中文版 | English
Title

铁钴镍单原子在表面上的磁矩调控

Alternative Title
TUNING THE MAGNETIC MOMENTS OF IRON/COBALT/NICKEL SINGLE ATOMS ON SURFACES
Author
Name pinyin
SHAO Xiji
School number
11849474
Degree
博士
Discipline
0702 物理学
Subject category of dissertation
07 理学
Supervisor
王克东
Mentor unit
物理系
Publication Years
2022-05-18
Submission date
2022-10-12
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

大数据时代,人们对信息存储的要求越来越高,然而,小型化具有高存储密度电子器件的发展进入了瓶颈期。为了突破这个瓶颈,人们考虑使用单分子,甚至单原子制备存储器件。在众多材料中,具有磁矩的磁性单原子是天然的最小尺度存储器。然而存储器件的制备需要将磁性原子融入非磁环境中,在特定环境中的磁性原子的局域磁矩是否存留以及如何留存一直是固体物理学研究中的一个重要课题。作者的博士论文就是围绕这样的问题利用第一性原理计算方法从两方面进行研究:一方面深入研究了磁性单原子与多种环境之间的相互作用,以进一步明确磁性单原子磁矩的存留机制;另外一方面探讨了保护特定环境中磁性单原子磁矩的具体方案。

具体研究内容包括:

(1) 探究了 FeCo 单原子在 VA 族二维材料,如砷烯、蓝磷、锑烯等,表面上的吸附与磁性行为。通过改变磁性原子的吸附位置我们研究了原子磁矩及磁各向异性能的变化,结果表明,FeCo)原子在表面的不同吸附位置具有不同的磁矩大小,其磁矩的变化范围从 2.14 (0) 𝜇𝐵 2.98 (1.87) 𝜇𝐵。且在 Fe@As Fe@Sb体系中,原子吸附位置的变化会使得易磁化轴发生面内/外的反转。主要是由于在不同吸附位置,原子与衬底之间的耦合作用不同及费米面处轨道分布的变化导致的。这些结果可能为设计磁性电子器件提供一个相对简单的方案。(2) 研究了磁性单原子在单层 2H-WX2 2H-WXYW 为钨,XY 为硫族元素)材料表面的吸附和磁性行为。我们发现 FeCo 原子吸附在这些表面上,其磁矩减小,而 Ni 原子吸附后磁矩消失。根据安德森杂质模型进行理论计算,我们发现随着传导电子的伊辛轨道耦合作用的增强,原子的局域磁态区域变小,从而导致磁矩减小,其本质是伊辛自旋轨道耦合作用导致体系费米能级与 KK')谷附近的电子感受到不同方向的有效磁场作用,使得不同自旋的电子能带发生劈裂所致。这些结果为磁性单原子器件开发时,在衬底选择上提供了重要的参考。

(3) 通过上述研究和文献调研,我们了解到,磁性单原子会受外界环境的影响难以保存其磁矩,这将影响到磁性单原子器件的开发。因此作者的重点研究内容是探讨具体的磁矩保护措施。基本思路是利用对磁矩“相对友好”的材料将磁性原子与环境隔绝开来。研究中我们考虑了 C60 C70 封装磁性原子的方案,并在Si(111)-(7×7) Si(100)表面进行了实际计算。我们对比了将 FeCoNi 单原子直接放在两种硅衬底上,和将它们放入碳笼内再放在硅衬底上两种情形。结果表明,在 Si(111)-(7×7)上,C60 笼对 FeCoNi 三种原子的磁矩都有明显的保护作用。分析发现,三种原子与 C60 之间的耦合作用比与 Si(111)-(7×7)的要弱。结果可以在安德森杂质模型的框架下得到很好的验证。在 Si(100)表面上我们发现 C60 C70笼也都有明显的保护作用,并且 C70 笼的保护效果更好,甚至能将各种原子的磁矩保留到接近孤立原子的状态。两种碳笼的区别主要来自于这些磁性原子在两种碳笼内的位置不同,进而与两种碳笼的相互作用有明显区别。这些结果为纳米系统中磁性原子磁矩调控提供一种新的实验方案,并为基于单原子磁性器件开发提供了新的思路。

通过以上研究,我们厘清了磁性单原子与环境相互作用的细节和机制,并且得到了一种确切的磁矩保护方案。后续的研究可以考虑不同笼,管等结构对磁矩的保护效果,更可以尝试在实验中进行基于单磁性原子器件的制备。希望我们的研究可以进一步促进磁性单原子器件的开发与应用。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-07
References List

[1] Stohr J. Siegmann H C. Mganetism from fundamentals to nanoscale dynamics,姬扬译,磁学-从基础知识到纳米尺度超快动力学 [M]. 北京:高等教育出版社,2012:3-24.
[2] History of Chinese invention-invention of the magnetic compass [OL]. https://www.computersmiths.com/chineseinvention/compass.htm
[3] Kortrigt J B, Awschalom D D, Stohr J, et al. Research frontiers in magnetic materials at soft X-ray synchrotron radiation facilities [J]. J. Magn. Magn. Mater., 1999, 207(1-3): 7-44.
[4] Awschalom D D, Buhrman R A, Daughton J M, et al. Spin electronics [M]. Dordrenchr: Kluwer, 2003.
[5] Chikazumi S. Physics of Ferromagnetism [M]. Oxford: Clarendon, 1997, ed. 2.
[6] Weller D, Moser A. Thermal effect limits in ultrahigh-density magnetic recording[J]. IEEE Trans. Mag., 1999, 35(6): 4423-4439.
[7] Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics [J]. Nature Nanotechnology, 2016, 11(3): 231–241.
[8] Kim S K, Beach G S D, Lee K J, et al. Ferrimagnetic spintronics [J]. Nature Materials, 2022, 21(1): 24–34.
[9] Sierra J F, Fabian J, Kawakami R K, et al. Van der Waals heterostructures for spintronics and opto-spintronics [J]. Nature Nanotechnology, 2021, 16(8): 856–868.
[10] Zhang Y L, Liu J, Dong Y Q, et al. Strain-driven dzyaloshinskii-moriya interaction for room-temperature magnetic skyrmions [J]. Phys. Rev. Lett., 2021, 127(11): 117204.
[11] Yun S J, Cho B W, Dinesh T, et al. Escalating ferromagnetic order via Se-vacancies near vanadium in WSe2 monolayers [J]. Adv. Mater., 2022, 34(10): 2106551.
[12] Lado J L. Putting a twist on spintronics [J]. Science, 2021, 374(6571):1048-1049.
[13] Zhang X Q, Lu Q S, Liu W Q, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun., 2021, 12(1): 2492.
[14] Liu F P, Spree L, Denis S K, et al. Single-electron lanthanide-lanthanide bonds inside fullerenes toward robust redox-active molecular magnets [J]. Acc. Chem. Res, 2019, 52(10): 2981−2993.
[15] Wang T, Wang C. Functional metallofullerene materials and their applications in nanomedicine, magnetics, and electronics [J]. Small, 2019, 15(48): 1901522.
[16] Sanvito S. Molecular spintronics [J]. Chem. Soc. Rev., 2011, 40(6): 3336−3355.
[17] Shiraishi M, Ikoma T. Molecular spintronics [J]. Phys. E, 2011, 43(7): 1295−1317.
[18] Zwanenburg F A, Dzurak A S, Morello A, et al. Silicon quantum electronics [J]. Rev. Mod. Phys., 2013, 85(3): 961−1019.
[19] Brown K R, Chiaverini J, Sage J M, et al. Materials challenges for trapped-ion quantum computers [J]. Nature Reviews Materials, 2021, 6(10): 892-905.
[20] Wang H M, Wang H S, Ma C X. Graphene nanoribbons for quantum electronics [J]. Nature Reviews Physics, 2021, 3(12): 791-802.
[21] Wiesendanger R. Spin mapping at the nanoscale and atomic scale [J]. Rev. Mod. Phys., 2009, 81(4): 1495-1550.
[22] Xian J J, Wang C, Nie J H, et al. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2 [J]. Nat. Commun., 2022, 13(1): 257.
[23] Qiu Z Z, Holwill M, Olsen T, et al. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene [J]. Nat. Commun., 2021, 12(1):70.
[24] Li J F, Joseph T, Ghorbani-Asl M. Edge and point-defect induced electronic and magnetic properties in monolayer PtSe2 [J]. Adv. Funct. Mater., 2022, 32: 2110428.
[25] Jack B, Xie Y L, Yazdani A. Detecting and distinguishing majorana zero modes with the scanning tunnelling microscope [J]. Nature Reviews Physics, 2021, 3(8): 541-554.
[26] Weller D, Moser A, Folks L, et al. High Ku materials approach to 100 Gbits/in2[J]. IEEE. T. Magn., 2000, 36(1): 10-15.
[27] Plumer M L, Van Ek J, Weller D. The physics of ultra-high-density magnetic recording [M]. New York: Springer–Verlag Berlin Heidelberg, 2001, Vol. 41.
[28] Khizroev S, Liu Y, Mountfied K, et al. Physics of perpendicular magnetic recording: writing process [J]. Journal of Magnetism and Magnetic Materials, 2002, 246(1-2):335-344.
[29] Terris B D, Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media [J]. J. Phys. D: Appl. Phys., 2005, 38(12): R199−R222.
[30] Sessoli P. Single-atom data storage [J]. Nature, 2017, 543(7644): 189−190.
[31] Prinz G A. Hybrid ferromagnetic-semiconductor structure [J]. Science, 1990, 250(4984): 1092−1097.
[32] Navrátil J, Otyepka M, Błoński P. OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage [J]. Nanotechnology, 2022, 33: 215001.
[33] Coulais C. Snappy data storage [J]. Nature, 2021, 589(7842):360-361.
[34] Dabrowski M, Scott J N, Hendren W R. Transition metal synthetic ferrimagnets: tunable media for all-optical switching driven by nanoscale spin current [J]. Nano Lett., 2021, 21(21): 9210-9216.
[35] Singha A, Sostina D, Wolf C. Mapping orbital-resolved magnetism in single Lanthanide atoms [J]. ACS Nano, 2021, 15(10): 16162-16171.
[36] Paschke F, Birk T. Vivien enenkel exceptionally high blocking temperature of 17 K in a surface-supported molecular magnet [J]. Adv. Mater., 2021, 33(40): 2102844.
[37] Xia B R, Gao D Q, Xue D S. Ferromagnetism of two-dimensional transition metal chalcogenides: both theoretical and experimental investigations [J]. Nanoscale, 2021, 13(30): 12772-12787.
[38] Muckel F, von Malottki S, Holl C, et al. Experimental identification of two distinct skyrmion collapse mechanisms [J]. Nature Physics, 2021, 17(3): 395-402.
[39] Donati F, Pivetta M, Wolf C, et al. Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets [J]. Nano Lett., 2021, 21(19): 8266-8273.
[40] Stöhr J, Siegmann H C. Magnetism: From fundamentals to nanoscale dynamics, solid-state sciences [M]. Berlin: Springer, 2006, Vol. 5.
[41] Prinz G A, Device physics-magnetoelectronics [J], Science, 1998, 282(5394): 1660-1663.
[42] Thompson S E, Parthasarathy S. Moore's law: the future of Si microelectronics [J]. Materials Today, 2006, 9(6): 20-25.
[43] Durr H A, Dhesi S S, Dudzik E, et al. Spin and orbital magnetization in self-assembled Co clusters on Au(111) [J]. Phys. Rev. B, 1999, 59(2): R701-R704.
[44] Loth S, Baumann S, Lutz C P, et al. Bistability in atomic-scale antiferromagnets [J]. Science, 2012, 335(6065): 196-199.
[45] Khajetoorians A A, Baxevanis B, Hubner C, et al. Current-driven spin dynamics of artificially constructed quantum magnets [J]. Science, 2013, 339(6115): 55–59.
[46] Steinbrecher M, Sonntag A, Dias M D, et al. Absence of a spin-signature from a single Ho adatom as probed by spin-sensitive tunneling [J]. Nat. Commun., 2016, 7: 10454(1-6).
[47] Sessoli R, Gatteschi D, Caneschi A, et al. Magnetic bistability in a metal-ion cluster [J]. Nature, 1993, 365(6442): 141–143.
[48] Verlhac B, Bachellier N, Garnier L, et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope [J]. Science, 2019, 366(6465): 623-627.
[49] Krylov D S. Liu F. Avdoshko S M, et al. Record-high thermal barrier of the relaxation of magnetization in the nitride clusterfullerene Dy2ScN@C80-Ih [J]. Chem. Commun., 2017, 53(56): 7901–7904.
[50] Schlesier C, Spree L, Kostanyan A, et al. Strong carbon cage influence on the single molecule magnetism in Dy-Sc nitride clusterfullerenes [J]. Chem. Commun., 2018, 54(80): 9730–9733.
[51] Spree L, Schlesier C, Kostanyan A, et al. Single-molecule magnets DyM2N@C80 and Dy2MN@C80 (M=Sc, Lu): The impact of diamagnetic metals on Dy3+ magnetic anisotropy, Dy center dot center dot Dy coupling, and mixing of molecular and lattice vibrations [J]. Chem. Eur. J., 2020, 26(11): 2436–2449.
[52] Nie M Z, Xiong J, Zhao C, et al. Luminescent single-molecule magnet of metallofullerene DyErScN@Ih-C80 [J]. Nano Res., 2019, 12(7): 1727–17316.
[53] Westerström R, Dreiser J, Piamonteze C, et al. An endohedral single-molecule magnet with long relaxation times: DySc2N@C80 [J]. J. Am. Chem. Soc., 2012, 134(24): 9840–9843.
[54] Junghans K, Schlseie C, Kostantan A, et al. Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: Selective synthesis of the single-molecule magnet Dy2TiC@C80 and its congener Dy2TiC2@C80 [J]. Angew. Chem. Int. Ed., 2015, 54(45): 13411–13415.
[55] Chen C H, Krlov D S, Avdoshenko S M, et al. Selective arc-discharge synthesis of Dy2S-clusterfullerenes and their isomer-dependent single molecule magnetism [J]. Chem. Sci., 2017, 8(9): 6451–6465.
[56] 官润南,陈木青,杨上峰.金属富勒烯单分子磁体[J].科学通报, 2020, 65(21): 2209-2224.
[57] Westerström R, Dreiser J, Piamonteze C, et al. Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets [J]. Phys. Rev. B, 2014, 89(6): 06040(R).
[58] Fridman J R, Sarachik M P, Tejada J, et al. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules [J]. Phys. Rev. Lett., 1996, 76(20): 3830-3833.
[59] Wernsdorfer W, Sessoli R, Quantum phase interference and parity effects in magnetic molecular clusters [J]. Science, 1999, 284(5411): 133-135.
[60] Leuenberger M N, Loss D. Quantum computing in molecular magnets [J]. Nature, 2001, 410(6830): 789-793.
[61] Ardavan A. Rival O, Morton J J L, et al. Will spin-relaxation times in molecular magnets permit quantum information processing? [J]. Phys. Rev. Lett., 2007, 98(5): 057201.
[62] Wiesendanger R. Single-atom magnetometry [J]. Current Opinion in Solid state& Materials Science, 2011, 15(1):1-7.
[63] Natterer F D, Yang K, Paul W, et al. Reading and writing single-atom magnets [J]. Nature, 2017, 543(7644): 226–228.
[64] Khajetoorians A A, Wiebe J, Chilian B, et al. Realizing all-spin-based logic operations atom by atom [J]. Science, 2011, 332(6033): 1062-1064.
[65] 刘霞. 单原子量子信息存储首次实现 [N]. 科技日报, 2011-05-04, 第 001 版.
[66] Meier F, Levy J, Loss D. Quantum computing with spin cluster qubits [J]. Phys. Rev. Lett., 2003, 90(40): 047901.
[67] Khajetoorians A A, Heinrich A J. Toward single-atom memory [J]. Science, 2016, 352(6293): 296-297.
[68] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000, 287(5460): 1989-1992.
[69] Zener C. Interaction between the d-shells in the transition metals [J]. Phys. Rev., 1951, 81(3): 440-444.
[70] Zener C. Interaction between the d-shells in the transition metals. 2. Ferromagnetic compounds of manganese with perovskite structure [J]. Phys. Rev., 1951, 82(3): 403-405.
[71] Zener C. Interaction between the d-shells in the transition metals. 4. The intrinsic antiferromagnetic character of iron [J]. Phys. Rev., 1952, 85(2): 324-328.
[72] Hewson A C. The kondo problem to heavy fermions [M]. Cambridge Univ. Press, Cambridge, 1993.
[73] Gambardella P, Dhesi S S, Gardonio S, et al. Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films [J]. Phys. Rev. Lett., 2002, 88(4): 047202.
[74] Coey J M D. Magnetism and magnetic materials [M]. 影印版,北京:北京大学出版社,2014: 16-17.
[75] Stoner E C. Collective electron ferromagnetism [J], Proc. Roy. Soc., 1938, 165(A922): 0372-0414.
[76] Slater J C. The ferromagnetism of nickel [J]. Phys. Rev., 1936, 49(7): 0537-0545.
[77] Slater J C. The ferromagnetism of nickel II [J]. Phys. Rev., 1936, 49(12): 0931-0937.
[78] Mott N F. A discussion of the transition metals on the basis of quantum mechanics [J]. Proc. Phys. Soc., 1935, 47: 571-588.
[79] 李正中,固体理论 [M]. 北京:高等教育出版社,2002: 410-411
[80] Anderson P W. Localized magnetic states in metals [J]. Phys. Rev., 1961, 124(1): 41-53.
[81] Kane B E. A silicon-based nuclear spin quantum computer [J]. Nature, 1998, 393(6681): 133–137.
[82] Fuechsle M, Miwa J A, Mahapatra S, et al. A single-atom transistor [J]. Nat. Nanotechnol., 2012, 7(4): 242–246.
[83] Mahapatra S, Buch H, Simmons M Y. Charge sensing of precisely positioned P donors in Si [J]. Nano Lett., 2011, 11(10): 4376–4381.
[84] Hamid E, Moraru D, Kuzuya Y. Electron-tunneling operation of single-donor-atom transistors at elevated temperatures [J]. Phys. Rev. B: Condens. MatterMater. Phys., 2013, 87(8): 085420.
[85] Cole J H, Greentree A D, Wellard C J, et al. Quantum-dot cellular automata using buried dopants [J]. Phys. Rev. B: Condens.Matter Mater. Phys., 2005, 71(11): 115302.
[86] Pierre M, Wacquez R, Jehl X, et al. Single-donor ionization energies in a nanoscale CMOS channel [J]. Nat. Nanotechnol., 2009, 5(2): 133–137.
[87] Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers [J]. Nature, 2010, 464(7285) 45–53.
[88] Zhang M H, Zhang C W, Wang P J, et al. Prediction of high-temperature chern insulator with half-metallic edge states in asymmetry-functionalized stanene [J]. Nanoscale, 2018, 10(43): 20226–20233.
[89] Li S S, Ji W X, Hu S J, et al. Effect of amidogen functionalization on quantum spin hall effect in Bi/Sb(111) films [J]. ACS Appl. Mater. Interfaces, 2017, 9(47): 41443-41453.
[90] Zhang S J, Zhang C W, Zhang S F, et al. Intrinsic dirac half-metal and quantum anomalous hall phase in a hexagonal metal-oxide lattice [J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2017, 96(20): 205433.
[91] Zhang L, Zhang S F, Ji W X, et al. Discovery of a novel spin-polarized nodal ring in a two-dimensional HK lattice [J]. Nanoscale, 2018, 10(44): 20748–20153.
[92] Wang Y P, Ji W X, Zhang C W, et al. Two-dimensional arsenene oxide: A realistic large-gap quantum spin hall insulator [J]. Appl. Phys. Lett., 2017, 110(21): 213101.
[93] Jiang W, Liu Z, Mei J W, et al. Dichotomy between frustrated local spins and conjugated electrons in a two-dimensional metal–organic framework [J]. Nanoscale, 2019, 11(3): 955–961.
[94] Ni X J, Jiang W, Huang H Q, et al. Intrinsic quantum anomalous hall effect in a two dimensional anilato-based lattice [J]. Nanoscale, 2018, 10(25): 11901–11906.
[95] Mohamand S, Pascal R. Tuning the magnetic properties of MoS2 single nanolayers by 3d metals edge doping [J]. J. Phys. Chem. C, 2016, 120(19): 10691-10697.
[96] Zhang X Y, Xu W X, Dai J P, et al. Role of embedded 3d transition metal atoms on the electronic and magnetic properties of defective bilayer graphene [J]. Carbon, 2017, 118: 376-383.
[97] Long L, Chen R X, He C Z, et al. Magnetic and optical properties of (Mn, Co) co-doped SnO2 [J]. Vacuum, 2020, 182: 109681.
[98] Xue S Q, Zhang F C, Zhang S L, et al. Electronic and magnetic properties of Ni-doped zinc-blende ZnO: A first-principles study [J]. Nanomaterials, 2018, 8(5): 281.
[99] Lin L, Guo Y P, He C Z, et al. First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2 [J]. Chin. Phys. B, 2020, 29(9): 097102.
[100] Ma D W, Ju W W, Li T X, et al. Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals [J]. Applied Surface Science, 2016, 364: 181–189.
[101] Wang D, Yang L, Cao J N. First-principles study on the magnetic properties of IB group transition metal-doped MoS2 [J]. Modern Physics Letters B, 2021, 35(11): 2141002
[102] Ptok A, Kapcia K J, Ciechan A. Electronic properties of Bi2Se3 dopped by 3dtransition metal (Mn, Fe, Co, or Ni) ions [J]. J. Phys.: Condens. Matter, 2021, 33(6): 065501.
[103] Longo R C, Carrete J, Callego L J. Magnetism of substitutional Fe impurities in graphene nanoribbons [J]. J. Chem. Phys., 2011, 134(2): 024704.
[104] Al Azri M, Elzain M, Bouziane K, et al. Magnetic structure of Mn-doped 6H-SiC [J]. Journal of Physics: Conference Series, 2015, 609: 012007.
[105] Song Y X, Tong W Y, Shen Y H, et al. First-principles study of enhanced magnetic anisotropies in transition-metal atoms doped WS2 monolayer [J]. J. Phys.: Condens. Matter, 2017, 29(47): 475803.
[106] Zhu Y Y, Zhang J M. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems [J]. Superlattices and Microstructures, 2018, 117: 152-162.
[107] Sun X Y, Yang K, Li Z Y, et al. Fe- and Co-doped tungsten disulfide monolayers: 2D ferromagnetic half-metals at room temperature [J]. Phys. Status Solidi RRL, 2022, 16: 2100611.
[108] Yin J, Wang Y H, Bi L, et al. Boron nitride nanoribbons with single vacancy defects and doped with 3d transition metals: A first-principles study [J]. Materials Today Communications, 2021, 26: 101861.
[109] Wang M, Tang S, Ren J, et al. Magnetism in boron nitride monolayer induced by cobalt or nickel doping [J]. J. Supercond. Nov. Magn., 2018, 31(5):1559–1565.
[110] Sun M L, Wang S K, Du Y H, et al. Transition metal doped arsenene: A first-principles study [J]. Applied Surface Science, 2016, 389: 594–600.
[111] Wu P, Huang M. Transition metal doped arsenene: Promising materials for gas sensing, catalysis and spintronics [J]. Applied Surface Science, 2020, 506: 144660.
[112] Liu M Y, Chen Q Y, Huang Y, et al. A first-principles study of transition metal doped arsenene [J]. Superlattices and Microstructures, 2016, 100: 131-141.
[113] Sun M L, Ren Q Q, Zhao Y M, et al. Electronic and magnetic properties of 4d series transition metal substituted graphene: A first-principles study [J]. Carbon, 2017, 120: 265-273.
[114] Lu J T, Guo L S, Xiang G, et al. Electronic and magnetic tunability of SnSe monolayer via doping of transition-metal atoms [J]. Journal of Electronic Materials, 2019, 49(1): 290-296.
[115] Luo M, Xu Y, Shen Y H, et al. Magnetic properties of SnSe monolayer doped by transition-metal atoms: A first-principle calculation [J]. Results in Physics, 2020, 17: 103126.
[116] Zhao X W, Qiu B, Hu G C, et al. Spin polarization properties of pentagonal PdSe2 induced by 3D transition-metal doping: First-principles calculations [J]. 11(11): 2339.
[117] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d 过渡金属 Co 掺杂核壳结构硅纳米线的第一性原理研究 [J], 物理学报, 2014, 63(16): 163101.
[118] Yang Y, Fan X L, Pan R, et al. First-principles investigations of transition-metal doped bilayer WS2 [J]. Phys. Chem. Chem. Phys., 2016, 18(15): 10152-10157.
[119] Cao C, Wu M, Jiang J Z, et al. Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures [J]. Phys. Rev. B, 2010, 81(20): 205424.
[120] Manade M, Vines F, Illas F. Transition metal adatoms on graphene: A systematic density functional study [J]. Carbon, 2015, 95: 525-534.
[121] Ma D W, Lu Z S, Ju W W, et al. First-principles studies of BN sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties [J]. J. Phys.: Condens. Matter, 2012, 24(14): 145501.
[122] Li S J, Zhou M, Li M L, et al. Adsorption of 3d, 4d, and 5d transition-metal atoms on single-layer boron nitride [J]. J. Appl. Phys., 2010, 123(9): 095110.
[123] Afshar M, Doosti H, Shokri A, et al. Electronic and magnetic properties of single 3dtransition metals adsorbed on anthracene: A relativistic density functional theory study [J]. Molecular Physics, 2016, 114(14): 2187-2194.
[124] Luo M, Shen Y H, Song Y X. Structural and magnetic properties of transition metal adsorbed ReS2 monolayer [J]. Japanese Journal of Applied Physics, 2017, 56(5): 055701.
[125] Chen F, Hou X, Li C M, et al. Structural, magnetic and electronic properties of 3dtransition-metal atoms ddsorbed monolayer BC2N: A First-principles study [J]. Materials, 2019, 12(10): 1601.
[126] Li L L, Zhang H, Cheng X L, et al. First-principles studies on 3d transition metal atom adsorbed twin graphene [J]. Applied Surface Science, 2018, 441: 647–653.
[127] Majd Z G, Taghizadeh S F, Amiri P, et al. Half-metallic properties of transition metals adsorbed on WS2 monolayer: A first-principles study [J]. Journal of Magnetism and Magnetic Materials, 2019, 481: 129-135.
[128] Zuo P J, Wang H, Wang Z, et al. Large magnetic anisotropy of single transition metal adatoms on WS2 [J]. Journal of Magnetism and Magnetic Materials, 2020, 506: 166796.
[129] Hu A M, Luo H J, Xiao W Z. Electronic structures and magnetic properties in transition metal adsorbed gt-C3N4 monolayer [J]. Journal of Magnetism and Magnetic Materials, 2020, 493: 165745.
[130] Afsjar M. Shokri A, Darabi A. Magnetic and structural properties of single 3dtransition metals adsorbed on corannulene: A density functional theory study [J]. Computational Materials Science, 2016, 112: 92–95.
[131] Pang Q, Li L, Zhang C L, et al. Structural, electronic and magnetic properties of 3dtransition metal atom adsorbed germanene: A first-principles study [J]. Mater. Chem. Phys., 2015, 160: 96−104.
[132] Kaung A L, Yuan H K, Chen H. First-principles study of manganese adsorption on Si(100) surface [J]. Appl. Surf. Sci., 2009, 255(13-14): 6624−6628.
[133] Donato F, Rusponi S, Stepanow S, et al. Magnetic remanence in single atoms [J]. Science, 2016, 352(6283): 318-321.
[134] Yu Y H, She L M, Fu H X, et al. Kondo effect mediated topological protection: Co on Sb(111) [J]. ACS Nano, 2014, 8(11): 11576–11582.
[135] Ren J D, Guo H M, Pan J B, et al. Kondo effect of cobalt adatoms on a graphene monolayer controlled by substrate-induced tipples [J]. Nano Lett., 2014, 14(7): 4011-4015.
[136] Chen G X, Li H F, Yang X, et al. Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study [J]. Superlattices and Microstructures, 2018, 115: 108-115.
[137] Krasheninnikov A V, Lehtinen P O, Foster A S, et al. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism [J]. Phys. Rev. Lett., 2009, 102(12): 126807.
[138] Meyer J C, Chuvilin A, AlgaraL-Siller G, et al. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes [J]. Nano Lett., 2009, 9(7): 2683-2689.
[139] Choi J, Kim Y W, Lim D K, et al. Subsurface incorporation of Co atoms into Si(100) [J]. J. Phys. Chem. C, 2011, 115(31): 15467−15470.
[140] Dash S P, Goll D, Carstanjen H D, et al. Subsurface enrichment of Co in Si(100) at initial stages of growth at room temperature: A study by high-resolution rutherford backscattering [J]. Appl. Phys. Lett., 2007, 90(13): 132109.
[141] Yenngui M, Riedel D. Cobalt adsorption on the bare Si(100)-2×1 surface at low temperature (12K) [J]. Surf. Sci., 2014, 619: 10−18.
[142] Horsfield A P, Kenny S D, Fujitani H. Density-functional study of adsorption of Co on Si(100) [J]. Phys. Rev. B, 2001, 64(24): 245332.
[143] Tayran C, Cakmak M. Co on the H-passivated Si(001) surface: Density-functional calculations [J]. Phys. B-Condensed Matter, 2018, 542: 44−50.
[144] Wulfhekel W. The exchange changes everything [J]. Nat. Nanotechnol., 2014, 9(1): 13−14.
[145] Kresse G, Furthműller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996 (6): 15-50.
[146] Kresse G, Furthműller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Revi. B, 1996 (54): 11169-11186.
[147] Sergey S. Modern ab-initio calculations on modified Tomas-Fermi-Dirac theory [J]. Open Journal of Modelling and Simulation, 2015 (3): 96-103.
[148] Thomas L H. The calculation of atomic fields [M]. Cambridge University, 1927: 542-548.
[149] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B, 136(3B): B864-B871.
[150] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133-A1138.
[151] Görling A. Density-functional theory beyond the Hohenberg-Kohn theorem [J]. Phys. Rev. A, 1999, 59 (5), 3359–3374.
[152] Kohn W, Savin A, Ullrich C A. Hohenberg-Kohn theory including spin magnetism and magnetic fields [J]. Int. J. Quantum Chem. 2004, 100(1), 20-31.
[153] Englisch H, Englisch R. Hohenberg-Kohn theorem and non-V-representable densities [J]. Phys. Stat. Mech. Its Appl. 1983, 121(1–2), 253–268.
[154] Orio M, Pantazis D A. Density functional theory [J]. Photosynthesis Research. 2009, 102(2-3): 443-453.
[155] Schluter M, Sham L J. Density functional theory [J]. Physics Today, 1982, 35(2)-36-43.
[156] Sholl D S, Steckel J A. Density functional theory: A practical introduction [M]. Hoboken: Wiley, 2009.
[157] Kurth S, Perdew J P. Density-functional correction of random-phase-approximation correlation with results for jellium surface energies [J]. Physical Review B, 1999(59): 10461-10468.
[158] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996 (77): 3865-3868.
[159] Alfé D, Gillan M J. The energetics of oxide surface by quantum Monte Carlo [J]. J. Phys.: Condens. Matt., 2006, 18(35): L435-L440.
[160] Anisimov V I, Zaanen J, Andersen O K. Band theory and mott insulators: Hubbard U instead of stoner I [J]. Phys. Rev. B, 1991, 44(3): 943-954.
[161] Dion M, Rydberg H, Schroder E, et al. Van der Waals density functional for general geometries [J]. Phys. Rev. Lett., 2004, 92(24): 246401.
[162] Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections [J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473.
[163] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[164] Geim A K, Novoselov K S.The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
[165] Geim A K. Graphene: Status and prospects [J]. Science, 2009, 324(5934): 1530-1534.
[166] 刘中流, 王业亮, 高红军. 单元素二维原子晶体材料研究进展 [J], 物理, 2017, 46(3), 145-153.
[167] Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility [J]. ACS Nano, 2014, 8(4): 4033-4041.
[168] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors [J]. Nat. Nanotechnol., 2014, 9(5): 372-377.
[169] Yin Y H, Shao C, Zhang C, et al. Anisotropic transport property of antimonene MOSFETs [J]. ACS Applied Materials & Interface, 2020, 12(19): 22378-22386.
[170] Hu Y, Liang J C, Xia Y R, et al. 2D arsenene and arsenic materials: Fundamental properties, preparation, and applications [J]. Small, 2021, 18(9): 2104556.
[171] Gablech I, Pekarek J, Klempa J, et al. Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene [J]. Trac-Trends in Analytical Chemistry, 2018, 105: 251-262.
[172] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展 [J]. 材料导报, 2019, 33, 22-27.
[173] Zhang S L, Guo S Y, Chen Z F, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment [J]. Chem. Soc. Rev., 2018, 47(3): 982-1021.
[174] Pumera M, Sofer Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus [J]. Adv. Mater., 2017, 29(21): 1605299.
[175] Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors [J]. Nano Lett., 2008, 8(10): 3498-3502.
[176] Yang L F, Mi W B, Wang X C. Schottky potential barrier and spin polarization at Co/antimonene interfaces [J]. Rsc Advances, 2016, 6(45): 38746-38752.
[177] Kresse G, Furthmuller J, Hafaner J. Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation [J]. Phys. Rev. B, 1994, 50(18): 13181–13185.
[178] Kim Y S, Hummer K, Kresse G. Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals [J]. Phys. Rev. B, 2009, 80(3): 035203.
[179] Perdew J P, Burke K, Ernzerhhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
[180] Klimeš J, Dowler D R, Michaelides A. Van der Waals density functionals applied to solids [J]. Phys. Rev. B, Phys., 2011, 83(19): 195131.
[181] Klimeš J, Dowler D R, Michaelides A. Chemical accuracy for the Van der Waals density functional [J]. J. Phys.: Condens. Matter, 2010, 22(2): 022201.
[182] Monkhorst H J, Pack J D. Special points for brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13(12): 5188−5192.
[183] Pack J D, Monkhorst H J. Special points for brillouin-zone integrations [J]. Phys. Rev. B, 1977, 16(4): 1748-1749.
[184] Chadi D J. Special points for brillouin-zone integrations [J]. Phys. Rev. B, 1977, 16(4): 1746-1747.
[185] Tang W, Sanville E, Henkelman G. A grid-based bader analysis algorithm without lattice bias [J]. Phys.: Condens. Matter, 2009, 21(8): 084204.
[186] Xie Q D, Lin W N, Yang B S, et al. Giant enhancements of perpendicular magnetic anisotropy and spin-orbit torque by a MoS2 layer [J]. Adv. Mater., 2019, 31(21):1900776.
[187] Hasan M Z. Kane C L. Colloquium: Topological insulators [J]. Review of Modern Physics, 2010, 82(4): 3045–3067.
[188] Wang D S, Wu R Q, Freeman A J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model [J]. Phys. Rev. B, 1993, 47(22):14932–14947.
[189] Dieny B, Chshiev M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications [J]. Rev. Mod. Phys., 2017, 89(2):025008.
[190] Cong W T, Tang Z, Zhao X G. Enhanced magnetic anisotropies of single transition-metal adatoms on a defective MoS2 monolayer [J]. Sci. Rep., 2015, 5: 9361.
[191] Yan S M, Qiao W, Jin D Y, et al. Role of exchange splitting and ligand-field splitting in tuning the magnetic anisotropy of an individual iridium atom on TaS2 substrate [J]. Phys. Rev. B, 2021, 103(22): 224432.
[192] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nat. Photon., 2010, 4(9): 611-622.
[193] Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession in single graphene layers at room temperature [J]. Nature, 2007, 448(7153): 571-574.
[194] Han S W, Hwang Y H, Kim S H, et al. Controlling ferromagnetic easy axis in a layered MoS2 single crystal [J]. Phys. Rev. Lett., 2013, 110(24): 247201.
[195] Sie E J, Lui C H, Lee Y H, et al. Large, valley-exclusive bloch-siegert shift in monolayer WS2 [J]. Science, 2017, 355(6329): 1066-1069.
[196] Lucking M C, Xie W Y, Choe D H, et al. Traditional semiconductors in the two-dimensional limit [J]. Phys. Rev. Lett., 2018, 120(8): 086101.
[197] Liy G, Li Y L, Sa B S, et al. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective [J]. Catal. Sci. Technol., 2017, 7(3): 545-559.
[198] Lu J P, Yang J, Carvalho A, et al. Light-matter interactions in phosphorene [J]. Acc. Chem. Res., 2016, 49(9): 1806-1815.
[199] Wang Q H, Kalantar-zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[200] Heine T. Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronic properties [J]. Acc. Chem. Res., 2015, 48(1): 65-72.
[201] Ganatra R, Zhang Q. Few-layer MoS2: A promising layered semiconductor [J]. ACS Nano, 2014, 8(5): 4074-4099.
[202] Rpldán R, Silva-guillėn J A, López-sancho M P, et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) [J]. Ann. Phys., 2014, 526(9-10): 347-357.
[203] Han W, Kawakami R K, Cmitra M, et al. Graphene spintronics [J]. Nature Nanotechnology, 2014, 9(10): 794-807.
[204] Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor [J]. Phys. Rev. B, 2013, 87(19): 195201.
[205] Liu X Q, Ni J. Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2 [J]. J. Appl. Phys., 2014, 116(4): 044311.
[206] Gil C J, Pham A, Yu A B, et al. An ab initio study of transition metals doped with WSe2 for long-range room temperature ferromagnetism in two-dimensional transition metal dichalcogenide [J]. J. Phys.: Condens.Matter, 2014, 26(30): 306004.
[207] Dolui K, Rungger I, Das P C, et al. Possible doping strategies for MoS2 monolayers: An ab initio study [J]. Phys. Rev. B, 2013, 88(7): 075420.
[208] Yue Q, Chang S L, Qin S, et al. Functionalization of monolayer MoS2 by substitutional doping: A first-principles study [J]. Phys. Lett. A, 2013, 337(19-20): 1362-1367.
[209] Cheng Y C, Zhang Q Y, Schwingenschlogl U. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides [J]. Phys. Rev. B, 2014, 89(15): 155429.
[210] Fang Q L, Zhao X M, Huang Y H, et al. Structural stability and magnetic-exchange coupling in Mn-doped monolayer/bilayer MoS2 [J]. Phys. Chem. Chem. Phys., 2018, 20(1): 553-561.
[211] Smori A, Gerber I C, Lounis S, et al. Dependence of the magnetic interactions in MoS2 monolayer on Mn-doping configurations [J]. J. Phys.: Condens. Matter, 2019, 31(46): 465802.
[212] Yue Y L, Jiang C, Han Y L, et al. Magnetic anisotropies of Mn-, Fe-, and Co-doped monolayer MoS2 [J]. J. Magn. Magn. Mater., 2020, 496: 165929.
[213] Xie L Y, Zhang J M. Electronic structures and magnetic properties of the transition-metal atoms (Mn, Fe, Co and Ni) doped WS2: A first-principles study [J]. Superlattice Microst. 2016, 98:148–157.
[214] Zhao X, Dai X Q, Xia C X, et al. Structural defects in pristine and Mn-doped monolayer WS2: a first-principles study [J]. Superlattice Microst., 2015, 85: 339–347.
[215] Li L Z, Qin R, Li H, et al. Functionalized graphene for high-performance two-dimensional spintronics devices [J]. ACS Nano, 2011, 5(4): 2601–2610.
[216] Guan S S, Ke S S, Yu F F, et al. Controlling magnetism of monolayer Janus MoSSe by embedding transition-metal atoms [J]. Appl. Surf. Sci., 2019, 496: 143692.
[217] Guo S Q, Wang Y Y, Zhang J Y. Realization of valley polarization in monolayer WS2via 3d transition metal atom adsorption [J]. Journal of Physics D-Applied Physics, 2020, 53(38): 384001.
[218] Chen X F, Zhong L S, Li X, et al. Valley splitting in the transition-metal dichalcogenide monolayer via atom adsorption [J]. Nanoscale, 2017, 9(6): 2188–2194.
[219] Blöchl P E. Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50(24): 17953−17979.
[220] Liechtestein A I, Anisimov V I, Zaanen J. Density-functional theory and stronginteractions: Orbital ordering in mott-Hubbard insulators [J]. Phys. Rev. B, Condens.Matter, 1995, 52(8): 5467-5470.
[221] Cococcioni M, De Gironcoli S. Linear response approach to the calculation of theeffective interaction parameters in the LDA+U method [J]. Phys. Rev. B, 2005, 71(3):035105.
[222] Kulik H J, Cococcioni M, Scherlis D A, et al. Density functional theory intransition-metal chemistry: A self-consistent Hubbard U approach [J]. Phys. Rev.Lett., 2006, 97(10): 103001.
[223] Steiner M M, Albers R C, Sham L J. Quasiparticle properties of Fe, Co, and Ni [J].Phys. Rev. B, 1992, 45(23): 13272−13284.
[224] Parlinski K, Li Z Q, Kawazoe Y. First-principles determination of the soft mode incubic ZrO2 [J]. Phys. Rev. Lett., 1997, 78 (21): 4063–4066.
[225] Togo A, Tanaka I. First principles phonon calculations in materials science [J]. Scr.Mater., 2015, 108: 1-5.
[226] Cahangirov S, Topsakal M, Akturk E, et al. Two- and one-dimensional honeycombstructures of silicon and germanium [J]. Phys. Rev. Lett., 2009, 102(23): 236804.
[227] Kamal C, Ezawa M. Arsenene: Two-dimensional buckled and puckered honeycombArsenic systems [J]. Phys. Rev. B, 2015, 91(8): 085423.
[228] You B Q, Wang X C, Chen G F, et al. Prediction of electronic structure of van derWaals interfaces: Benzene adsorbed monolayer MoS2, WS2 and WTe2 [J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 88: 87-96.
[229] You B Q, Wang X C, Zheng Z D. et al. Black phosphorene/monolayertransition-metal dichalcogenides as two dimensional van der Waals heterostructures:A first-principles study [J]. Phys. Chem. Chem. Phys., 2016, 18(10): 7381-7388.
[230] Henkelman G, Arnaldsson A, Jonsson H. A fast and robust algorithm for Baderdecomposition of charge density [J]. J. Comput. Mater. Sci., 2006, 36(3): 354−360.
[231] Sanville E, Kenny S D, Smith R, et al. Improved grid-based algorithm for Badercharge allocation [J]. J. Comput. Chem., 2007, 28(5): 899−908.
[232] Ding Y M, Shi J J, Xia C X, et al. Enhancement of hole mobility in InSe monolayervia an InSe and black phosphorus heterostructure [J]. Nanoscale, 9(38):14682-14689.
[233] Sharma G, Tewari S. Yu-Shiba-Rusinov states and topological superconductivity inIsing paired superconductors [J]. Phys. Rev. B, 2016, 94(9): 094515.
[234] Zhou B T, Yuan N F Q, Jiang H L, et al. Ising superconductivity and majoranafermions in transition-metal dichalcogenides [J]. Phys. Rev. B, 2016, 93(18):180501.
[235] Jauho A P, Wingreen N S, Meir Y. Time-dependent transport in interacting and noninteracting resonant-tunneling systems [J]. Phys. Rev. B, 1994, 50(8): 5528-5544.
[236] Świrkowica R, Bamaś J, Wilczynski M. Nonequilibrium kondo effect in quantum dots [J]. Phys. Rev. B, 2003, 68(19): 195318.
[237] Li J Y, Yao Q S, Wu L, et al. Designing light-element materials with large effective spin-orbit coupling [J]. Nature Communications, 2022, 13(1): 919.
[238] Zhang Y, Li L, Sun J H, et al. Kondo effect in monolayer transition metal dichalcogenide Ising superconductors [J]. Phys. Rev. B, 2020, 101(3): 035124.
[239] Baltz V, Manchon A, Tsoi M, et al. Antiferromagnetic spintronics [J]. Rev. Mod. Phys., 2018, 90(1): 15005.
[240] Duine R A, Lee K J, Parkin S S P, et al. Synthetic antiferromagnetic spintronics [J]. Nature Physics, 2018, 14(3): 217-219.
[241] Chen J S, Wang L J, Zhang M, et al. Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator hetero-structures [J]. Nano Lett., 2019, 19(9): 6144−6151.
[242] Fujita H, Sato M. Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets [J]. Phys. Rev. B, 2017, 95(5): 054421.
[243] Lundeberg M B, Yang R, Renard J, et al. Defect mediated spin relaxation and dephasing in graphene [J]. Phys. Rev. Lett., 2013, 110(15): 156601.
[244] Jang W, Zhou M, Liu Z, et al. Structural, electronic, and magnetic properties of tris(8-hydroxyquinoline) iron (III) molecules and their magnetic coupling with ferromagnetic surface: first-principles study [J]. J. Phys.: Condens. Matter, 2016, 28(17): 176004.
[245] Sun D L, Kareis C M, Van Schoooten K J, et al. Spintronic detection of interfacial magnetic switching in a paramagnetic thin film of tris (8-hydroxyquinoline) iron (III) [J]. Phys. Rev. B, 2017, 95(5): 054423.
[246] Wang J Y, Deloach A, Jiang W. Tuning interfacial spin filters from metallic to resistive within a single organic semiconductor family [J]. Phys. Rev. B, 2017, 95(24): 241410.
[247] Gregg J F, Petej I, Jouguelet E, et al. Spin electronics - a review [J]. J. Phys. D: Appl. Phys., 2002, 35(18): R121–R155.
[248] Hogberg H, Malm J O, Talyzin A, et al. Deposition of transition metal carbides and superlattices using C60 as carbon source [J]. J. Electrochem. Soc., 2000, 147(9): 3361–3369.
[249] Pedio M, Hevesi K, Zema N, et al. C60/metal surfaces: adsorption and decomposition [J]. Surf. Sci., 1999, 437(1-2): 249–260.
[250] Sakai S, Yakushiji K, Mitani S, et al. Tunnel magnetoresistance in Conanoparticle/Co-C60 compound hybrid system [J]. Appl. Phys. Lett., 2006, 89(11):113118.
[251] Shinohara H. Endohedral metallofullerenes [J]. Rep. Prog. Phys., 2000, 63(6): 843–892.
[252] Lips K, Waiblinger M, Pietzak B, et al. Atomic nitrogen encapsulated in fullerenes:Realization of a chemical Faraday cage [J]. Phys. Status Solidi A, 2000, 177(1): 81–91.
[253] King D J, Kenny S D, Sanville E. Adsorption of N@C60 on Si(100) [J]. Surf. Sci.,2009, 603(1): 178−182.
[254] Godwin P D, Kenny S D, Smith R, et al. The structure of C60 and endohedral C60 onthe Si{100} surface [J]. Surf. Sci., 2001, 490(3): 409−414.
[255] Zhang X X, Wen G H, Huang S M, et al. Magnetic properties of Fe nanoparticlestrapped at the tips of the aligned carbon nanotubes [J]. J. Magn. Magn. Mater, 2001,231(1): L9-L12.
[256] Chai Y, Guo T, Jin C M, et al. Fullerenes with metals inside [J]. J. Phys. Chem., 1991,95(20):7564-7568.
[257] Wang L S, Alford J M, Chai Y, et al. The electronic structure of Ca@C60 [J]. Chem.Phys. Lett., 1993, 207(4-6): 354-359.
[258] Kubozono Y, Ohta T, Hayashibara T, et al. Preparation and extraction of Ca@C60 [J].Chem. Lett., 1995, 6: 457-458.
[259] Kubozono Y, Maeda H, Takabayashi Y, et al. Extractions of Y@C60, Ba@C60,La@C60, Ce@C60, Pr@C60, Nd@C60, and Gd@C60 with Aniline [J]. J. Am. Chem.Soc., 1996, 118(29): 6998-6999.
[260] Funasaka H, Sugiyama K, Yamamoto K, et al. Magnetic properties of rare-earthmetallofullerenes [J]. J. Phys. Chem. A., 1995, 99(7): 1826−1830.
[261] Huang H J, Yang S H, Zhang X X. Magnetic properties of heavy rare-earthmetallofullerenes M@C82 (M = Gd, Tb, Dy, Ho, and Er) [J]. J. Phys. Chem. B, 2000,104(7): 1473−1482.
[262] De Nadai C, Mirone A, Dhesi S S, et al. Local magnetism in rare-earth metalsencapsulated in fullerenes [J]. Phys. Rev. B 2004, 69(18): 184421.
[263] Kitayra R, Okimoto H, Shinohara H, et al. Magnetism of the endohedralmetallofullerenes M@C82 (M = Gd, Dy) and the corresponding nanoscale peapods:synchrotron soft X-ray magnetic circular dichroism and density-functional theorycalculations [J]. Phys. Rev. B, 2007, 76(17): 172409.
[264] Zhang K K, Wang C, Zhang M H, et al. A Gd@C82 single-molecule electret [J]. Nat.Nanotechnol., 2020, 15(12): 1019−1049.-105-
[265] Wang K D, Zhao J, Chen L, et al. Unveiling metal-cage hybrid states in a single endohedral metallofullerene [J]. Phys. Rev. Lett., 2003, 91(18): 185504.
[266] David W I F, Ibberson R M, Matthewman J C, et al. Crystal-structure an bonding of ordered C60 [J]. Nature, 1991, 353(6340):147-149.
[267] Li F, Ramage D, Lannin J S, et al. Radial-distribution function of C60 structure of fullerene [J]. Phys. Rev. B, 1991, 44(23): 13167-13170.
[268] Liu S Z, Lu Y J, Kappes M M, et al. The structure of the C60 molecule X-ray crystal structure determination of a twin at 110 K [J]. Science, 1991, 254(5030): 408-410.
[269] Uchoa B, Kotov V N, Peres N M R, et al. Localized magnetic states in graphene [J]. Phys. Rev. Lett., 2008, 101(2): 026805.
[270] Li L, Sun J H, Wang Z H, et al. Magnetic states and kondo screening in weyl semimetals with chiral anomaly [J]. Phys. Rev. B, 2018, 98(7): 075110.
[271] Hay P J. Gaussian basis sets for molecular calculations representation of 3d orbitals in transition metal atoms [J]. J. Chem. Phys., 1977, 66(10): 4377–4384.
[272] Choi T Y, Paul W, Rolf-Pissarczyk S, et al., Atomic-scale sensing of the magnetic dipolar field from single atoms [J]. Nature Nanotechnology, 2017, 12(5): 420–424.
[273] Allred A L, Rochow E G. A scale of electronegativity based on electrostatic force [J]. J. inorg. Nucl. Chem., 1958, 5(4): 264−268.
[274] Tang W Q, Ke C M, Chen K, et al. Magnetism manipulation of Con-adsorbed monolayer WS2 through charge injection [J]. J. Phys.: Condens. Matter, 2020, 32(27): 275001.

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
O469
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/402918
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
邵希吉. 铁钴镍单原子在表面上的磁矩调控[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849474-邵希吉-物理系.pdf(13552KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[邵希吉]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[邵希吉]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[邵希吉]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.