[Tsui D C, Stormer H L, Gossard A C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit[J]. Physical Review Letters, 1982, 48(22): 1559-1562.
[2] Laughlin R B. Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations[J]. Physical Review Letters, 1983, 50(18): 1395-1398.
[3] Jain J K. Composite-Fermion Approach for the Fractional Quantum Hall Effect[J]. Physical Review Letters, 1989, 63(2): 199-202.
[4] Haldane F D M. Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States[J]. Physical Review Letters, 1983, 51(7): 605-608.
[5] Halperin B I. Statistics of Quasiparticles and the Hierarchy of Fractional Quantized Hall States[J]. Physical Review Letters, 1984, 52(18): 1583-1586.
[6] Moore G, Read N. Nonabelions in the Fractional Quantum Hall-Effect[J]. Nuclear Physics B, 1991, 360(2-3): 362-396.
[7] Wen X G. Topological Orders and Chern-Simons Theory in Strongly Correlated Quantum Liquid[J]. International Journal of Modern Physics B, 1991, 05(10): 1641-1648.
[8] Read G M N. Nonabelions in the Fractional Quantum Hall Effect[J]. Nuclear Physics B, 1991, 360(2-3): 362-396.
[9] Arsenault L F, Lopez-Bezanilla A, von Lilienfeld O A, Millis A J. Machine Learning for Many-Body Physics: The Case of the Anderson Impurity Model[J]. Physical Review B, 2014, 90(15): 155136.
[10] Georges A, Kotliar G, Krauth W, Rozenberg M J. Dynamical Mean-Field Theory of Strongly Correlated Fermion Systems and the Limit of Infinite Dimensions[J]. Reviews of Modern Physics, 1996, 68(1): 13-125.
[11] Van N E P L, Liu Y H, Huber Sebastian D. Learning Phase Transitions by Confusion[J]. Nature Physics, 2017, 13(5): 435-439.
[12] Sun N, Yi J, Zhang P, Shen H, Zhai H. Deep Learning Topological Invariants of Band Insulators[J]. Physical Review B, 2018, 98(8): 085402.
[13] Bedolla E, Padierna L C, Castaneda P R. Machine Learning for Condensed Matter Physics[J]. Journal of Physics-Condensed Matter, 2021, 33(5): 053001.
[14] Greitemann J, Liu K, Pollet L. Probing Hidden Spin Order with InterpretableMachine Learning[J]. Physical Review B, 2019, 99(6): 060404(R).
[15] Greitemann J, Liu K, Pollet L. The View of Tk-Svm on the Phase Hierarchy in the Classical Kagome Heisenberg Antiferromagnet[J]. Journal of Physics-Condensed Matter, 2021, 33(5): 054002.
[16] Li C D, Tan D R, Jiang F J. Applications of Neural Networks to the Studies of Phase Transitions of Two-Dimensional Potts Models[J]. Annals of Physics, 2018, 391(1): 312-331.
[17] Lu S, Gao X, Duan L M. Efficient Representation of Topologically Ordered States with Restricted Boltzmann Machines[J]. Physical Review B, 2019, 99(15): 155136.
[18] Nomura Y, Darmawan A S, Yamaji Y, Imada M. Restricted Boltzmann Machine Learning for Solving Strongly Correlated Quantum Systems[J]. Physical Review B, 2017, 96(20): 205152.
[19] Rao W J, Li Z, Zhu Q, Luo M, Wan X. Identifying Product Order with Restricted Boltzmann Machines[J]. Physical Review B, 2018, 97(9): 094207.
[20] Shiina K, Mori H, Okabe Y, Lee H K. Machine-Learning Studies on Spin Models[J]. Scientific Reports, 2020, 10(1): 2177.
[21] Hall E H. On a New Action of the Magnet on Electric Currents[J]. American Journal of Mathematics, 1879, 2(3): 287-292.
[22] Klitzing K V, Dorda G, Pepper M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.
[23] Jeckelmann B, Jeanneret B. The Quantum Hall Effect as an Electrical Resistance Standard[J]. Reports on Progress in Physics, 2001, 64(12): 1603-1655.
[24] Jain J K. The Composite Fermion: A Quantum Particle and Its Quantum Fluids[J]. Physics Today, 2000, 53(4): 39-45.
[25] Willett R, Eisenstein J P, Stormer H L, Tsui D C, Gossard A C, English J H. Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall Effect[J]. Physical Review Letters, 1987, 59(15): 1776-1779.
[26] Lee S S, Ryu S, Nayak C, Fisher M P. Particle-Hole Symmetry and the ν=5/2 Quantum Hall State[J]. Physical Review Letters, 2007, 99(23): 236807.
[27] Levin M, Halperin B I, Rosenow B. Particle-Hole Symmetry and the Pfaffian State[J]. Physical Review Letters, 2007, 99(23): 236806.
[28] Cooper N R, Stern A. Observable Bulk Signatures of Non-Abelian Quantum Hall States[J]. Physical Review Letters, 2009, 102(17): 176807.
[29] Yang K, Halperin B I. Thermopower as a Possible Probe of Non-AbelianQuasiparticle Statistics in Fractional Quantum Hall Liquids[J]. Physical Review B, 2009, 79(11): 115317.
[30] Gervais G, Yang K. Adiabatic Cooling with Non-Abelian Anyons[J]. Physical Review Letters, 2010, 105(8): 086801.
[31] Barlas Y, Yang K. Thermopower of Quantum Hall States in Corbino Geometry as a Measure of Quasiparticle Entropy[J]. Physical Review B, 2012, 85(19): 195107.
[32] Rezayi E H, Simon S H. Breaking of Particle-Hole Symmetry by Landau Level Mixing in the ν=5/2 Quantized Hall State[J]. Physical Review Letters, 2011, 106(11): 116801.
[33] Storni M, Morf R H. Localized Quasiholes and the Majorana Fermion in Fractional Quantum Hall State at ν=5/2 Via Direct Diagonalization[J]. Physical Review B, 2011, 83(19): 195306.
[34] Biddle J, Peterson M R, Das Sarma S. Variational Monte Carlo Study of Spin-Polarization Stability of Fractional Quantum Hall States against Realistic Effects in Half-Filled Landau Levels[J]. Physical Review B, 2013, 87(23): 235134.
[35] Rezayi E H. Landau Level Mixing and the Ground State of the ν=5/2 Quantum Hall Effect[J]. Physical Review Letters, 2017, 119(2): 026801.
[36] Zaletel M P, Mong R S K, Pollmann F, Rezayi E H. Infinite Density Matrix Renormalization Group for Multicomponent Quantum Hall Systems[J]. Physical Review B, 2015, 91(4): 045115.
[37] Haldane F D M, Rezayi E H, Yang K. Graviton Chirality and Topological Order in the Half-Filled Landau Level[J]. Physical Review B, 2021, 104(12): L121106.
[38] Lin X, Du R, Xie X. Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene[J]. National Science Review, 2014, 1(4): 564-579.
[39] Baer S, Rössler C, Ihn T, Ensslin K, Reichl C, Wegscheider W. Experimental Probe of Topological Orders and Edge Excitations in the Second Landau Level[J]. Physical Review B, 2014, 90(7): 075403.
[40] Radu I P, Miller J B, Marcus C M, Kastner M A, Pfeiffer L N, West K W.Quasi-Particle Properties from Tunneling in the ν=5/2 Fractional Quantum Hall State[J]. Science, 2008, 320(5878): 899-902.
[41] Lin X, Dillard C, Kastner M A, Pfeiffer L N, West K W. Measurements of Quasiparticle Tunneling in the ν=5/2 Fractional Quantum Hall State[J]. Physical Review B, 2012, 85(16): 165321.
[42] Coimbatore Balram A. A Non-Abelian Parton State for the ν=2+3/8 Fractional Quantum Hall Effect[J]. SciPost Physics, 2021, 10(4): 083.
[43] Yang G, Feldman D E. Influence of Device Geometry on Tunneling in the ν=5/2 Quantum Hall Liquid[J]. Physical Review B, 2013, 88(8): 085317.
[44] Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y, Stern A. Observation of Half-Integer Thermal Hall Conductance[J]. Nature, 2018, 559(7713): 205-210.
[45] Wan X, Yang K. Striped Quantum Hall State in a Half-Filled Landau Level[J]. Physical Review B, 2016, 93(20): 201303(R).
[46] Mross D F, Oreg Y, Stern A, Margalit G, Heiblum M. Theory of Disorder-Induced Half-Integer Thermal Hall Conductance[J]. Physical Review Letters, 2018, 121(2): 026801.
[47] Wang C, Vishwanath A, Halperin B I. Topological Order from Disorder and the Quantized Hall Thermal Metal: Possible Applications to the ν=5/2 State[J]. Physical Review B, 2018, 98(4): 045112.
[48] Lian B, Wang J. Theory of the Disordered ν=5/2 Quantum Thermal Hall State: Emergent Symmetry and Phase Diagram[J]. Physical Review B, 2018, 97(16): 165124.
[49] Hsin P S, Lin Y H, Paquette N M, Wang J. Effective Field Theory for Fractional Quantum Hall Systems near ν=5/2 [J]. Physical Review Research, 2020, 2(4): 043242.
[50] Simon S H, Ippoliti M, Zaletel M P, Rezayi E H. Energetics of Pfaffian–Anti-Pfaffian Domains[J]. Physical Review B, 2020, 101(4): 041302(R).
[51] Zhu W, Sheng D N, Yang K. Topological Interface between Pfaffian and Anti-Pfaffian Order in ν=5/2 Quantum Hall Effect[J]. Physical Review Letters, 2020, 125(14): 146802.
[52] Feldman D E. Comment on “Interpretation of Thermal Conductance of the ν=5/2 Edge”[J]. Physical Review B, 2018, 98(16): 167401.
[53] Simon S H. Interpretation of Thermal Conductance of the ν=5/2 Edge[J]. Physical Review B, 2018, 97(12): 121406(R).
[54] Pan W, Xia J S, Stormer H L, Tsui D C, Vicente C, Adams E D, Sullivan N S, Pfeiffer L N, Baldwin K W, West K W. Experimental Studies of the Fractional Quantum Hall Effect in the First Excited Landau Level[J]. Physical Review B, 2008, 77(7): 075307.
[55] Eisenstein J P, Cooper K B, Pfeiffer L N, West K W. Insulating and Fractional Quantum Hall States in the First Excited Landau Level[J]. Physical Review Letters, 2002, 88(7): 076801.
[56] Xia J S, Pan W, Vicente C L, Adams E D, Sullivan N S, Stormer H L, Tsui D C, Pfeiffer L N, Baldwin K W, West K W. Electron Correlation in the Second Landau Level: A Competition between Many Nearly Degenerate Quantum Phases[J]. Physical Review Letters, 2004, 93(17): 176809.
[57] Du R R, Tsui D C, Stormer H L, Pfeiffer L N, Baldwin K W, West K W. Strongly Anisotropic Transport in Higher Two-Dimensional Landau Levels[J]. Solid State Communications, 1999, 109(6): 389-394.
[58] Kivelson S A, Emery V J. Topological Doping of Correlated Insulators [M]. Synthetic Metal. 1996: 151-158.
[59] Koulakov A A, Fogler M M, Shklovskii B I. Charge Density Wave in Two-Dimensional Electron Liquid in Weak Magnetic Field[J]. Physical Review Letters, 1996, 76(3): 499-502.
[60] Moessner R, Chalker J T. Exact Results for Interacting Electrons in High Landau Levels[J]. Physical Review B, 1996, 54(7): 5006-5015.
[61] Fogler M M, Koulakov A A, Shklovskii B I. Ground State of a Two-Dimensional Electron Liquid in a Weak Magnetic Field[J]. Physical Review B, 1996, 54(3): 1853-1871.
[62] Fukuyama H, Platzman P M, Anderson P W. Two-Dimensional Electron Gas in a Strong Magnetic Field[J]. Physical Review B, 1979, 19(10): 5211-5217.
[63] Eisenstein J P, Willett R, Stormer H L, Tsui D C, Gossard A C, English J H. Collapse of the Even-Denominator Fractional Quantum Hall Effect in Tilted Fields[J]. Physical Review Letters, 1988, 61(8): 997-1000.
[64] Yang S J, Tao Z, Yu Y, Feng S P. Correlated States of Two-Dimensional Electrons in Higher Landau Levels[J]. Journal of Physics-Condensed Matter, 2006, 18(49): 11255-11262.
[65] Lilly M P, Cooper K B, Eisenstein J P, Pfeiffer L N, West K W. Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels[J]. Physical Review Letters, 1999, 82(2): 394-397.
[66] Yang S J, Tao Z, Yu Y, Feng S. Correlated States of Two-Dimensional Electrons in Higher Landau Levels[J]. Journal of Physics: Condensed Matter, 2006, 18(49): 11255-11262.
[67] Rezayi E H, Haldane F D M, Yang K. Charge-Density-Wave Ordering in Half-Filled High Landau Levels[J]. Physical Review Letters, 1999, 83(6): 1219-1222.
[68] Zhu W, Sheng D N. Disorder-Driven Transition in the ν=5/2 Fractional Quantum Hall Effect[J]. Physical Review Letters, 2019, 123(5): 056804.
[69] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-MarantoL, Zdeborová L. Machine Learning and the Physical Sciences[J]. Reviews of Modern Physics, 2019, 91(4): 045002.
[70] Liu Z, Bhatt R N. Evolution of Quantum Entanglement with Disorder in Fractional Quantum Hall Liquids[J]. Physical Review B, 2017, 96(11): 115111.
[71] Liu Z, Bhatt R N. Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids[J]. Physical Review Letters, 2016, 117(20): 206801.
[72] Friedman B A, Levine G C, Luna D. Entanglement Entropy of Random Fractional Quantum Hall Systems[J]. New Journal of Physics, 2011, 13(5): 055006.
[73] Willett R L, Hsu J W, Natelson D, West K W, Pfeiffer L N. Anisotropic Disorder in High-Mobility 2d Heterostructures and Its Correlation to Electron Transport[J]. Physical Review Letters, 2001, 87(12): 126803.
[74] Sheng D N, Wang Z, Friedman B. Role of Disorder in Half-Filled High Landau Levels[J]. Physical Review B, 2002, 66(16): 161103(R).
[75] Wang H, Sheng D N, Sheng L, Haldane F D. Broken-Symmetry States of Dirac Fermions in Graphene with a Partially Filled High Landau Level[J]. Physical Review Letters, 2008, 100(11): 116802.
[76] McDonald I A, Haldane F D M. Topological Phase Transition in the =2/3 Quantum Hall Effect[J]. Physical Review B, 1996, 53(23): 15845-15855.
[77] Haavasoja H L S, Bishop D J, Narayanamurti V, Gossard A C, Wiegmann W. Magnetization Measurements on a Two-Dimensional Electron System[J]. Surface Science Reports, 1984, 142(1-3): 294-297.
[78] Boebinger G S, Jiang H W, Pfeiffer L N, West K W. Magnetic-Field-Driven Destruction of Quantum Hall States in a Double Quantum Well[J]. Physical Review Letters, 1990, 64(15): 1793-1796.
[79] Wang H, Seidel A, Yang K, Zhang F C. Interlayer Correlated Fractional Quantum Hall State in the ν=4/5 Bilayer System[J]. Physical Review B, 2019, 100(24): 245122.
[80] Yoshioka D, MacDonald A H, Girvin S M. Fractional Quantum Hall Effect in Two-Layered Systems[J]. Physical Review B, 1989, 39(3): 1932-1935.
[81] He S, Xie X C, Das Sarma S, Zhang F C. Quantum Hall Effect in Double-Quantum-Well Systems[J]. Physical Review B, 1991, 43(11): 9339-9342.
[82] Suen Y W, Engel L W, Santos M B, Shayegan M, Tsui D C. Observation of a ν =1/2 Fractional Quantum Hall State in a Double-Layer Electron System[J].Physical Review Letters, 1992, 68(9): 1379-1382.
[83] Eisenstein J P, Boebinger G S, Pfeiffer L N, West K W, He S. New Fractional Quantum Hall State in Double-Layer Two-Dimensional Electron Systems[J]. Physical Review Letters, 1992, 68(9): 1383-1386.
[84] MacDonald A H, Platzman P M, Boebinger G S. Collapse of Integer Hall Gaps in a Double-Quantum-Well System[J]. Physical Review Letters, 1990, 65(6): 775-778.
[85] Suen Y W, Manoharan H C, Ying X, Santos M B, Shayegan M. Origin of the ν =1/2 Fractional Quantum Hall State in Wide Single Quantum Wells[J]. Physical Review Letters, 1994, 72(21): 3405-3408.
[86] Scarola V W, Jain J K. Phase Diagram of Bilayer Composite Fermion States[J]. Physical Review B, 2001, 64(8): 085313.
[87] Schliemann J, Girvin S M, MacDonald A H. Strong Correlation to Weak Correlation Phase Transition in Bilayer Quantum Hall Systems[J]. Physical Review Letters, 2001, 86(9): 1849-1852.
[88] Papić Z, Möller G, Milovanović M V, Regnault N, Goerbig M O. Fractional Quantum Hall State at ν=1/4 in a Wide Quantum Well[J]. Physical Review B, 2009, 79(24): 245325.
[89] Ronhovde P, Chakrabarty S, Hu D, Sahu M, Sahu K K, Kelton K F, Mauro N A, Nussinov Z. Detecting Hidden Spatial and Spatio-Temporal Structures in Glasses and Complex Physical Systems by Multiresolution Network Clustering[J]. The European Physical Journal E, 2011, 34(9): 105.
[90] Ronhovde P, Chakrabarty S, Hu D, Sahu M, Sahu K K, Kelton K F, Mauro N A, Nussinov Z. Detection of Hidden Structures for Arbitrary Scales in Complex Physical Systems[J]. Scientific Reports, 2012, 329(2): 1-6.
[91] Bedolla E, Padierna L C, Castaneda Priego R. Machine Learning for Condensed Matter Physics[J]. Journal of Physics: Condensed Matter, 2020, 33(5): 053001.
[92] Hu W, Singh R R P, Scalettar R T. Discovering Phases, Phase Transitions, and Crossovers through Unsupervised Machine Learning: A Critical Examination[J]. Physical Review E, 2017, 95(6): 062122.
[93] Ch'ng K, Vazquez N, Khatami E. Unsupervised Machine Learning Account of Magnetic Transitions in the Hubbard Model[J]. Physical Review E, 2018, 97(1): 013306.
[94] Huembeli P, Dauphin A, Wittek P. Identifying Quantum Phase Transitions with Adversarial Neural Networks[J]. Physical Review B, 2018, 97(13): 134109.
[95] Broecker P, Carrasquilla J, Melko R G, Trebst S. Machine Learning Quantum Phases of Matter Beyond the Fermion Sign Problem[J]. Scientific Reports, 2017, 7(1): 8823.
[96] Tanaka A, Tomiya A. Detection of Phase Transition Via Convolutional Neural Networks[J]. Journal of the Physical Society of Japan, 2017, 86(6): 063001.
[97] Beach M J S, Golubeva A, Melko R G. Machine Learning Vortices at the Kosterlitz-Thouless Transition[J]. Physical Review B, 2018, 97(4): 045207.
[98] Zhang Y, Melko R G, Kim E A. Machine Learning Z2 Quantum Spin Liquids with Quasiparticle Statistics[J]. Physical Review B, 2017, 96(24): 245119.
[99] Carvalho D, García-Martínez N A, Lado J L, Fernández-Rossier J. Real-Space Mapping of Topological Invariants Using Artificial Neural Networks[J]. Physical Review B, 2018, 97(11): 115453.
[100] Rodriguez-Nieva J F, Scheurer M S. Identifying Topological Order through Unsupervised Machine Learning[J]. Nature Physics, 2019, 15(8): 790-795.
[101] Holanda N L, Griffith M A R. Machine Learning Topological Phases in Real Space[J]. Physical Review B, 2020, 102(5): 054107.
[102] Greplova E, Valenti A, Boschung G, Schäfer F, Lörch N, Huber S D. Unsupervised Identification of Topological Phase Transitions Using Predictive Models[J]. New Journal of Physics, 2020, 22(4): 045003.
[103] Hsu Y T, Li X, Deng D L, Das Sarma S. Machine Learning Many-Body Localization: Search for the Elusive Nonergodic Metal[J]. Physical Review Letters, 2018, 121(24): 245701.
[104] Venderley J, Khemani V, Kim E A. Machine Learning out-of-Equilibrium Phases of Matter[J]. Physical Review Letters, 2018, 120(25): 257204.
[105] Vargas-Hernandez R A, Sous J, Berciu M, Krems R V. Extrapolating Quantum Observables with Machine Learning: Inferring Multiple Phase Transitions from Properties of a Single Phase[J]. Physical Review Letters, 2018, 121(25): 255702.
[106] Casert C, Vieijra T, Nys J, Ryckebusch J. Interpretable Machine Learning for Inferring the Phase Boundaries in a Nonequilibrium System[J]. Physical Review E, 2019, 99(2-1): 023304.
[107] Durr S, Chakravarty S. Unsupervised Learning Eigenstate Phases of Matter[J]. Physical Review B, 2019, 100(7): 075102.
[108] Rigo J B, Mitchell A K. Machine Learning Effective Models for Quantum Systems[J]. Physical Review B, 2020, 101(24): 241105(R).
[109] Wu T, Tegmark M. Toward an Artificial Intelligence Physicist forUnsupervised Learning[J]. Physical Review E, 2019, 100(3-1): 033311.
[110] Iten R, Metger T, Wilming H, Del Rio L, Renner R. Discovering Physical Concepts with Neural Networks[J]. Physical Review Letters, 2020, 124(1): 010508.
[111] Wang C, Zhai H, You Y-Z. Emergent Schrödinger Equation in an Introspective Machine Learning Architecture[J]. Science Bulletin, 2019, 64(17): 1228-1233.
[112] Wetzel S J, Melko R G, Scott J, Panju M, Ganesh V. Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks[J]. Physical Review Research, 2020, 2(3): 033499.
[113] Wang L. Discovering Phase Transitions with Unsupervised Learning[J]. Physical Review B, 2016, 94(19): 195105.
[114] Jiang N, Lu M. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chinese Physics Letters, 2020, 37(11): 117302.
[115] Wetzel S J. Unsupervised Learning of Phase Transitions: From Principal Component Analysis to Variational Autoencoders[J]. Physical Review E, 2017, 96(2-1): 022140.
[116] Costa N C, Hu W J, Bai Z J, Scalettar R T, Singh R R P. Principal Component Analysis for Fermionic Critical Points[J]. Physical Review B, 2017, 96(19): 195138.
[117] Wang C, Zhai H. Machine Learning of Frustrated Classical Spin Models (Ii): Kernel Principal Component Analysis[J]. Frontiers of Physics, 2018, 13(5): 130507.
[118] Kottmann K, Huembeli P, Lewenstein M, Acin A. Unsupervised Phase Discovery with Deep Anomaly Detection[J]. Physical Review Letters, 2020, 125(17): 170603.
[119] Wang L. Exploring Cluster Monte Carlo Updates with Boltzmann Machines[J]. Physical Review E, 2017, 96(5-1): 051301.
[120] Zhang W, Liu J, Wei T C. Machine Learning of Phase Transitions in the Percolation and Xy Models[J]. Physical Review E, 2019, 99(3-1): 032142.
[121] Halkidi M, Batistakis Y, Vazirgiannis M. On Clustering Validation Techniques[J]. Journal of Intelligent Information Systems, 2001, 17(2-3): 107-145.
[122] Carrasquilla J, Melko R G. Machine Learning Phases of Matter[J]. Nature Physics, 2017, 13(5): 431-434.
[123] Ch’ng K, Carrasquilla J, Melko R G, Khatami E. Machine Learning Phasesof Strongly Correlated Fermions[J]. Physical Review X, 2017, 7(3): 031038.
[124] Giannetti C, Lucini B, Vadacchino D. Machine Learning as a Universal Tool for Quantitative Investigations of Phase Transitions[J]. Nuclear Physics B, 2019, 944(1): 114639.
[125] Kim D, Kim D H. Smallest Neural Network to Learn the Ising Criticality[J]. Physical Review E, 2018, 98(2-1): 022138.
[126] Ohtsuki T, Ohtsuki T. Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems[J]. Journal of the Physical Society of Japan, 2016, 85(12): 123706.
[127] Ohtsuki T, Ohtsuki T. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions[J]. Journal of the Physical Society of Japan, 2017, 86(4): 044708.
[128] Efthymiou S, Beach M J S, Melko R G. Super-Resolving the Ising Model with Convolutional Neural Networks[J]. Physical Review B, 2019, 99(7): 075113.
[129] Schindler F, Regnault N, Neupert T. Probing Many-Body Localization with Neural Networks[J]. Physical Review B, 2017, 95(24): 245134.
[130] Zhao X L, Fu L B. Machine Learning Phase Transition: An Iterative Proposal[J]. Annals of Physics, 2019, 410: 167938.
[131] Zhang Y, Kim E A. Quantum Loop Topography for Machine Learning[J]. Physical Review Letters, 2017, 118(21): 216401.
[132] Deng D, Li X, Das Sarma S. Quantum Entanglement in Neural Network States[J]. Physical Review X, 2017, 7(2): 021021.
[133] Zhang P, Shen H, Zhai H. Machine Learning Topological Invariants with Neural Networks[J]. Physical Review Letters, 2018, 120(6): 066401.
[134] Huang L, Wang L. Accelerated Monte Carlo Simulations with Restricted Boltzmann Machines[J]. Physical Review B, 2017, 95(3): 035105.
[135] Liu J, Qi Y, Meng Z Y, Fu L. Self-Learning Monte Carlo Method[J]. Physical Review B, 2017, 95(4): 041101(R).
[136] Liu K, Greitemann J, Pollet L. Learning Multiple Order Parameters with Interpretable Machines[J]. Physical Review B, 2019, 99(10): 104410.
[137] Liu Y, van Nieuwenburg E P L. Discriminative Cooperative Networks for Detecting Phase Transitions[J]. Physical Review Letters, 2018, 120(17): 176401.
[138] Gao X, Duan L M. Efficient Representation of Quantum Many-Body States with Deep Neural Networks[J]. Nature Communications, 2017, 8(1): 662.
[139] Kim D, Kim D. Emergence of a Finite-Size-Scaling Function in theSupervised Learning of the Ising Phase Transition[J]. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021(2): 023202.
[140] Shinjo K, Sasaki K, Hase S, Sota S, Ejima S, Yunoki S, Tohyama T. Machine Learning Phase Diagram in the Half-Filled One-Dimensional Extended Hubbard Model[J]. Journal of the Physical Society of Japan, 2019, 88(6): 065001.
[141] Tan D R, Jiang F J. Machine Learning Phases and Criticalities without Using Real Data for Training[J]. Physical Review B, 2020, 102(22): 224434.
[142] Van N E, Bairey E, Refael G. Learning Phase Transitions from Dynamics[J]. Physical Review B, 2018, 98(6): 060301(R).
[143] Théveniaut H, Alet F. Neural Network Setups for a Precise Detection of the Many-Body Localization Transition: Finite-Size Scaling and Limitations[J]. Physical Review B, 2019, 100(22): 224202.
[144] Torlai G, Melko R G. Learning Thermodynamics with Boltzmann Machines[J]. Physical Review B, 2016, 94(16): 165134.
[145] Ponte P, Melko R G. Kernel Methods for Interpretable Machine Learning of Order Parameters[J]. Physical Review B, 2017, 96(20): 205146.
[146] Araki H, Mizoguchi T, Hatsugai Y. Phase Diagram of a Disordered Higher-Order Topological Insulator: A Machine Learning Study[J]. Physical Review B, 2019, 99(8): 085406.
[147] Alcalde Puente D, Eremin I M. Convolutional Restricted Boltzmann Machine Aided Monte Carlo: An Application to Ising and Kitaev Models[J]. Physical Review B, 2020, 102(19): 195148.
[148] Azizi A, Pleimling M. A Cautionary Tale for Machine Learning Generated Configurations in Presence of a Conserved Quantity[J]. Scientific Reports,2021, 11(1): 6395.
[149] Jiang N, Ke S, Ji H, Wang H, Hu Z, Wan X. Principal Component Analysis of the Geometry in Anisotropic Quantum Hall States[J]. Physical Review B, 2020, 102(11): 115140.
[150] Matty M, Zhang Y, Papić Z, Kim E-A. Multifaceted Machine Learning of Competing Orders in Disordered Interacting Systems[J]. Physical Review B, 2019, 100(15): 155141.
[151] Samuel A L. Some Studies in Machine Learning Using the Game of Checkers[J]. IBM Journal of Research and Development, 1959, 11(6): 601-617.
[152] Dutta N, Umashankar S, Shankar V K A, Padmanaban S, Leonowicz Z, Wheeler P. Centrifugal Pump Cavitation Detection Using Machine LearningAlgorithm Technique[J]. 2018 Ieee International Conference on Environment and Electrical Engineering, 2018, 8494594(1): 1-6.
[153] Thilagavathi K, Dimension A V. Reduction Methods for Hyperspectral Image: A Survey[J]. International Journal of Engineering and Advanced Technology, 2018, 8(2S): 160-167.
[154] Gao K F, Mei G, Piccialli F, Cuomo S, Tu J Z, Huo Z N. Julia Language in Machine Learning: Algorithms, Applications, and Open Issues[J]. Computer Science Review, 2020, 37(1): 100254.
[155] Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000, 290(5500): 2323.
[156] Liu P, Xie M, Bian J, Li H, Song L. A Hybrid Pso-Svm Model Based on Safety Risk Prediction for the Design Process in Metro Station Construction[J]. Int J Environ Res Public Health, 2020, 17(5): 1714.
[157] Kadhim A I. Survey on Supervised Machine Learning Techniques for Automatic Text Classification[J]. Artificial Intelligence Review, 2019, 52(1): 273-292.
[158] Tu Y K, Kramer N, Lee W C. Addressing the Identification Problem in Age-Period-Cohort Analysis a Tutorial on the Use of Partial Least Squares and Principal Components Analysis[J]. Epidemiology, 2012, 23(4): 583-593.
[159] Pearson K. On Lines and Planes of Closest Fit to Systems of Points in Space.[J]. Philosophical Magazine, 1901, 2(7-12): 559-572.
[160] Scholz M. Approaches to Analyse and Interpret Biological Profile Data[J]. Potsdam University, 2006, 15-17.
[161] Li H, Haldane F D M. Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States[J]. Physical Review Letters, 2008, 101(1): 010504.
[162] Karamizadeh S, Abdullah S M, Manaf A A, Zamani M, Hooman A. An Overview of Principal Component Analysis[J]. Journal of Signal and Information Processing, 2013, 04(03): 173-175.
[163] Jolliffe I T, Cadima J. Principal Component Analysis: A Review and Recent Developments[J]. Philosophical Transactions of the Royal Society A, 2016, 374(2065): 20150202.
[164] Mcculloch W S, Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Activity[J]. Bulletin of Mathematical Biology, 1990, 52(1-2): 99-115.
[165] King W I. The Annals of Mathematical Statistics[J]. Annals of MathematicalStatistics, 1930, 1(1): 1-2.
[166] Carleo G, Troyer M. Solving the Quantum Many-Body Problem with Artificial Neural Networks[J]. Science, 2017, 355(6325): 602-605.
[167] Wetzel S J, Scherzer M. Machine Learning of Explicit Order Parameters: From the Ising Model to Su(2) Lattice Gauge Theory[J]. Physical Review B, 2017, 96(18): 184410.
[168] Wang C, Zhai H. Machine Learning of Frustrated Classical Spin Models. I. Principal Component Analysis[J]. Physical Review B, 2017, 96(14): 144432.
[169] Costa N C, Hu W, Bai Z J, Scalettar R T, Singh R R P. Principal Component Analysis for Fermionic Critical Points[J]. Physical Review B, 2017, 96(19): 195138.
[170] Shinjo K, Sota S, Yunoki S, Tohyama T. Characterization of Photoexcited States in the Half-Filled One-Dimensional Extended Hubbard Model Assisted by Machine Learning[J]. Physical Review B, 2020, 101(19): 195136.
[171] Eisenstein J P. Exciton Condensation in Bilayer Quantum Hall Systems[J]. Annual Review of Condensed Matter Physics, 2014, 5(1): 159-181.
[172] Luhman D R, Pan W, Tsui D C, Pfeiffer L N, Baldwin K W, West K W. Observation of a Fractional Quantum Hall State at ν=1/4 in a Wide Gaas Quantum Well[J]. Physical Review Letters, 2008, 101(26): 266804.
[173] Kumada N, Terasawa D, Shimoda Y, Azuhata H, Sawada A, Ezawa Z F, Muraki K, Saku T, Hirayama Y. Phase Diagram of Interacting Composite Fermions in the Bilayer ν=2/3 Quantum Hall Effect[J]. Physical Review Letters, 2002, 89(11): 116802.
[174] Liu Y, Kamburov D, Hasdemir S, Shayegan M, Pfeiffer L N, West K W, Baldwin K W. Fractional Quantum Hall Effect and Wigner Crystal of Interacting Composite Fermions[J]. Physical Review Letters, 2014, 113(24): 246803.
[175] Halperin B I. Theory of the Quantized Hall Conductance[J]. Helvetica Physica Acta, 1983, 56(1-3): 75-102.
[176] Chakraborty T, Pietilainen P. Fractional Quantum Hall Effect at Half-Filled Landau Level in a Multiple-Layer Electron System[J]. Physical Review Letters, 1987, 59(24): 2784-2787.
[177] Ho T L. Broken Symmetry of Two-Component ν=1/2 Quantum Hall States[J]. Physical Review Letters, 1995, 75(6): 1186-1189.
[178] Balram A C, Tőke C, Wójs A, Jain J K. Phase Diagram of Fractional Quantum Hall Effect of Composite Fermions in Multicomponent Systems[J].Physical Review B, 2015, 91(4): 045109.
[179] Barkeshli M, Wen X G. Non-Abelian Two-Component Fractional Quantum Hall States[J]. Physical Review B, 2010, 82(23): 233301.
[180] Geraedts S, Zaletel M P, Papić Z, Mong R S K. Competing Abelian and Non-Abelian Topological Orders in ν=1/3+1/3 Quantum Hall Bilayers[J]. Physical Review B, 2015, 91(20): 205139.
[181] Liu Z, Vaezi A, Lee K, Kim E A. Non-Abelian Phases in Two-Component ν=2/3 Fractional Quantum Hall States: Emergence of Fibonacci Anyons[J]. Physical Review B, 2015, 92(8): 081102(R).
[182] Rezayi E H, Haldane F D M. Incompressible Paired Hall State, Stripe Order, and the Composite Fermion Liquid Phase in Half-Filled Landau Levels[J].Physical Review Letters, 2000, 84(20): 4685-4688.
[183] Fradkin E, Kivelson S A. Liquid-Crystal Phases of Quantum Hall Systems[J]. Physical Review B, 1999, 59(12): 8065-8072.
[184] Wan X, Sheng D N, Rezayi E H, Yang K, Bhatt R N, Haldane F D M. Mobility Gap in Fractional Quantum Hall Liquids: Effects of Disorder and Layer Thickness[J]. Physical Review B, 2005, 72(7): 075325
[185] Fertig H A. Unlocking Transition for Modulated Surfaces and Quantum Hall Stripes[J]. Physical Review Letters, 1999, 82(18): 3693-3696.
[186] MacDonald A H, Fisher M P A. Quantum Theory of Quantum Hall Smectics[J]. Physical Review B, 2000, 61(8): 5724-5733.
[187] Haldane F D M, Rezayi E H, Yang K. Spontaneous Breakdown of Translational Symmetry in Quantum Hall Systems: Crystalline Order in High Landau Levels[J]. Physical Review Letters, 2000, 85(25): 5396-5399.
[188] Eisenstein J P, Cooper K B, Pfeiffer L N, West K W. Insulating and Fractional Quantum Hall States in the First Excited Landau Level[J]. Physical Review Letters, 2002, 88(7): 076801.
[189] Gervais G, Engel L W, Stormer H L, Tsui D C, Baldwin K W, West K W, Pfeiffer L N. Competition between a Fractional Quantum Hall Liquid and Bubble and Wigner Crystal Phases in the Third Landau Level[J]. Physical Review Letters, 2004, 93(26): 266804.
[190] Lewis R M, Chen Y, Engel L W, Tsui D C, Ye P D, Pfeiffer L N, West K W. Evidence of a First-Order Phase Transition between Wigner-Crystal and Bubble Phases of 2d Electrons in Higher Landau Levels[J]. Physical Review Letters, 2004, 93(17): 176808.
[191] Bennaceur K, Lupien C, Reulet B, Gervais G, Pfeiffer L N, West K W. Competing Charge Density Waves Probed by Nonlinear Transport and Noisein the Second and Third Landau Levels[J]. Physical Review Letters, 2018, 120(13): 136801.
[192] Fu X, Shi Q, Zudov M A, Gardner G C, Watson J D, Manfra M J. Two- and Three-Electron Bubbles in Alxga1−Xas/Al0.24ga0.76as Quantum Wells[J]. Physical Review B, 2019, 99(16): 161402(R).
[193] Ro D, Deng N, Watson J D, Manfra M J, Pfeiffer L N, West K W, Csáthy G A. Electron Bubbles and the Structure of the Orbital Wave Function[J]. Physical Review B, 2019, 99(20): 201111(R).
[194] Li Z, Luo M, Wan X. Extracting Critical Exponents by Finite-Size Scaling with Convolutional Neural Networks[J]. Physical Review B, 2019, 99(7): 075418.
[195] Ohtsuki T, Mano T. Drawing Phase Diagrams of Random Quantum Systems by Deep Learning the Wave Functions[J]. Journal of the Physical Society of Japan, 2020, 89(2): 022001.
[196] Suchsland P, Wessel S. Parameter Diagnostics of Phases and Phase Transition Learning by Neural Networks[J]. Physical Review B, 2018, 97(17): 174435.
[197] Lee S S, Kim B J. Confusion Scheme in Machine Learning Detects Double Phase Transitions and Quasi-Long-Range Order[J]. Physical Review E, 2019, 99(4): 043308.
[198] Haldane F D, Rezayi E H. Spin-Singlet Wave Function for the Half-Integral Quantum Hall Effect[J]. Physical Review Letters, 1988, 60(10): 956-959.
[199] Peterson M R, Jolicoeur T, Das Sarma S. Finite-Layer Thickness Stabilizes the Pfaffian State for the 5/2 Fractional Quantum Hall Effect: Wave Function Overlap and Topological Degeneracy[J]. Physical Review Letters, 2008, 101(1): 016807.
[200] Peterson M R, Park K, Das Sarma S. Spontaneous Particle-Hole Symmetry Breaking in the ν=5/2 Fractional Quantum Hall Effect[J]. Physical Review Letters, 2008, 101(15): 156803.
[201] Feiguin A E, Rezayi E, Yang K, Nayak C, Das Sarma S. Spin Polarization of the ν=5/2 Quantum Hall State[J]. Physical Review B, 2009, 79(11): 115322.
[202] Wang H, Sheng D N, Haldane F D M. Particle-Hole Symmetry Breaking and the ν=5/2 Fractional Quantum Hall Effect[J]. Physical Review B, 2009, 80(24): 241311(R).
[203] Storni M, Morf R H, Das Sarma S. Fractional Quantum Hall State at ν=5/2 and the Moore-Read Pfaffian[J]. Physical Review Letters, 2010, 104(7): 076803.
[204] Wojs A, Toke C, Jain J K. Landau-Level Mixing and the Emergence ofPfaffian Excitations for the 5/2 Fractional Quantum Hall Effect[J]. Physical Review Letters, 2010, 105(9): 096802.
[205] Moller G, Wojs A, Cooper N R. Neutral Fermion Excitations in the Moore-Read State at Filling Factor ν = 5/2[J]. Physical Review Letters, 2011, 107(3): 036803.
[206] Bishara W, Nayak C. Effect of Landau Level Mixing on the Effective Interaction between Electrons in the Fractional Quantum Hall Regime[J]. Physical Review B, 2009, 80(12): 121302(R).
Edit Comment