, A. Yawny, V. Torra, F.C. Lovey, Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity, Smart Mater. Struct. 19(8) (2010) 085006.
[47] R.T. Watkins, B. Reedlunn, S. Daly, J.A. Shaw, Uniaxial, pure bending, and column buckling experiments on superelastic NiTi rods and tubes, Int. J. Solids Struct. 146 (2018) 1-28.
[48] D. Jiang, N.J. Bechle, C.M. Landis, S. Kyriakides, Buckling and recovery of NiTi tubes under axial compression, Int. J. Solids Struct. 80 (2016) 52-63.
[49] Y.J. He, Q.P. Sun, Scaling relationship on macroscopic helical domains in NiTi tubes, Int. J. Solids Struct. 46(24) (2009) 4242-4251.
[50] P. Hua, H. Lin, Q. Sun, Ultrahigh cycle fatigue deformation of polycrystalline NiTi micropillars, Scr. Mater. 203 (2021) 114108.
[51] A. Ahadi, Q. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size, Appl. Phys. Lett. 103(2) (2013).
[52] H. Yin, Y. He, Z. Moumni, Q. Sun, Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy, Int. J. Fatigue 88 (2016) 166-177.
[53] A. Ahadi, Q. Sun, Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi, Acta Mater. 76 (2014) 186-197.
[54] J. Chen, H. Yin, Q. Sun, Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys, Acta Mater. 195 (2020) 141-150.
[55] Y. Shen, Z. Wei, W. Sun, Y. Zhang, E. Liu, J. Liu, Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys, Acta Mater. 188 (2020) 677-685.
[56] H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cissé, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, R. Radermacher, V.I. Levitas, M.J. Kramer, M.A. Zaeem, A.P. Stebner, R.T. Ott, J. Cui, I. Takeuchi, Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing, Science 366(6469) (2019) 1116.
[57] Y. Cao, X. Zhou, D. Cong, H. Zheng, Y. Cao, Z. Nie, Z. Chen, S. Li, N. Xu, Z. Gao, Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys, Acta Mater. 194 (2020) 178-189.
[58] Q.P. Sun, H. Zhao, R. Zhou, D. Saletti, H. Yin, Recent advances in spatiotemporal evolution of thermomechanical fields during the solid–solid phase transition, Comptes Rendus Mécanique 340(4-5) (2012) 349-358.
[59] H. Yin, Q. Sun, Temperature Variation in NiTi Shape Memory Alloy During Cyclic Phase Transition, J. Mater. Eng. Perform. 21(12) (2012) 2505-2508.
[60] H. Ossmer, F. Lambrecht, M. Gültig, C. Chluba, E. Quandt, M. Kohl, Evolution of temperature profiles in TiNi films for elastocaloric cooling, Acta Mater. 81 (2014) 9-20.
[61] G.J. Pataky, E. Ertekin, H. Sehitoglu, Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl, Acta Mater. 96 (2015) 420-427.
[62] H. Hou, J. Cui, S. Qian, D. Catalini, Y. Hwang, R. Radermacher, I. Takeuchi, Overcoming fatigue through compression for advanced elastocaloric cooling, MRS Bulletin 43(4) (2018) 285-290.
[63] S.-M. Kirsch, F. Welsch, N. Michaelis, M. Schmidt, A. Wieczorek, J. Frenzel, G. Eggeler, A. Schütze, S. Seelecke, NiTi-Based Elastocaloric Cooling on the Macroscale: From Basic Concepts to Realization, Energy Technology 6(8) (2018) 1567-1587.
[64] G. Scirè Mammano, E. Dragoni, Functional fatigue of Ni–Ti shape memory wires under various loading conditions, Int. J. Fatigue 69 (2014) 71-83.
[65] P. Sedmák, P. Šittner, J. Pilch, C. Curfs, Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction, Acta Mater. 94 (2015) 257-270.
[66] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mater. Sci. Eng., A 378(1-2) (2004) 24-33.
[67] Y. Gao, L. Casalena, M.L. Bowers, R.D. Noebe, M.J. Mills, Y. Wang, An origin of functional fatigue of shape memory alloys, Acta Mater. 126 (2017) 389-400.
[68] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog. Mater. Sci 50(5) (2005) 511-678.
[69] P. Hua, K. Chu, F. Ren, Q. Sun, Cyclic phase transformation behavior of nanocrystalline NiTi at microscale, Acta Mater. 185 (2020) 507-517.
[70] J. Frenzel, G. Eggeler, E. Quandt, S. Seelecke, M. Kohl, High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices, MRS Bulletin 43(4) (2018) 280-284.
[71] C. Chluba, W. Ge, R. Lima de Miranda, J. Strobel, L. Kienle, E. Quandt, M. Wuttig, Ultralow-fatigue shape memory alloy films, Science 348(6238) (2015) 1004.
[72] Z. Xie, Y. Liu, J. Van Humbeeck, Microstructure of NiTi shape memory alloy due to tension–compression cyclic deformation, Acta Mater. 46(6) (1998) 1989-2000.
[73] K. Gall, H.J. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys, Acta Mater. 50(18) (2002) 4643-4657.
[74] R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov, H.J. Maier, Stress dependence of the hysteresis in single crystal NiTi alloys, Acta Mater. 52(11) (2004) 3383-3402.
[75] S.C. Mao, J.F. Luo, Z. Zhang, M.H. Wu, Y. Liu, X.D. Han, EBSD studies of the stress-induced B2–B19′ martensitic transformation in NiTi tubes under uniaxial tension and compression, Acta Mater. 58(9) (2010) 3357-3366.
[76] R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, Int. J. Plasticity 27(2) (2011) 282-297.
[77] P. Hua, M. Xia, Y. Onuki, Q. Sun, Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance, Nat. Nanotechnol. 16(4) (2021) 409-413.
[78] Ž. Ahčin, J. Liang, K. Engelbrecht, J. Tušek, Thermo-hydraulic evaluation of oscillating-flow shell-and-tube-like regenerators for (elasto)caloric cooling, Appl. Therm. Eng. 190 (2021) 116842.
[79] H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cisse, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, R. Radermacher, V.I. Levitas, M.J. Kramer, M.A. Zaeem, A.P. Stebner, R.T. Ott, J. Cui, I. Takeuchi, Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing, Science 366(6469) (2019) 1116-1121.
[80] H. Chen, F. Xiao, X. Liang, Z. Li, Z. Li, X. Jin, N. Min, T. Fukuda, Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti-Ni alloy by precipitation and grain refinement, Scr. Mater. 162 (2019) 230-234.
[81] E. Kurt, Future prospects for elastocaloric devices, Journal of Physics: Energy (2019).
[82] X. Moya, N.D. Mathur, Caloric materials for cooling and heating, 370(6518) (2020) 797-803.
[83] S.P. Timoshenko, J.M. Gere, W. Prager, Theory of Elastic Stability, Second Edition, Journal of Applied Mechanics 29(1) (1962) 220-221.
[84] E. Bonnot, R. Romero, L. Manosa, E. Vives, A. Planes, Elastocaloric effect associated with the martensitic transition in shape-memory alloys, Phys. Rev. Lett. 100(12) (2008) 125901.
[85] L. Mañosa, S. Jarque-Farnos, E. Vives, A. Planes, Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys, Appl. Phys. Lett. 103(21) (2013).
[86] P. Šittner, L. Heller, J. Pilch, C. Curfs, T. Alonso, D. Favier, Young’s Modulus of Austenite and Martensite Phases in Superelastic NiTi Wires, J. Mater. Eng. Perform. 23(7) (2014) 2303-2314.
[87] J. Pfetzing-Micklich, R. Ghisleni, T. Simon, C. Somsen, J. Michler, G. Eggeler, Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale, Mater. Sci. Eng., A 538 (2012) 265-271.
[88] B. Ye, B.S. Majumdar, I. Dutta, Texture development and strain hysteresis in a NiTi shape-memory alloy during thermal cycling under load, Acta Mater. 57(8) (2009) 2403-2417.
[89] A. Ahadi, Q. Sun, Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction, Acta Mater. 90 (2015) 272-281.
[90] X.B. Shi, F.M. Guo, J.S. Zhang, H.L. Ding, L.S. Cui, Grain size effect on stress hysteresis of nanocrystalline NiTi alloys, J. Alloys Compd. 688 (2016) 62-68.
[91] K. Chu, Q. Sun, Reducing functional fatigue, transition stress and hysteresis of NiTi micropillars by one-step overstressed plastic deformation, Scr. Mater. 201 (2021) 113958.
[92] M.F.X. Wagner, N. Nayan, U. Ramamurty, Healing of fatigue damage in NiTi shape memory alloys, J. Phys. D: Appl. Phys. 41(18) (2008) 185408.
[93] S. Qian, D. Nasuta, A. Rhoads, Y. Wang, Y. Geng, Y. Hwang, R. Radermacher, I. Takeuchi, Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance, Int. J. Refrig. 62 (2016) 177-192.
[94] H. Hou, E. Simsek, D. Stasak, N.A. Hasan, S. Qian, R. Ott, J. Cui, I. Takeuchi, Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat, J. Phys. D: Appl. Phys. 50(40) (2017).
[95] S. Qian, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems, Int. J. Refrig. 56 (2015) 65-80.
[96] Y. Kim, M.-G. Jo, J.-W. Park, H.-K. Park, H.N. Han, Elastocaloric effect in polycrystalline Ni 50 Ti 45.3 V 4.7 shape memory alloy, Scr. Mater. 144 (2018) 48-51.
[97] H. Ossmer, F. Wendler, M. Gueltig, F. Lambrecht, S. Miyazaki, M. Kohl, Energy-efficient miniature-scale heat pumping based on shape memory alloys, Smart Materials and Structures 25(8) (2016).
[98] D. Liang, Q. Wang, K. Chu, J. Chen, P. Hua, F. Ren, Q. Sun, Ultrahigh cycle fatigue of nanocrystalline NiTi tubes for elastocaloric cooling, Appl. Mater. Today 26 (2022).
[99] K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, M. Umemoto, Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing, Scr. Mater. 60(9) (2009) 749-752.
[100] H. Yin, Y. He, Q. Sun, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy, J. Mech. Phys. Solids 67 (2014) 100-128.
[101] H. Yin, M. Li, Q. Sun, Thermomechanical coupling in cyclic phase transition of shape memory material under periodic stressing—experiment and modeling, J. Mech. Phys. Solids 149 (2021).
[102] M.A. Iadicola, J.A. Shaw, Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, Int. J. Plasticity 20(4-5) (2004) 577-605.
[103] H. Chen, F. Xiao, X. Liang, Z. Li, Z. Li, X. Jin, T. Fukuda, Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti–Ni–Cu shape memory alloy, Acta Mater. 177 (2019) 169-177.
[104] J. Tušek, K. Engelbrecht, L. Mañosa, E. Vives, N. Pryds, Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling, Shape Memory and Superelasticity 2(4) (2016) 317-329.
[105] D. Liang, P. Hua, J. Chen, F. Ren, Q. Sun, Functional Degradation and Self-enhanced Elastocaloric Cooling Performance of NiTi Tubes under Cyclic Compression, arXiv pre-print server (2021).
[106] Y. Li, D. Zhao, J. Liu, S. Qian, Z. Li, W. Gan, X. Chen, Energy-Efficient Elastocaloric Cooling by Flexibly and Reversibly Transferring Interface in Magnetic Shape-Memory Alloys, ACS Appl. Mater. Interfaces 10(30) (2018) 25438-25445.
[107] L. Bumke, C. Zamponi, J. Jetter, E. Quandt, Cu-rich Ti52.8Ni22.2Cu22.5Co2.5 shape memory alloy films with ultra-low fatigue for elastocaloric applications, J. Appl. Phys. 127(22) (2020).
[108] S. Suresh, Fatigue of materials, Cambridge university press1998.
[109] C. Sammis, M. Ashby, The failure of brittle porous solids under compressive stress states, Acta Metall. 34(3) (1986) 511-526.
[110] M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmüller, M. Wohlschlögel, H. Mughrabi, G. Eggeler, Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys, Acta Mater. 61(10) (2013) 3667-3686.
[111] C. Luo, Evolution of voids close to an inclusion in hot deformation of metals, Computational Materials Science 21(3) (2001) 360-374.
[112] D.L. Holt, Dislocation Cell Formation in Metals, J. Appl. Phys. 41(8) (1970) 3197-3201.

Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/387461
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
Liang DS. Compressive Fatigue and Elastocaloric Cooling performance of NiTi Tubes[D]. 香港. 香港科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11851013-梁钉山 -材料科学与工(24188KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[梁钉山]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[梁钉山]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[梁钉山]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.