中文版 | English
Title

Photonic Metasurfaces for Nonlinear Optical Holography

Author
Name pinyin
MAO NING BIN
School number
11852002
Degree
博士
Discipline
Physics
Supervisor
李贵新
Mentor unit
材料科学与工程系
Publication Years
2022-08-15
Submission date
2022-09-27
University
香港浸会大学
Place of Publication
香港
Abstract

Photonic metasurface, the quasi-two-dimensional platform, provides flexible control of phase, amplitude, polarization, and other fundamental properties of the light by the elegant design of the constituent artificial structures or so-called metaatoms. This novel platform makes it more practical to realize optical holography,which has been widely applied in the research fields including three-dimensional image display, bioimaging, optical anti-counterfeiting, and so on. Yet, most applications of photonic metasurface have focused on its linear optical region, while less attention has been paid to its nonlinear counterpart. Recently, the generation of nonlinear optical holography that manipulates light-field with extra degrees of freedom through the frequency conversion processes has been achieved. The development of photonic metasurfaces containing subwavelength meta-atoms is the focus of this thesis to modulate the phase, amplitude, polarization, and frequency of light. In this thesis, we demonstrated photonic metasurfaces with multiple functionalities including real-space and Fourier space images encryption, vortex beam generation, and display of vectorial holographic images. To emphasize, these demonstrations of metasurfaces were generated in the second harmonic generation (SHG) process and utilizing the linear or nonlinear geometric phase.

In this thesis, a review of advances and applications of linear and nonlinear metamaterials and metasurfaces is presented at the beginning. Then a brief introduction to harmonic generations is given. In Chapter 2, the experimental methods of nanofabrication and the optical measurement that are essential in the demonstration of photonic metasurfaces in this thesis were described.
In Chapter 3, we designed and fabricated the nonlinear diatomic metasurfaces for displaying images in both real and Fourier spaces. The photonic metasurface for nonlinear optical holography is built on the nonlinear geometric phase of plasmonic meta-atoms with three-fold rotational symmetry. We experimentally verified the phase and amplitude control of the diatomic
metasurface for holographic images display in the SHG process. In Chapter 4, we proposed a hybrid platform, dielectric decorated nonlinear optical crystal, to seek a route for nonlinear optical holography with potentially high-frequency conversion efficiency. We simulated and fabricated dielectric metasurfaces on the nonlinear crystals with diffraction efficiency up to ~ 68%. Then we characterize the optical properties of two nonlinear optical crystals. From the design of the dielectric metasurface decorated optical crystal, we experimentally demonstrate the vortex beam generation and holographic image display in the SHG process. In Chapter 5, we proposed the plasmonic quad-atom metasurface stem from the first work to display holographic images with vectorial polarization distribution. Based on the superposition of two circularly polarized light, the quad-atoms metasurfaces that enable the ability to control the phase and amplitude of second harmonic waves can display holographic images with an arbitrary polarization state.
Moreover, we adopted the modified phase retrieve algorithm to design the metasurface hologram which can reconstruct the image with arbitrary polarization and intensity distributions.
The presented approaches in this thesis may attract more interest in the investigation of metasurface for nonlinear optics and would have applications in the fields of optical information storage, nonlinear structured light source, and so on.

Keywords
Language
English
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-11
References List

[1] Veselago, V. The electrodynamics of substances with simultaneously negative values of epsilon and mu. Soviet Physics Uspekhi 10, 509–514 (1968).
[2] Veselago, V., Braginsky, L., Shklover, V. & Hafner, C. Negative refractive index materials. Journal of Computational and Theoretical Nanoscience 3, 189–218 (2006).
[3] Schuster, A. An Introduction to the Theory of Optics. (Edward Arnold, 1924).
[4] Lamb, H. On group-velocity. Proceedings of the London Mathematical Society, s2-1, 473–479 (1904).
[5] Pendry, J. B. Focus issue: Negative refraction and metamaterials. Optics Express 11, 639–639 (2003).
[6] Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs I. Extremely low frequency plasmons in metallic mesostructures. J. Physical Review Letters 76, 4773–4776 (1996).
[7] Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques 47, 2075–2084 (1999).
[8] Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 84, 4184–4187 (2000).
[9] Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).
[10] Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nature Reviews Materials 4, 742–760 (2019).
[11] Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations. (Wiley-IEEE Press, 2006).
[12] Pendry, J. B. Negative refraction makes a perfect lens. Physical Review Letters 85, 3966–3969 (2000).
[13] Houck, A. A., Brock, J. B. & Chuang, I. L. Experimental observations of a left-handed material that obeys Snell’s Law. Physical Review Letters 90, 137401 (2003).
[14] Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Physical Review Letters 92, 117403 (2004).
[15] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
[16] D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).
[17] Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).
[18] Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters 95, 137404 (2005).
[19] Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).
[20] Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
[21] Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photonics 1, 224–227 (2007).
[22] Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Materials 8, 568–571 (2009).
[23] Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).
[24] Zhang, S. et al. Negative refractive index in chiral metamaterials. Physical Review Letters 102, 023901 (2009).
[25] Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).
[26] Yu, N. et al. Light propagation with phase reflection and refraction. Science 334, 333–337 (2011).
[27] Goodman, J.W. Introduction to Fourier Optics (W. H. Freeman, 2017).
[28] Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials 11, 426–431 (2012).
[29] Zhang, X. et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Advanced Materials 25, 4567–4572 (2013).
[30] Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters 12, 5750–5755 (2012).
[31] Shitrit, N., Bretner, I., Gorodetski, Y., Kleiner, V. & Hasman, E. Optical spin Hall effects in plasmonic chains. Nano Letters 11, 2038–2042 (2011).
[32] Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. 44, 398–417 (1956).
[33] Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).
[34] Litchinitser, N. M. Photonic multitasking enabled with geometric phase. Science 352, 1177–1178 (2016).
[35] Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters 26, 1424–1426 (2001).
[36] Bomzon, Z., Biener, G., Kleiner, V., & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters 27, 1141–1143 (2002).
[37] Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Applied Physics Letters 82, 328–330 (2003).
[38] Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nature Communications 3, 1298 (2012).
[39] Chen, X. et al. Reversible Three-dimensional focusing of visible light with ultrathin plasmonic flat lens. Advanced Optical Materials 1, 517–521 (2013).
[40] Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).
[41] Li, G. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters 13, 4148–4151 (2013).
[42] Pu, M. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances 1, e1500396 (2015).
[43] Yue, F. et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558–1563 (2016).
[44] Devlin, R. C., Ambrosio, A., Rubin, N. A., Balthasar Mueller, J. P. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).
[45] Zhang, Y., Liu, W., Gao, J. & Yang, X. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Advanced Optical Materials 6, 1701228 (2018).
[46] Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
[47] Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).
[48] Liu, X. et al. Optical metasurfaces for designing planar Cassegrain-Schwarzschild objectives. Physical Review Applied 11, 054055 (2019).
[49] Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters 12, 6328–6333 (2012).
[50] Wang, S. et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light: Science and Applications 10, 24 (2021).
[51] Wang, B. et al. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces. ACS Photonics 5, 1660–1664 (2018).
[52] Zhu, L. et al. A dielectric metasurface optical chip for the generation of cold atoms. Science Advances 6, eabb6667 (2020).
[53] Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications 4, 2808 (2013).
[54] Montelongo, Y., Tenorio-Pearl, J. O., Milne, W. I. & Wilkinson, T. D. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Letters 14, 294–298 (2014).
[55] Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology 10, 308–312 (2015).
[56] Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters 118, 113901 (2017).
[57] Song, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021).
[58] Boyd, R. W. Nonlinear Optics. (Academic Press, 2020).
[59] Klein, M. W., Enkrich, C., Wegener, M. & Linden S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).
[60] Ciracì, C., Poutrina, E., Scalora, M. & Smith, D. R. Origin of second-harmonic generation enhancement in optical split-ring resonators. Physical Review B 85, 201403 (2012).
[61] Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).
[62] Aouani, H., Rahmani, M., Navarro-Cía, M. & Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nature Nanotechnology 9, 290–294 (2014).
[63] Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Letters 15, 7388–7393 (2015).
[64] Chen, S. et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Physical Review Letters 113, 033901 (2014).
[65] Konishi, K. et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Physical Review Letters 112, 135502 (2014).
[66] Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Physical Review 50, 115–125 (1936).
[67] Bhagavantam, S. & Chandrasekhar, P. Harmonic generation and selection rules in nonlinear optics. Proceedings of the Indian Academy of Sciences - Section A 76, 13–20 (1972).
[68] Segal, N., Keren-Zur, S., Hendler, N. & Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics 9, 180–184 (2015).
[69] Tymchenko, M. et al. Gradient nonlinear Pancharatnam-Berry metasurfaces. Physical Review Letters 115, 207403 (2015).
[70] Nookala, N. et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 3, 283-288 (2016).
[71] Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations. Nature Materials 14, 607–612 (2015).
[72] Keren-Zur, S., Avayu, O., Michaeli, L. & Ellenbogen, T. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photonics 3, 117–123 (2016).
[73] Li, G. et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Letters 17, 7974–7979 (2017).
[74] Almeida, E., Shalem, G. & Prior, Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nature Communications 7, 10367 (2016).
[75] Schlickriede, C. et al. Imaging through nonlinear metalens using second harmonic generation. Advanced Materials 30, 1703843 (2018).
[76] Ye, W. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nature Communications 7, 11930 (2016).
[77] Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nature Communications 7, 12533 (2016).
[78] Gao, Y. et al. Nonlinear holographic all-dielectric metasurfaces. Nano Letters 18, 8054–8061 (2018).
[79] Reineke, B. et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Letters 19, 6585–6591 (2019).
[80] Schlickriede, C. et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Letters 20, 4370–4376 (2020).
[81] Dasgupta, A., Gao, J. & Yang, X. Atomically thin nonlinear transition metal dichalcogenide holograms. Nano Letters 19, 6511–6516 (2019).
[82] Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nature Photonics 13, 467–472 (2019).
[83] Kruk, S. et al. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nature Photonics 16, 561–565 (2022).
[84] Walter, F., Li, G., Meier, C., Zhang, S. & Zentgraf, T. Ultrathin nonlinear metasurface for optical image encoding. Nano Letters 17, 3171–3175 (2017).
[85] Chen, S., Li, K., Deng, J., Li, G. & Zhang, S. High-order nonlinear spin-orbit interaction on plasmonic metasurfaces. Nano Letters 20, 8549–8555 (2020).
[86] Tang, Y. et al. Quasicrystal photonic metasurfaces for radiation controlling of second harmonic generation. Advanced Materials 31, 1901188 (2019).
[87] Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).
[88] Brown, B. R. & Lohmann, A. W. Complex spatial filtering with binary masks. Applied Optics 5, 967–969 (1966).
[89] Lohmann, A. W. & Paris, D. P. Binary Fraunhofer holograms, generated by computer. Applied Optics 6, 1739–1748 (1967).
[90] Lee, W.-H. Binary computer-generated. holograms. Applied Optics 18, 3361–3369 (1979).
[91] Li, J., Smithwick, Q. & Chu, D. Holobricks: modular coarse integral holographic displays. Light: Science and Applications 11, (2022).
[92] St-Hilaire, P. et al. Electronic display system for computational holography. Proc. SPIE 1212, 174–182 (1990).
[93] Stanley, M. et al. 100-megapixel computer-generated holographic images from active tiling: a dynamic and scalable electro-optic modulator system. Proc. SPIE 5005, 247–258 (2003).
[94] Takaki, Y. & Okada, N. Hologram generation by horizontal scanning of a high-speed spatial light modulator. Applied Optics 48, 3255–3260 (2000).
[95] Gao, Y. et al. Optical Fourier transform based in-plane vibration characterization for MEMS comb structure. Optics Express 21, 5063–5070 (2013).
[96] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optick 21, 5063–5070 (1972).
[97] Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature Communications 4, 2807 (2013).
[98] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504 (2016).
[99] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Letters 15, 3122–3127 (2015).
[100] Wan, W., Gao, J. & Yang, X. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671–10680 (2016).
[101] Wang, B. et al. Visible-frequency dielectric metasurfaces for Multiwavelength achromatic and highly dispersive holograms. Nano Letters 16, 5235–5240 (2016).
[102] Feng, H. et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics 6, 2910–2916 (2019).
[103] Deng, Z.-L., Li, X. & Li, G. Metasurface Holography. (Springer Nature, 2020).
[104] Wen, D. et al. Helicity multiplexed broadband metasurface holograms. Nature Communications 6, 8241 (2015).
[105] Song, Q. et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nature Communications 11, 2651 (2020).
[106] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology 10, 937–943 (2015).
[107] Deng, Z. L. et al. Diatomic metasurface for vectorial holography. Nano Letters 18, 2885–2892 (2018).
[108] Zhao, R. et al. Multichannel vectorial holographic display and encryption. Light: Science and Applications 7, 95 (2018).
[109] Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics 6, 2712–2718 (2019).
[110] Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light: Science and Applications 8, 92 (2019).
[111] Bao, Y. et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light: Science and Applications 8, 95 (2019).
[112] Liu, M. et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light: Science and Applications 10, 107 (2021).
[113] Zhao, R. et al. Polarization and holography recording in real- and k-space based on dielectric metasurface. Advanced Functional Materials 31, 2100406 (2021).
[114] Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nature Photonics 14, 102–108 (2020).
[115] Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology 15, 948–955 (2020).
[116] Chen, P. et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light: Science and Applications 10, 146 (2021).
[117] Frese, D. et al. Nonlinear bicolor holography using plasmonic metasurfaces. ACS Photonics 8, 1013–1019 (2021).
[118] Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Physical Review Letters 7, 118–119 (1961).
[119] Armstrong, J. A. and Bloembergen, N. and Ducuing, J. & Pershan, P. S. Physical Review 127, 1918–1939 (1962).
[120] Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. Journal of the Optical Society of America B 14, 2268–2294 (1997).
[121] Kauranen, M. & Zayats, A. Nonlinear plasmonics. Nature Photonics 6, 737–748 (2012).
[122] Stefan A. Maier Plasmonics: Fundamentals and Applications (Springer 2007)
[123] Wokaun, A. and Bergman, J. G. and Heritage, J. P. and Glass, A. M. and Liao, P. F. & Olson, D. H. Surface second-harmonic generation from metal island films and microlithographic structures. Physical Review B 24, 849–855 (1981).
[124] Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nature Reviews Materials 2, 17010 (2017).
[125] Linden, S., Niesler, F. B. P., Förstner, J., Grynko, Y., Meier, T. & Wegener, M. Collective effects in second-harmonic generation from split-ring-resonator arrays. 109, 015502 (2012).
[126] O’Brien, K. et al. Predicting nonlinear properties of metamaterials from the linear response. Nature Materials 14, 379–383 (2015).
[127] Husu, H. et al. Metamaterials with tailored nonlinear optical response. Nano Letters 12, 673–677 (2012).
[128] Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotechnology 10, 412–417 (2015).
[129] Choy, K.-L. Chemical Vapour Deposition (CVD): Advances, Technology and Applications. (CRC Press, 2019).
[130] Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications. (Wiley, 2007).
[131] Aieta, F. et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Letters 12, 1702–1706 (2012).
[132] Deng, Z. L. & Li, G. Metasurface optical holography. Materials Today Physics 3 16–32 (2017).
[133] Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photonics 3, 514–519 (2016).
[134] Deng, J. et al. Giant enhancement of second-order nonlinearity of epsilon-near-zero medium by a plasmonic metasurface. Nano Letters 20, 5421–5427 (2020).
[135] Chen, B. Q., Zhang, C., Hu, C. Y., Liu, R. J. & Li, Z. Y. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Physical Review Letters 115, 083902 (2015).
[136] Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nature Photonics 13, 146–157 (2019).
[137] Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of airy beams. Nature Photonics 3, 395–398 (2009).
[138] Liu, H., Zhao, X., Li, H., Zheng, Y. & Chen, X. Dynamic computer-generated nonlinear optical holograms in a non-collinear second-harmonic generation process. Optics Letters 43, 3236–3239 (2018).
[139] Zhu, S. N. et al. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters 78, 2752–2755 (1997).
[140] Xu, T. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics 12, 591–595 (2018).
[141] Wei, D. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics 12, 596–600 (2018).
[142] Bloch, N. V. et al. Twisting light by nonlinear photonic crystals. Physical Review Letters 108, 233902 (2012).
[143] Wang, L. et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Letters 18, 3978–3984 (2018).
[144] Chen, J. et al. Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region. Nano Letters 18, 1344–1350 (2018).
[145] Li, G., Chen, S., Cai, Y., Zhang, S. & Cheah, K. W. Third harmonic generation of optical vortices using holography-based gold-fork microstructure. Advanced Optical Materials 2, 389–393 (2014).
[146] Goldstein, D. H. Polarized Light. (CRC Press, 2010).
[147] Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).
[148] Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A 45, 8185–8189 (1992).
[149] Tamburini, F., Anzolin, G., Umbriaco, G., Bianchini, A. & Barbieri, C. Overcoming the Rayleigh criterion limit with optical vortices. Physical Review Letters 97, 163903 (2006).
[150] Leach, J. et al. Quantum correlations in optical angle–orbital angular momentum variables. Science 329 662–665 (2010).
[151] Denisenko, V. et al. Determination of topological charges of polychromatic optical vortices. Optics Express 17 23375–23379 (2010).
[152] Nikolova, L. & Ramanujam, P. S. Polarization Holography. (Cambridge University Press, 2009).
[153] Ren, H., Shao, W., Li, Y., Salim F. & Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Science Advances 6, eaaz4261 (2020).
[154] Ding, F. et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser and Photonics Reviews 14, 202000116 (2020).
[155] Song, Q. et al. Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces. Nature Communications 12, 3631 (2021).
[156] Wen, D., Cadusch, J. J., Meng, J. & Crozier, K. B. Vectorial holograms with spatially continuous polarization distributions. Nano Letters 21, 1735–1741 (2021).
[157] Guo, X. et al. Full-color holographic display and encryption with full-polarization degree of freedom. Advanced Materials 34, 2103192 (2022).
[158] Kim, I. et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nature Communications 12, 3614 (2021).
[159] Zaidi, A., Rubin, N. A., Dorrah, A., Shi, Z. & Capasso, F. Jones matrix holography with metasurfaces. Science Advances 7, eabg7488 (2021).
[160] Max Born & Emil Wolf. Principles of Optics 60th Anniversary Edition. (Cambridge University Press, 2019).
[161] Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).
[162] Xu, B. et al. Metalens-integrated compact imaging devices for wide-field microscopy. Advanced Photonics 2, 066004 (2020).
[163] Lin, J. et al. Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles. Light: Science and Applications 9, 158 (2020).
[164] Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).
[165] Zhou, H. et al. Switchable active phase modulation and holography encryption based on hybrid metasurfaces. Nanophotonics 9, 905–912 (2020).
[166] Li, J. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Science Advances 4, eaar6768 (2018).
[167] Kim, J. et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser and Photonics Reviews 16, 2200098 (2022).

Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/402427
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
Mao NB. Photonic Metasurfaces for Nonlinear Optical Holography[D]. 香港. 香港浸会大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11852002-毛宁斌 -材料科学与工(7488KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[毛宁斌]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[毛宁斌]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[毛宁斌]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.