中文版 | English
Title

STUDIES ON TRANSITION METAL-CATALYZED ASYMMETRIC REDUCTIONS AND REDUCTIVE AMINATIONS

Author
Name pinyin
SHI Yongjie
School number
11850009
Degree
博士
Discipline
化学
Supervisor
段乐乐
Mentor unit
化学系
Publication Years
2022-08-17
Submission date
2022-09-22
University
香港大学
Place of Publication
香港
Abstract

The synthesis of enantioenriched NH lactams from ketoesters and ketoacids was achieved via direct asymmetric reductive amination and cyclization cascade reactions. The reaction showed wide substrate scope and good functional group tolerance. Various γ-, δ-, and ε-keto esters/acids were converted to the corresponding NH lactams of five-, six-, or seven-membered rings in generally high yields and good enantioselectivities. Structurally diverse chiral NH benzo-lactams were also synthesized smoothly. The amine salts, hydrogen gas and catalytic amount of metal complex applied in this method showcase the economy and high efficiency of this reaction. The scalable and concise preparation of key intermediates en route to the synthesis of larotrectinib, (+)-garenoxacin, and other bioactive molecules further illustrate the practicality of this strategy.

An efficient and straightforward method to synthesize optically active Nunprotected α-amino acetals via ruthenium-catalyzed direct asymmetric reductive amination was developed. As versatile and valuable platform molecules, α-amino acetals could be converted to corresponding α-amino acids, amino alcohols, or other derivatives via convenient transformations. Two gram-scale reactions and the application towards the synthesis of a natural product, (−)-cytoxazone, highlight the practicality and potential of this methodology.

An exclusive asymmetric 1,2-reduction of cycloalkenones was induced by using (R)-DTBM-C3 * -TunePhos ligated copper hydride as the catalyst. The reduction of unsubstituted cyclohexenones resulted in allylic alcohols with moderate 71-77% ee, albeit with high chemoselectivity and yields. Reduction of α-brominated cycloalkenones resulted in excellent enantioselectivities of up to 98% ee and high yields. Five-, six-, and seven-membered substrates with diverse β-substitutions including aryl, alkyl, allyl, alkynyl were all well-tolerated under the optimized reductive conditions, thus giving the corresponding α-bromo-substituted allylic alcohols successfully. Acyclic as well as α-methylated substrates were also evaluated for reduction under these conditions. The products are versatile intermediates, and several elaborations of these α-bromo-substituted allylic alcohols were conducted.

Keywords
Language
English
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-11
References List

[1. Top 200 SMALL Molecule Drugs by Sales in 2018, a poster made by the Jon T. Njardarson group, https://njardarson.lab.arizona.edu/content/top-pharmaceuticalsposter.
2. L. M. Jarvis, Chem. Eng. News, 2016, 94, 12–17.
3. R. Noyori, T. Ohkuma, Angew. Chem., Int. Ed. 2001, 40, 40-73, and references therein.
4. Xu, L.-W.; Lu, Y. Org. Biomol. Chem. 2008, 6, 2047-2053.
5. Haas, J.; Andrews, S. W.; Jiang, Y.; Zhang, G. Substituted pyrazolo
[1,5-a]pyrimidine compounds as Trk kinase inhibitors and their preparation and use in the treatment of diseases, WO2010048314A1, 2010.
6. Yang, X.; Wu, F.; Ni, Y.; Tang, C.; Xiao, S. Resolution method of R-(+)-1-(1-naphthyl) ethylamine CN200910201301A, 2010.
7. Bloch, R. Chem. Rev. 1998, 98, 1407-1438.
8. Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069-1094.
9. Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 9581-9597.
10. Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T.; J. Am. Chem. Soc. 2004, 126, 13584-13585.
11. Reddy, R. P.; Davies, H. M. L. Org. Lett. 2006, 8, 5013-5016.47
12. Raheem, I. T.; Jacobsen, E.N. Adv. Synth. Catal. 2005, 347, 1701-1708.
13. Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356-5357.
14. Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445-2447.
15. Gröger, H. Chem. Rev. 2003, 103, 2795-2827.
16. Rueping, M.; Antonchick, A. P. Org. Lett. 2008, 10, 1731-1734.
17. Nugent, T. C. Chiral Amine Synthesis, Wiley-VCH, 2010, ISBN: 978-3-527-32509-2.
18. Fleury-Brégeot, N.; Fuente, V.; Castillón, Sergio; Claver, C. ChemCatChem 2010, 2, 1346-1371.
19. Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713-1760.
20. Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Soc. Rev. 2012, 41, 4126-4139.
21. Barrios-Rivera, J.; Xu, Y.; Wills, M.; Vyas, V. K. Org. Chem. Front. 2020, 7, 3312-3342.
22. Ponra, S.; Boudet, B.; Phansavath, P.; Ratovelomanana-Vidal, V. Synthesis 2021, 53, 193-214.
23. Dang, T. P.; Kagan, H. B. J. Chem. Soc., Chem. Commun. 1971, 481.
24. Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 594648
25. Kitamura, M.; Tsukamoto, M.; Bessho, Y. Yoshimura, M.; Kobs, U.; Widhalm, M. Noyori, R. J. Am. Chem. Soc. 2002, 124, 6649-6667.
26. Yin, Q.; Shi, Y. Wang, J.; Zhang, X. Chem. Soc. Rev. 2020, 49, 6141-6153.
27. Hou, G.; Gosselin, F.; Li, W.; McWilliams, J. C.; Sun, Y.; Weisel, M.; O’Shea, P. D.; Chen, C.; Davies I. W.; Zhang, X. J. Am. Chem. Soc. 2009, 131, 9882-9883.
28. Hou, G.; Tao, R.; Sun, Y.; Zhang, X.; Gosselin, F. J. Am. Chem. Soc. 2010, 132, 2124-2125.
29. Zhao, Q.; Wen, J.; Tan, R.; Huang, K.; Metola, P.; Wang, R.; Anslyn, E. V.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 8467-8470.
30. Erker, G.; Riedel, M.; Koch, S.; Joedicke, T.; Wuerthwein, E.-U. J. Org. Chem. 1995, 60, 5284-5290.
31. Hsiao, Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito, E.; Wang, F.; Sun, Y.;Armstrong, J. D.; Grabowski, E. J. J.; Tillyer, R. D.; Spindler, F.; Malan, C. J. Am. Chem. Soc. 2004, 126, 9918-9919.
32. Hou, G.; Li, W.; Ma, M.; Zhang, X.; Zhang, X.; J. Am. Chem. Soc. 2010, 132, 12844-12846.
33. Ye, J.; Wang, C.; Chen, L.; Wu, X.; Zhou, L.; Sun, J. Adv. Synth. Catal. 2016, 358, 1042-1047.
34. Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357-1366.49
35. Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557-2590.
36. Zhao, D.; Glorius, F. Angew. Chem. Int. Ed. 2013, 52, 9616-9618.
37. Wiesenfeldt, M. P.; Nairoukh, Z.; Dalton, T.; Glorius, F. Angew. Chem. Int. Ed. 2019, 58, 10460-10476.
38. Kim, A. N.; Stoltz, B. M. ACS Catal. 2020, 10, 13834-13851.
39. Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc.2003, 125, 10536-10537.
40. Wang, D.-W.; Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.; Li, Y.-X. J. Org. Chem. 2009, 74, 2780-2787.41. Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem. Int. Ed. 2006, 45, 2260-2263.42. Tian, Y.; Hu, L.; Wang, Y.-Z.; Zhang, X.; Yin, Q. Org. Chem. Front. 2021, 8, 2328-2342.43. Blaser, H.-U.; Buser, H.-P.; Jalett, H.-P.; Pugin, B.; Spindler, F. Synlett, 1999, 867-868.44. Li, C.-Q.; Villa-Marcos, B.; Xiao, J.-L. J. Am. Chem. Soc. 2009, 131, 6967-6969.45. Smith, J.; Kacmaz, A.; Wang, C.; Villa-Marcos, B.; Xiao, J.-L. Org. Biomol. Chem.2021, 19, 279-284.5046. Zhou, S.-L.; Fleischer, S.; Jiao, H.-J.; Junge, K.; Beller, M. Adv. Synth. Catal. 2014,356, 3451-3455.47. Liu, R.-X.; Li, B.; Han, J.-K.; Zhang, D.-X.; Li, M.-Q.; Yao, L.; Zhao, W.; Wang, Q.-F.; Jiang, R.; Nie, H.-F. Catal. Sci. Technol. 2020, 10, 5448-5452.48. Yang, P.; Lim, L.-H.; Chuanprasit, P.; Hirao, H.; Zhou, J.-R. Angew. Chem., Int. Ed. 2016, 55, 12083-12087.49. Cabrera, A.; Sharma, P.; Pérez-Flores, F. J., Velasco, L. Ariasb, J. L.; Rubio-Pérez, L. Catal. Sci. Technol. 2014, 4, 2626-2630.50. Huang, H.-Z.; Liu, X.-Y.; Zhou, L.; Chang, M.-X.; Zhang, X.-M. Angew. Chem. Int. Ed. 2016, 55, 5309-5312.51. Huang, H.-Z.; Zhao, Y.-F.; Yang, Y.; Zhou, L.; Chang, M.-X. Org. Lett. 2017, 19, 1942-1945.52. Wu, Z.-T.; Du, S.-Z.; Gao, G.-R.; Yang, W.-K.; Yang, X.-Y.; Huang, H.-Z.; Chang, M.-X. Chem. Sci. 2019, 10, 4509-4514. 53. Bunlaksananusorn, T.; Rampf, F. Synlett 2005, 17, 2682-2684.54. Steinhuebel, D.; Sun, Y.; Matsumura, K.; Sayo, N.; Saito, T. J. Am. Chem. Soc.2009, 131, 11316-11317.55. Matsumura, K.; Zhang, X.; Hori, K.; Murayama, T.; Ohmiya, T.; Shimizu, H.; Saito, T.; Sayo, N. Org. Process Res. Dev. 2011, 15, 1130–1137.5156. Mattei, P.; Moine, G.; Püntener, K.; Schmid, R. Org. Process Res. Dev. 2011, 15, 353-359.57. Lou, Y.; Hu, Y.; Lu, J.; Guan, F.; Gong, G.; Yin, Q.; Zhang, X. Angew. Chem. Int. Ed. 2018, 57, 14193-14197.58. Donaire, J. G.; Hermsen, M.; Wysocki, J.; Ernst, M.; Rominger, F.; Trapp, O.; Hashmi, A. S. K.; A. Schäfer, Comba, P.; Schaub, T. J. Am. Chem. Soc. 2018, 140, 355-361.59. Tan, X.; Gao, S.; Zeng, W.; Xin, S.; Yin, Q.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 2024-2027.60. Brewer, A. C.; Ruble, J. C.; Vandeveer, H. G.; Frank, S. A.; Nevill, C. R. Org. Process Res. Dev. 2021, 25, 576-582.61. Hu, L.; Zhang, Yao; Zhang, Q-W.; Yin, Q.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 5321-5325.62. Ghosh, T.; Ernst, M.; Hashmi, A. S. K.; Schaub, T. Eur. J. Org. Chem. 2020, 4796-48001. Bräse, S. Privileged scaffolds in medicinal chemistry: design, synthesis, evaluation; RSC, 2015.2. F. Rivas; T. Ling. Org. Prep. Proced. Int. 2016, 48, 254-295.3. Liu, H.; He, X.; Phillips, D.; Zhu, X.; Yang, K.; Lau, T.; Wu, B.; Xie, Y.; Nguyen, T. N.; Wang, X. WO2008076754A2, 2008.4. Khadem, S.; Marles, R. J. Molecules 2012, 17, 191-206.5. Reichard, G. A.; Paliwal, S.; Shih, N.-Y.; Xiao, D.; Tsui, H.-C.; Shah, S.; Wang, C.; Wrobleski, M. L.; WO 2003042173, 2003.6. Wood, M. R.; Gallicchio, S. N.; Selnick, H. G.; Zartman, C. B.; Bell, I. M.; Stump, C. A. US 20070265225, 2007.7. Speck, K.; Magauer, T. Beilstein J. Org. Chem. 2013, 9, 2048-2078.8. Li, E.; Jiang, L.; Guo, L.; Zhang, H.; Che, Y. Bioorg. Med. Chem. 2008, 16, 7894-7899.9. Almeida, C.; Hemberger, Y.; Schmitt, S. M.; Bouhired, S.; Natesan, L.; Kehraus, S.; Dimas, K.; Gtschow, M.; Bringmann, G.; König, G. M. Chem. Eur. J. 2012, 18, 8827-8834.10. Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257-10274.11. Reddy, L. R.; Prasad, K.; Prashad, M. A. J. Org. Chem. 2012, 77, 6296-6301.9712. Guijarro, D.; Pablo, Ó.; Yus, M. J. Org. Chem. 2013, 78, 3647-3654.13. Cheemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089-3092.14. Das, B. G.; Nallagonda, R.; Dey, D.; Ghorai, P. Chem. Eur. J. 2015, 21, 12601-12605.15. Huang, Y. B.; Dai, J. J.; Deng, X. J.; Qu, Y. C.; Guo, Q. X.; Fu, Y. ChemSusChem, 2011, 4, 1578-1581.16. Wei, Y.; Wang, C.; Jiang, X.; Xue, D.; Li, J.; Xiao, J. Chem. Commun., 2013, 49, 5408-5410.17. Wei, Y.; Wang, C.; Jiang, X.; Xue, D.; Liu, Z.-T.; Xiao, J. Green Chem., 2014, 16, 1093-1096.18. Ogiwara, Y.; Uchiyama, T.; Sakai, N. Angew. Chem. Int. Ed. 2016, 55, 1864-1867.19. Xu, Z.; Yan, P.; Jiang, H.; Liu, K.; Zhang, Z. C. Chin. J. Chem. 2017, 35, 581-585.20. Mourelle-Insua, Á.; Zampieri, L. A.; Lavandera, I.; Gotor-Fernándeza, V. Adv. Synth. Catal. 2018, 360, 686-695.21. Hu, L.; Zhang, Yao; Zhang, Q-W.; Yin, Q.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 5321-5325.22. Scott, L. J. Drugs 2019, 79, 201–206.23. Ning, Z.; Yang, L.; Peng, F.; Wei, G.; Huang, X.; Faming Zhuanli Shenqing, CN 109053525, 2018.9824. Haas, Julia.; Andrews, S. W.; Jiang, Y.; Zhang, G. WO 2010048314A1, 2010.25. Yamada, M.; Hamamoto, S.; Hayashi, K.; Takaoka, K.; Matsukura, H.; Yotsuji, M.; Yonezawa, K.; Ojima, K.; Takamatsu, T.; Taya, K.; Yamamoto, H.; Kiyoto, T.; Kotsubo, H. WO 9921849, 1999.26. Wu, X.; Mao, Y. Chin. J. Mod. Appl. Pharm. 2009, 26, 218–220.27. Breinlinger, E. C.; Cox, P. B.; Daanen, J.; Dietrich, J.; Djuric, S.; Dombrowski, A. W.; Frank, K. E.; Friedman, M. M.; Gomtsyan, A.; Li, H.-Q.; Longenecker, K.; Osuma, A.; Rowley, A. M.; Schmidt, R.; Vasudevan, A.; Wilson, N. WO 2016168641, 2016.28. Kitamura, M.; Tsukamoto, Masaki.; Bessho, Y.; Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6649-6667.1. Lawrence, S. A.; Amines: Synthesis, Properties and Applications, Cambridge University Press, 2004.2. Amino Group Chemistry: From Synthesis to the Life Sciences, ed. Ricci, A. Wiley-VCH, Weinheim, 20083. SOS Science Of Synthesis: Biocatalysis in Organic Synthesis, ed. Faber, K.; Fessner, W.-D.; Turner, N. J. Thieme, 2015, vol. 1–3. ISBN: 9783131975218; ISBN: 9783131975317; ISBN: 97831319749144. Slabu, I.; Galman, J. L.; Lloyd, R. C.; Turner, N. J. ACS Catal. 2017, 7, 8263-8284, and references therein5. Höhne, M.; Bornscheuer, U. T. Application of transaminases, in Enzyme Catalysis in Organic Synthesis, ed. K. Drauz, H. Gröger and O. May, Wiley-VCH, Weinheim, 3rd edn, 2012, vol. 2, pp. 779-820.6. Mathew, S.; Yun, H. ACS Catal. 2012, 2, 993-1001.7. Reference 7-13 in chapter 1.8. Ikariya, T.; Ishii, Y.; Kawano, H.; Arai, T.; Saburi, M.; Yoshikawa, S.; Akutagawa, S. J. Chem. Soc. Chem. Commun. 1985, 922-924.9. Bunlaksananusorn, T.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed. 2003, 42, 3941-3943.13610. F. Giacomina, A. Meetsma, L. Panella, L. Lefort, A. H. M. de Vries, J. G. de Vries, Angew. Chem. Int. Ed. 2007, 46, 1497-1500.11. Friedfeld, M. R.; Shevlin, M.; Hoyt, J. M.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Science 2013, 342, 1076-1080.12. Friedfeld, M. R.; Zhong, H.; Ruck, R. T.; Shevlin, M.; Chirik, P. J. Science, 2018, 360, 888-893.13. Hu, Y.; Chen, J. Li, B.; Zhang, Z.; Gridnev, I. D. Zhang, W. Angew. Chem. Int. Ed.2020, 59, 1-6.14. Chen, J.; Li, F.; Wang, F.; Hu, Y.; Zhang, Z.; Zhao, M.; Zhang, W. Org. Lett. 2019, 21, 9060-9065.15. Hua, X.-H.; Hu, X.-P. Adv. Synth. Catal. 2019, 361, 5063-5068.16. Liu, D.; Li, B.; Chen, J.; Gridnev, I. D.; Yan, D.; Zhang, W. Nat. Commun. 2020,11, 5935-5943.17. Kadyrov, R.; Riermeier, T. H.; Dingerdissen, U.; Tararov, V.; Börner, A. J. Org. Chem. 2003, 68, 4067-4070.18. Bringmann, G.; Geisler, J.-P. Synthesis 1989, 8, 608-611.19. Enders, D.; Funk, R.; Klatt, M. Raabe, G.; Hovestreydt, E. R. Angew. Chem. Int. Ed. Engl. 1993, 32, 418-421.20. Denmark, S. E.; Nicaise, O. Synlett 1993, 5, 359-361.13721. Thiam, M.; Chastrette, F. Tetrahedron Lett. 1990, 31, 1429-1432.22. Thiam, M.; Slassi, A.; Chastrette, F.; Amouroux, R. Synth. Commun. 1992, 22, 83-95. 23. Alexakis, A.; Lensen, N.; Tranchier, J.-P.; Mangeney, P. J. Org. Chem. 1992, 57, 4563-4565.24. Alexakis, A.; Lensen, N.; Mangeney, P. Tetrahedron. Lett. 1991, 32, 1171-1174.25. Albalat-Serradeil, M.; Primazot, G.; Wilhelm, D.; Vallejos, J.-C.; Vanthuyne, N.; Roussel, C. Amino Acids, 2012, 43, 687-696.26. Tian, J.-S.; Loh, T.-P. Angew. Chem. Int. Ed. 2010, 49, 8417-8420. 27. Tian, J.-S.; Loh, T.-P. Chem. Commun. 2011, 47, 5458-5460.28. Tian, J.-S.; Ng, K. W. J.; Wong, J.-R.; Loh, T.-P. Angew. Chem. Int. Ed. 2012, 51, 9105-9109.29. Zhang, Y.-X.; Zhang, A.-Q.; Tian, J.-S.; Loh, T.-P. Org. Biomol. Chem. 2013, 11, 8387-8394.30. Pan, H.; Xie, Y.; Liu, M.; Shi, Y. RSC Adv. 2014, 4, 2389-2392.31. Zhang, J.; Jia, J. Zeng, X.; Wang, Yu.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem. Int. Ed. 2019, 58, 11505-11512.32. Tokic-Vujosevic, Z.; Petrovic, G.; Rakic, B.; Matovic, R.; Saicic, R. N. Synth. Commun. 2005, 35, 435-447.1. Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 1890-1932.2. Fischer, J.; Ganellin, C. R. Analogue-based Drug Discovery; John Wiley & Sons: 2006; p 452. ISBN: 97835276074953. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307-1370.4. Brown, J. M. Angew. Chem., Int. Ed. Engl. 1987, 26, 190-203.5. Beaulieu, P.; Ogilvie, W. W. Tetrahedron Lett. 2003, 44, 8883-8885.6. Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125, 12412-124133.7. Stork, G.; Schoofs, A. R. J. Am. Chem. Soc. 1979, 101, 5081-5082.8. Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855-19699. Shao, H.; Bao, W.; Jing, Z.-R.; Wang, Y.-P.; Zhang, F.-M.; Wang, S.-H.; Tu, Y.-Q.Org. Lett. 2017, 19, 4648-4651.10. Hu, Y.-J.; Fan, J.-H.; Li, S.; Zhao, J.; Li, C.-C. Org. Lett. 2018, 20, 5905-5909.11. Wada, K.; Sakai, M.; Kawashima, H.; Ogawa, N.; Kobayashi, Y. Synlett 2016, 27, 1428-1432.12. Paterson, I.; Xuan, M.; Dalby, S. M. Angew. Chem. Int. Ed. 2014, 53, 7286-7289.13. Zhou, Y.-G.; Wong, H. N. C.; Peng, X.-S. J. Org. Chem. 2020, 85, 967-976.18114. Khatua, A.; Niyogi, S.; Bisai, V. Org. Biomol. Chem. 2019, 17, 7140-7143.15. Pàmies, O.; Bäckvall, J.-E. Chem. Rev. 2003, 103, 3247-3262.16. Nowotny, S.; Vettel, S.; Knochel, P. Tetrahedron Lett. 1994, 35, 4539-4540.17. Lussem, B. J.; Gais, H.-J. J. Am. Chem. Soc. 2003, 125, 6066-6067.18. Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986-2012.19. Velasco-Rubio, Á.; Alexy, E. J.; Yoritate, M.; Wright, A. C.; Stoltz, B. M. Org. Lett. 2019, 21, 8962-8965.20. Kuang, L.; Liu, L. L.; Chiu, P. Chem. Eur. J. 2015, 21, 14287-14291.21. Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: 2010; p 601. ISBN: 978-1-891389-53-5. 22. Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008, 130, 11979-11987.23. Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104-15118.24. Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466-1478.25. Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417-1041826. Ohkuma, T.; Doucet, H.; Pham, T.; Mikami, K.; Korenaga, T.; Terada, M.; Noyori, R. J. Am. Chem. Soc. 1998, 120, 1086-108727. Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.;182Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1998, 120, 13529-13530.28. Arai, N.; Azuma, K.; Nii, N.; Ohkuma, T. Angew. Chem. Int. Ed. 2008, 47, 7457-7460.29. Chen, X.; Zhou, H.; Zhang, K.; Li, J.; Huang, H. Org. Lett. 2014, 16, 3912-3915.30. Zhang, Q.-Q. Xie, J.-H.; Yang, X.-H.; Xie, J.-B.; Zhou, Q.-L. Org. Lett. 2012, 14, 6158-6161.31. Chen, F.; Zhang, Y.; Yu, L.; Zhu, S. Angew. Chem. Int. Ed. 2017, 56, 2022-2025. 32. Brestensky, D. M.; Huseland, D. E.; McGettigan, C.; Stryker, J. M. Tetrahedron Lett. 1988, 29, 3749-3752.33. Baker, B. A.; Bošković, Ž. V.; Lipshutz, B. H. Org. Lett. 2008, 10, 289-292.34. Rendler, S.; Oestreich, M. Angew. Chem. Int. Ed. 2007, 46, 498-504.35. Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916-2927.36. Lipshutz, B. H. Synlett 2009, 4, 509-524.37. Chen, J.-X.; Daeuble, J. F.; Brestensky, D. M.; Stryker, J. M. Tetrahedron 2000, 56, 2153-2166.38. Chen, J.-X.; Daeuble, J. F.; Stryker, J. M. Tetrahedron 2000, 56, 2789-2798.39. Lipshutz, B. H.; Noson, K. Chrisman, W. J. Am. Chem. Soc. 2001, 123, 12917-12918.18340. Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc. 2003, 125, 8779-8789.41. Zhang, X.-C.; Wu, F.-F.; Li, S.; Zhou, J.-N.; Wu, J.; Li, N.; Fang, W.; Lam, K. H.; Chan, A. S. C. Adv. Synth. Catal. 2011, 353, 1457-1462.42. Junge, K.; Wendt, B.; Addis, D.; Zhou, S.; Das, S.; Beller, M. Chem. Eur. J. 2010, 16, 68-73.43. Lia, W. J.; Qiu, S. X. Adv. Synth. Catal. 2010, 352, 1119-1122.44. Lipshutz, B. H.; Lower, A.; Noson, K. Org. Lett. 2002, 4, 4045-4048.45. Yu, F.; Zhou, J.-N.; Zhang, X.-C.; Sui, Y.-Z.; Wu, F.-F.; Xie, L.-J.; Chan, A. S. C.; Wu, J. Chem. Eur. J. 2011, 17, 14234-14240.46. Moser, R.; Bošković, Ž. V.; Crowe, C. S.; Lipshutz, B. H. J. Am. Chem. Soc. 2010, 132, 7852-7853.47. Voigtritter, K. R.; Isley, N. A.; Moser, R.; Aue, D. H.; Lipshutz, B. H. Tetrahedron2012, 68, 3410-3416.48. Bandar, J. S.; Pirnot, M. T.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 14812-14818.

Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/401780
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
Shi YJ. STUDIES ON TRANSITION METAL-CATALYZED ASYMMETRIC REDUCTIONS AND REDUCTIVE AMINATIONS[D]. 香港. 香港大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11850009-史永杰-化学系.pdf(10051KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[史永杰]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[史永杰]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[史永杰]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.