[1] Veselago, V. The electrodynamics of substances with simultaneously negative values of epsilon and mu. Soviet Physics Uspekhi 10, 509–514 (1968).
[2] Veselago, V., Braginsky, L., Shklover, V. & Hafner, C. Negative refractive index materials. Journal of Computational and Theoretical Nanoscience 3, 189–218 (2006).
[3] Schuster, A. An Introduction to the Theory of Optics. (Edward Arnold, 1924).
[4] Lamb, H. On group-velocity. Proceedings of the London Mathematical Society, s2-1, 473–479 (1904).
[5] Pendry, J. B. Focus issue: Negative refraction and metamaterials. Optics Express 11, 639–639 (2003).
[6] Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs I. Extremely low frequency plasmons in metallic mesostructures. J. Physical Review Letters 76, 4773–4776 (1996).
[7] Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques 47, 2075–2084 (1999).
[8] Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 84, 4184–4187 (2000).
[9] Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).
[10] Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nature Reviews Materials 4, 742–760 (2019).
[11] Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations. (Wiley-IEEE Press, 2006).
[12] Pendry, J. B. Negative refraction makes a perfect lens. Physical Review Letters 85, 3966–3969 (2000).
[13] Houck, A. A., Brock, J. B. & Chuang, I. L. Experimental observations of a left-handed material that obeys Snell’s Law. Physical Review Letters 90, 137401 (2003).
[14] Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Physical Review Letters 92, 117403 (2004).
[15] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
[16] D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).
[17] Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).
[18] Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters 95, 137404 (2005).
[19] Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).
[20] Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
[21] Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photonics 1, 224–227 (2007).
[22] Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Materials 8, 568–571 (2009).
[23] Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).
[24] Zhang, S. et al. Negative refractive index in chiral metamaterials. Physical Review Letters 102, 023901 (2009).
[25] Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).
[26] Yu, N. et al. Light propagation with phase reflection and refraction. Science 334, 333–337 (2011).
[27] Goodman, J.W. Introduction to Fourier Optics (W. H. Freeman, 2017).
[28] Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials 11, 426–431 (2012).
[29] Zhang, X. et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Advanced Materials 25, 4567–4572 (2013).
[30] Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters 12, 5750–5755 (2012).
[31] Shitrit, N., Bretner, I., Gorodetski, Y., Kleiner, V. & Hasman, E. Optical spin Hall effects in plasmonic chains. Nano Letters 11, 2038–2042 (2011).
[32] Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. 44, 398–417 (1956).
[33] Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).
[34] Litchinitser, N. M. Photonic multitasking enabled with geometric phase. Science 352, 1177–1178 (2016).
[35] Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Optics Letters 26, 1424–1426 (2001).
[36] Bomzon, Z., Biener, G., Kleiner, V., & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters 27, 1141–1143 (2002).
[37] Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Applied Physics Letters 82, 328–330 (2003).
[38] Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nature Communications 3, 1298 (2012).
[39] Chen, X. et al. Reversible Three-dimensional focusing of visible light with ultrathin plasmonic flat lens. Advanced Optical Materials 1, 517–521 (2013).
[40] Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016).
[41] Li, G. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters 13, 4148–4151 (2013).
[42] Pu, M. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances 1, e1500396 (2015).
[43] Yue, F. et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558–1563 (2016).
[44] Devlin, R. C., Ambrosio, A., Rubin, N. A., Balthasar Mueller, J. P. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).
[45] Zhang, Y., Liu, W., Gao, J. & Yang, X. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Advanced Optical Materials 6, 1701228 (2018).
[46] Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
[47] Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).
[48] Liu, X. et al. Optical metasurfaces for designing planar Cassegrain-Schwarzschild objectives. Physical Review Applied 11, 054055 (2019).
[49] Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters 12, 6328–6333 (2012).
[50] Wang, S. et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light: Science and Applications 10, 24 (2021).
[51] Wang, B. et al. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces. ACS Photonics 5, 1660–1664 (2018).
[52] Zhu, L. et al. A dielectric metasurface optical chip for the generation of cold atoms. Science Advances 6, eabb6667 (2020).
[53] Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications 4, 2808 (2013).
[54] Montelongo, Y., Tenorio-Pearl, J. O., Milne, W. I. & Wilkinson, T. D. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Letters 14, 294–298 (2014).
[55] Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology 10, 308–312 (2015).
[56] Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters 118, 113901 (2017).
[57] Song, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021).
[58] Boyd, R. W. Nonlinear Optics. (Academic Press, 2020).
[59] Klein, M. W., Enkrich, C., Wegener, M. & Linden S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).
[60] Ciracì, C., Poutrina, E., Scalora, M. & Smith, D. R. Origin of second-harmonic generation enhancement in optical split-ring resonators. Physical Review B 85, 201403 (2012).
[61] Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).
[62] Aouani, H., Rahmani, M., Navarro-Cía, M. & Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nature Nanotechnology 9, 290–294 (2014).
[63] Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Letters 15, 7388–7393 (2015).
[64] Chen, S. et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Physical Review Letters 113, 033901 (2014).
[65] Konishi, K. et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Physical Review Letters 112, 135502 (2014).
[66] Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Physical Review 50, 115–125 (1936).
[67] Bhagavantam, S. & Chandrasekhar, P. Harmonic generation and selection rules in nonlinear optics. Proceedings of the Indian Academy of Sciences - Section A 76, 13–20 (1972).
[68] Segal, N., Keren-Zur, S., Hendler, N. & Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics 9, 180–184 (2015).
[69] Tymchenko, M. et al. Gradient nonlinear Pancharatnam-Berry metasurfaces. Physical Review Letters 115, 207403 (2015).
[70] Nookala, N. et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 3, 283-288 (2016).
[71] Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations. Nature Materials 14, 607–612 (2015).
[72] Keren-Zur, S., Avayu, O., Michaeli, L. & Ellenbogen, T. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photonics 3, 117–123 (2016).
[73] Li, G. et al. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Letters 17, 7974–7979 (2017).
[74] Almeida, E., Shalem, G. & Prior, Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nature Communications 7, 10367 (2016).
[75] Schlickriede, C. et al. Imaging through nonlinear metalens using second harmonic generation. Advanced Materials 30, 1703843 (2018).
[76] Ye, W. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nature Communications 7, 11930 (2016).
[77] Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nature Communications 7, 12533 (2016).
[78] Gao, Y. et al. Nonlinear holographic all-dielectric metasurfaces. Nano Letters 18, 8054–8061 (2018).
[79] Reineke, B. et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Letters 19, 6585–6591 (2019).
[80] Schlickriede, C. et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Letters 20, 4370–4376 (2020).
[81] Dasgupta, A., Gao, J. & Yang, X. Atomically thin nonlinear transition metal dichalcogenide holograms. Nano Letters 19, 6511–6516 (2019).
[82] Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nature Photonics 13, 467–472 (2019).
[83] Kruk, S. et al. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nature Photonics 16, 561–565 (2022).
[84] Walter, F., Li, G., Meier, C., Zhang, S. & Zentgraf, T. Ultrathin nonlinear metasurface for optical image encoding. Nano Letters 17, 3171–3175 (2017).
[85] Chen, S., Li, K., Deng, J., Li, G. & Zhang, S. High-order nonlinear spin-orbit interaction on plasmonic metasurfaces. Nano Letters 20, 8549–8555 (2020).
[86] Tang, Y. et al. Quasicrystal photonic metasurfaces for radiation controlling of second harmonic generation. Advanced Materials 31, 1901188 (2019).
[87] Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).
[88] Brown, B. R. & Lohmann, A. W. Complex spatial filtering with binary masks. Applied Optics 5, 967–969 (1966).
[89] Lohmann, A. W. & Paris, D. P. Binary Fraunhofer holograms, generated by computer. Applied Optics 6, 1739–1748 (1967).
[90] Lee, W.-H. Binary computer-generated. holograms. Applied Optics 18, 3361–3369 (1979).
[91] Li, J., Smithwick, Q. & Chu, D. Holobricks: modular coarse integral holographic displays. Light: Science and Applications 11, (2022).
[92] St-Hilaire, P. et al. Electronic display system for computational holography. Proc. SPIE 1212, 174–182 (1990).
[93] Stanley, M. et al. 100-megapixel computer-generated holographic images from active tiling: a dynamic and scalable electro-optic modulator system. Proc. SPIE 5005, 247–258 (2003).
[94] Takaki, Y. & Okada, N. Hologram generation by horizontal scanning of a high-speed spatial light modulator. Applied Optics 48, 3255–3260 (2000).
[95] Gao, Y. et al. Optical Fourier transform based in-plane vibration characterization for MEMS comb structure. Optics Express 21, 5063–5070 (2013).
[96] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optick 21, 5063–5070 (1972).
[97] Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature Communications 4, 2807 (2013).
[98] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504 (2016).
[99] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Letters 15, 3122–3127 (2015).
[100] Wan, W., Gao, J. & Yang, X. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671–10680 (2016).
[101] Wang, B. et al. Visible-frequency dielectric metasurfaces for Multiwavelength achromatic and highly dispersive holograms. Nano Letters 16, 5235–5240 (2016).
[102] Feng, H. et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics 6, 2910–2916 (2019).
[103] Deng, Z.-L., Li, X. & Li, G. Metasurface Holography. (Springer Nature, 2020).
[104] Wen, D. et al. Helicity multiplexed broadband metasurface holograms. Nature Communications 6, 8241 (2015).
[105] Song, Q. et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nature Communications 11, 2651 (2020).
[106] Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology 10, 937–943 (2015).
[107] Deng, Z. L. et al. Diatomic metasurface for vectorial holography. Nano Letters 18, 2885–2892 (2018).
[108] Zhao, R. et al. Multichannel vectorial holographic display and encryption. Light: Science and Applications 7, 95 (2018).
[109] Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics 6, 2712–2718 (2019).
[110] Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light: Science and Applications 8, 92 (2019).
[111] Bao, Y. et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light: Science and Applications 8, 95 (2019).
[112] Liu, M. et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light: Science and Applications 10, 107 (2021).
[113] Zhao, R. et al. Polarization and holography recording in real- and k-space based on dielectric metasurface. Advanced Functional Materials 31, 2100406 (2021).
[114] Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nature Photonics 14, 102–108 (2020).
[115] Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology 15, 948–955 (2020).
[116] Chen, P. et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light: Science and Applications 10, 146 (2021).
[117] Frese, D. et al. Nonlinear bicolor holography using plasmonic metasurfaces. ACS Photonics 8, 1013–1019 (2021).
[118] Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Physical Review Letters 7, 118–119 (1961).
[119] Armstrong, J. A. and Bloembergen, N. and Ducuing, J. & Pershan, P. S. Physical Review 127, 1918–1939 (1962).
[120] Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. Journal of the Optical Society of America B 14, 2268–2294 (1997).
[121] Kauranen, M. & Zayats, A. Nonlinear plasmonics. Nature Photonics 6, 737–748 (2012).
[122] Stefan A. Maier Plasmonics: Fundamentals and Applications (Springer 2007)
[123] Wokaun, A. and Bergman, J. G. and Heritage, J. P. and Glass, A. M. and Liao, P. F. & Olson, D. H. Surface second-harmonic generation from metal island films and microlithographic structures. Physical Review B 24, 849–855 (1981).
[124] Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nature Reviews Materials 2, 17010 (2017).
[125] Linden, S., Niesler, F. B. P., Förstner, J., Grynko, Y., Meier, T. & Wegener, M. Collective effects in second-harmonic generation from split-ring-resonator arrays. 109, 015502 (2012).
[126] O’Brien, K. et al. Predicting nonlinear properties of metamaterials from the linear response. Nature Materials 14, 379–383 (2015).
[127] Husu, H. et al. Metamaterials with tailored nonlinear optical response. Nano Letters 12, 673–677 (2012).
[128] Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotechnology 10, 412–417 (2015).
[129] Choy, K.-L. Chemical Vapour Deposition (CVD): Advances, Technology and Applications. (CRC Press, 2019).
[130] Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications. (Wiley, 2007).
[131] Aieta, F. et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Letters 12, 1702–1706 (2012).
[132] Deng, Z. L. & Li, G. Metasurface optical holography. Materials Today Physics 3 16–32 (2017).
[133] Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photonics 3, 514–519 (2016).
[134] Deng, J. et al. Giant enhancement of second-order nonlinearity of epsilon-near-zero medium by a plasmonic metasurface. Nano Letters 20, 5421–5427 (2020).
[135] Chen, B. Q., Zhang, C., Hu, C. Y., Liu, R. J. & Li, Z. Y. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Physical Review Letters 115, 083902 (2015).
[136] Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nature Photonics 13, 146–157 (2019).
[137] Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of airy beams. Nature Photonics 3, 395–398 (2009).
[138] Liu, H., Zhao, X., Li, H., Zheng, Y. & Chen, X. Dynamic computer-generated nonlinear optical holograms in a non-collinear second-harmonic generation process. Optics Letters 43, 3236–3239 (2018).
[139] Zhu, S. N. et al. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters 78, 2752–2755 (1997).
[140] Xu, T. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics 12, 591–595 (2018).
[141] Wei, D. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics 12, 596–600 (2018).
[142] Bloch, N. V. et al. Twisting light by nonlinear photonic crystals. Physical Review Letters 108, 233902 (2012).
[143] Wang, L. et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Letters 18, 3978–3984 (2018).
[144] Chen, J. et al. Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region. Nano Letters 18, 1344–1350 (2018).
[145] Li, G., Chen, S., Cai, Y., Zhang, S. & Cheah, K. W. Third harmonic generation of optical vortices using holography-based gold-fork microstructure. Advanced Optical Materials 2, 389–393 (2014).
[146] Goldstein, D. H. Polarized Light. (CRC Press, 2010).
[147] Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).
[148] Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A 45, 8185–8189 (1992).
[149] Tamburini, F., Anzolin, G., Umbriaco, G., Bianchini, A. & Barbieri, C. Overcoming the Rayleigh criterion limit with optical vortices. Physical Review Letters 97, 163903 (2006).
[150] Leach, J. et al. Quantum correlations in optical angle–orbital angular momentum variables. Science 329 662–665 (2010).
[151] Denisenko, V. et al. Determination of topological charges of polychromatic optical vortices. Optics Express 17 23375–23379 (2010).
[152] Nikolova, L. & Ramanujam, P. S. Polarization Holography. (Cambridge University Press, 2009).
[153] Ren, H., Shao, W., Li, Y., Salim F. & Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Science Advances 6, eaaz4261 (2020).
[154] Ding, F. et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser and Photonics Reviews 14, 202000116 (2020).
[155] Song, Q. et al. Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces. Nature Communications 12, 3631 (2021).
[156] Wen, D., Cadusch, J. J., Meng, J. & Crozier, K. B. Vectorial holograms with spatially continuous polarization distributions. Nano Letters 21, 1735–1741 (2021).
[157] Guo, X. et al. Full-color holographic display and encryption with full-polarization degree of freedom. Advanced Materials 34, 2103192 (2022).
[158] Kim, I. et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nature Communications 12, 3614 (2021).
[159] Zaidi, A., Rubin, N. A., Dorrah, A., Shi, Z. & Capasso, F. Jones matrix holography with metasurfaces. Science Advances 7, eabg7488 (2021).
[160] Max Born & Emil Wolf. Principles of Optics 60th Anniversary Edition. (Cambridge University Press, 2019).
[161] Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).
[162] Xu, B. et al. Metalens-integrated compact imaging devices for wide-field microscopy. Advanced Photonics 2, 066004 (2020).
[163] Lin, J. et al. Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles. Light: Science and Applications 9, 158 (2020).
[164] Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).
[165] Zhou, H. et al. Switchable active phase modulation and holography encryption based on hybrid metasurfaces. Nanophotonics 9, 905–912 (2020).
[166] Li, J. et al. Addressable metasurfaces for dynamic holography and optical information encryption. Science Advances 4, eaar6768 (2018).
[167] Kim, J. et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser and Photonics Reviews 16, 2200098 (2022).
Edit Comment