Title | Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase |
Author | |
Corresponding Author | Han, Jiajia; Wu, Haichen; Sha, Gang; Liu, Xingjun |
Publication Years | 2023-02-10
|
DOI | |
Source Title | |
ISSN | 1005-0302
|
EISSN | 1941-1162
|
Volume | 136 |
Abstract | A typical G-phase strengthened ferritic model alloy (1Ti:Fe-20Cr-3Ni-1Ti-3Si, wt.%) has been carefully studied using both advanced experimental (EBSD, TEM and APT) and theoretical (DFT) techniques. During the classic "solid solution and aging " process, the superfine (Fe, Ni)(2)TiSi-L2(1) particles densely precipitate within the ferritic grain and subsequently transform into the (Ni, Fe)(16)Ti6Si7-G phase. In the meanwhile, the elemental segregation at grain boundaries and the resulting precipitation of a large amount of the (Ni, Fe)(16)Ti6Si7-G phase are also observed. These nanoscale microstructural evolutions result in a remarkable increase in hardness (10 0-30 0 HV) and severe embrittlement. When the "cold rolling and aging " process is used, the brittle fracture is effectively suppressed without loss of nano-precipitation strengthening effect. Superhigh yield strength of 1700 MPa with 4% elongation at break is achieved. This key improvement in mechanical properties is mainly attributed to the pre -cold rolling process which effectively avoids the dense precipitation of the G-phase at the grain boundary. These findings could shed light on the further exploration of the precipitation site via optimal processing strategies. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Others
|
Funding Project | National Natural Science Foundation of China["51971082","52001098"]
; National Post -doctoral Program for Innovative Talents[BX20200103]
; China Post -doctoral Science Foundation[2020M681092]
|
WOS Research Area | Materials Science
; Metallurgy & Metallurgical Engineering
|
WOS Subject | Materials Science, Multidisciplinary
; Metallurgy & Metallurgical Engineering
|
WOS Accession No | WOS:000851400400001
|
Publisher | |
ESI Research Field | MATERIALS SCIENCE
|
Data Source | Web of Science
|
Citation statistics |
Cited Times [WOS]:0
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/402341 |
Department | Department of Mechanical and Energy Engineering |
Affiliation | 1.Harbin Inst Technol, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China 3.Xiamen Univ, Coll Mat, Fujian Prov Key Lab Mat Genome, Xiamen 361005, Peoples R China 4.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Test Ctr, Ningbo 315201, Peoples R China 5.City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong, Peoples R China 6.Nanjing Univ Sci & Technol, Dept Mat Sci & Engn, Nanjing 210094, Peoples R China 7.Harbin Inst Technol, State Key Lab Adv Welding & Joining, Shenzhen 150001, Peoples R China 8.Harbin Inst Technol, Inst Mat Genome & Big Data, Shenzhen 518055, Peoples R China |
First Author Affilication | Department of Mechanical and Energy Engineering |
Recommended Citation GB/T 7714 |
Yang, Mujin,Huang, Chao,Han, Jiajia,et al. Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2023,136.
|
APA |
Yang, Mujin.,Huang, Chao.,Han, Jiajia.,Wu, Haichen.,Zhao, Yilu.,...&Liu, Xingjun.(2023).Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,136.
|
MLA |
Yang, Mujin,et al."Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 136(2023).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment