[1] HUANG P Q, YAO Z J, HSUNG R P. Efficiency in Natural Product TotalSynthesis[M]. Wiley-VCH, 2001.
[2] NICOLAOU K C, SORENSEN E J. Classics in Total Synthesis: Targets,Strategies, Methods[M]. Wiley‐VCH, 1996.
[3] 刘滔, 胡永洲. 2-羟基查耳酮的 Mannich 反应及其产物的生物活性[J]. 有机化学, 2006, 26(7): 983-987.
[4] WOODWARD R B. The Total Synthesis of Vitamin B12[J]. Pure Appl Chem,1973, 33(1): 145-177.
[5] COREY E J, CHENG X M. The Logic of Chemical Synthesis[M]. New York:John Wiley & Sons, Inc.: 1989.
[6] SUH E M, KISHI Y. Synthesis of Palytoxin from Palytoxin CarboxylicAcid[J]. J. Am. Chem. Soc, 1994, 116(24): 11205-11206.
[7] HOLTON R A , et al. First Total Synthesis of Taxol. 1. Functionalization ofthe B ring[J]. J. Am. Chem. Soc, 1994, 116(4): 1597-1598.
[8] NICOLAOU K C, et al. Total Synthesis of Taxol[J]. Nature, 1994, 367(6464):630-634.
[9] RGENSEN L J, MCKERRALL S J, Baran P S, et al. 14-Step Synthesis of(+)-Ingenol from (+)-3-Carene[J]. Science, 2013, 341(23): 878-882.
[10] MCKERROW J H. Recognition of the role of Natural Products as Drugs toTreat Neglected Tropical Diseases by the 2015 Nobel Prize in Physiology orMedicine[J]. Nat. Prod. Rep, 2015, 32(12): 1610-1611.
[11] 国家药典委员会. 中华人们共和国药典[M]. 北京: 中国医药科技出版社,2015: 2434.
[12] 谭昌, 朱大元. 石松生物碱研究进展[J]. 中国天然产物, 2003, 1(2): 1-6.
[13] MA X, GANG D R. The Lycopodium Alkaloids[J]. Nat. Prod. Rep, 2004(21) :752-758.
[14] KOBAYASHI J, MORITA H. In the Alkaloids[M]. New York: Academic Press,2005, (61): 1-9.
[15] AYER W A, TRIFONOV L S. In The Alkaloids[M]. New York : AcademicPress, 1994, (45): 233-246.
[16] WANG X J, LIU Y B, YU S S, et al. Lycojaponicumins D and E: Two NewAlkaloids from Lycopodium japonicum[J]. Org. Lett, 2012, 14(22):5688-5691.
[17] STORK G, KRETCHMER R A, SCHLESSINGER R H. The SterospecificTotal Synthesis of Dl-lycopodine[J]. J. Am. Chem. Soc, 1968, 90(6):1647-1651.
[18] AYER W A, BOWMAN W R, JOSEPH T C, et al. Synthesis ofDl-lycopodine[J]. J. Am. Chem. Soc, 1968, 6(90): 1648-1654.
[19] HARAYAMA T, TAKATANI M, INUBUSHI Y. Stereoselective Syntheses ofLycopodium Alkaloids, (±)-Fawcettimine and (±)-8-Deoxyserratinine[J].Tetrahedron Letter, 1979, 20(44): 4307-4310.
[20] HEATHCOCK C H, SMITH K M, BLUMENKOPF T A. Total Synthesis of(+)-Fawcettimine (Burnell's base A)[J]. J. Am. Chem. Soc, 1986, 108(16):5022-5026.
[21] XIN L H, SMITH J J K ,Toste F D. Total Synthesis of (+)‐Fawcettimine[J].Angew. Chem. Int. Ed, 2007, 119(46): 7815-7817.
[22] LIU K, CHAU C, SHA C. Intermolecular Radical Addition Reactions ofα-Iodo Cycloalkenones and a Synthetic Study of the Formal Synthesis ofEnantiopurefawcettimine[J]. Chem. Commun, 2008, 39(91):6743-6749.
[23] JIANG S Z, LEI T, WEI K, et al. Collective Total Synthesis of TetracyclicDiquinane Lycopodium Alkaloids (+)-Paniculatine, (−)-Magellanine,(+)-Magellaninone and Analogues Thereof[J]. Org. Lett, 2014, 16:5612-5615.
[24] LI H, WANG X, LEI X. Total Syntheses of Lycopodium Alkaloids(+)‐Fawcettimine, (+)‐Fawcettidine, and (−)‐8‐Deoxyserratinine[J]. Angew.Chem, Int. Ed. 2012, 51(2): 491-495.
[25] NAKAYAMA A, KOGURE N, KITAJIMA M, et al. Asymmetric TotalSynthesis of a Pentacyclic Lycopodium Alkaloid: Huperzine‐Q[J]. Angew.Chem. Int. Ed, 2011, 50(35): 8025-8028.
[26] XU K, CHENG B, LI Y, et al. Stereocontrolled Total Syntheses of(±)-Fawcettimine, (±)-Lycoflexine, and (±)-Lycoflexine N-Oxide[J]. Org.Lett., 2014, 16(1): 196-199.
[27] HUO S H, TU Y Q, LIU L, et al. Divergent and Efficient Syntheses of theLycopodium Alkaloids (−)‐ Lycojaponicumin C, (−)‐ 8‐ Deoxyserratinine,(+) ‐ Fawcettimine, and (+) ‐ Fawcettidine. Angew. Chem. Int. Ed, 2013,52(43): 11373-11376.
[28] ZHAO X H, ZHANG Q, DU J Y, et al. Total Synthesis of(±)-Lycojaponicumin D and Lycodoline-Type Lycopodium Alkaloids[J]. J.Am. Chem. Soc, 2017, 139(20): 7095-7103.
[29] MEI G J , LIU X, LI C C, et al. Type II Intramolecular
[5+2] Cycloaddition:Facile Synthesis of Highly Functionalized Bridged Ring Systems[J].Angew.Chem. Int. Ed, 2015, 54(6): 1754-1758.
[30] CHEN B, LIU X, LI C C, et al. Enantioselective Total Synthesis of(-)-Colchicine, (+)-Demecolcinone and Metacolchicine: Determination of theAbsolute Configurations of the Latter Two Alkaloids[J]. Chem. Sci. 2017,7(8): 4961-4966.
[31] LIU J Y, WU J L, LI C C, et al. Asymmetric Total Synthesis ofCyclocitrinol[J]. J. Am. Chem. Soc, 2018, 140(16): 5365-5369.
[32] LIU X, LIU J Y, LI C C, et al. Asymmetric Total Synthesis of CerorubenicAcid-III[J]. Am. Chem. Soc, 2019, 7(141): 2872-2877.
[33] MICLO Y, GARCIA P, EVANNO Y, et al. Synthesis of OrthogonallyProtected Angular Nitrogen Polyheterocycles via CpCo-Catalyzed PyridineFormation[J]. Synlett, 2010 (15): 2314-2318.
[34] 张鹏伟, 江仁望, 叶文才, 等. 中华大蟾蜍蟾酥中蟾毒内酯类化学成分研究[J]. 中国中药杂志, 2014, 39(5): 841-845.
[35] 赵彦敏. 蟾酥化学成分及抗肿瘤活性筛选研究[D]. 南京: 南京中医药大学硕士论文, 2017: 13-17.
[36] WANG D L, QI F H, TANG W, et al. Chemical Constituents and Bioactivitiesof the Skin of Bufo bufo Gargarizans Cantor[J]. Chemistry & Biodiversity.2011, 8(4): 559-567.
[37] TIAN H Y, WANG L, ZHANG X Q, et al. Bufogargarizins A and B: TwoNovel 19-Norbufadienolides with Unprecedented Skeletons from the Venomof Bufo bufo Gargarizans[J]. Chemistry, 2010, 16(36): 10989-10993.
[38] TIAN H Y, RUAN L J, et al. Bufospirostenin A and Bufogargarizin C,Steroids Rearrangede Skeletons from the Toad Bufo bufo gargarizans[J].Journal of Natural Products, 2017, 80(4):1182-1186.
[39] DANIEWSKI A R, KABAT M M, MASNYK M, et al. Total Synthesis ofrac-9,11-Dehydrodigitoxigenin 3-Tetrahydropyranyl Ether[J]. ChemInform,1989, 20(11): 4855-4858.
[40] RYCHNOVSKY S D, MICKUS D E. Synthesis of ent-Cholesterol, theUnnatural Enantiomer[J]. J. Org. Chem, 1992, 57(9): 2732-2736.
[41] SONDHEIMER F, MCCRAE W, SALMOND W G. Synthesis ofBufadienolides. Synthesis of Bufalin and Resibufogenin[J]. J. Am. Chem. Soc,1969,91(5): 1228-1230.
[42] PETTIT G R, DIAS J R. Bufadienolides. 13. Conversion of3-Beta-Hydroxy-17-Oxoandrost-5-ene to3-Beta-Acetoxy-5-Beta-14-Alpha-Bufa -20, 22-Dienolide[J]. J. Org. Chem,1971, 36(21): 3207-3211.
[43] YOSHII E, ORIBE T, KOIZUMI T, et al. Studies on the Synthesis ofCardiotonic Steroids III New and Effective Route to Bufadienolides. Chem.Pharm. Bull, 1977, 25(9): 2249-2256.
[44] SHIAO M J. New Synthesis of Azabufalin from C-17 Steroidal Ketones[J]. J.Org. Chem, 1982, 47(26): 5189-5191.
[45] KABAT M M, KUREK A, WICHA J. Cardiotonic steroids. 5. A Synthesis ofBufadienolides and Cardenolides from 3.Beta.-Acetoxy-5-Androsten-17-Onevia Common Intermediates[J]. J. Org. Chem. 1983, 48(23): 4248-4251.
[46] P E BAUER, K S KYLER, D S WATT. A Synthesis of 3 Beta-Hydroxy-5Beta,14.Alpha.-Bufa-20, 22-Dienolide from Deoxycorticosterone[J]. J. Org. Chem,1983, 48(1): 34-39.
[47] TAN D S, DUDLEY G B, Danishefsky S J. Synthesis of the FunctionalizedTricyclic Skeleton of Guanacastepene A: A TandemEpoxide-Opening-Elimination/Knoevenagel Cyclization[J]. Angew. Chem. Int. Ed. 2002, 41(2):2185-2188.
[48] SHI B, HAWRYLUK N A, SNIDER B B. Formal Synthesis of(±)-Guanacastepene A[J]. J. Org. Chem, 2003, 68(3): 1030-1042.
[49] MAGNUS P, OLLIVIER C. Synthesis of the Hydroazulene Portion ofGuanacastepene A Using a
[2.3]Sigmatropic Sulfoxide Rearrangement:Observations on Silyl Enol Ether Electrophilic Chemistry for the Introductionof the C-13 Hydroxyl Group[J]. Tetrahedron Letters, 2002, 43(52):9605-9609.
[50] HUGHES C C, MILLER A K, TRAUNER D. An Electrochemical Approachto the Guanacastepenes[J]. Org. Lett. 2005 (7): 3425-3428.
[51] MEHTA G, UMARYE J D, GAGLIARDINI V. Towards a Total Synthesis ofGuanacastepene A: Construction of Fully Functionalized AB and BC ringSegments[J]. Tetrahedron Letters 2002, 43(39) : 6975–6978.
[52] SHIPE W D. SORENSEN E J. A Convergent Synthesis of the TricyclicArchitecture of the Guanacastepenes Featuring a Selective RingFragmentation[J]. Org. Lett, 2002, 4(12): 2063-2066.
[53] NGUYEN T M, LEE D. Progress Towards the Total Synthesis ofGuanacastepene A Approaches to the Construction of Quaternary Carbons andthe 5-7-6 Tricyclic Carbon Skeleton[J]. Tetrahedron Letters, 2002 (43):4033–4036.
[54] BOYER F D, HANNA I, RICARD L. Formal Synthesis of(±)-Guanacastepene A: A Tandem Ring-Closing Metathesis Approach[J]. Org.Lett. 2004, 6(11): 1817-1820.
[55] DU X H, CHU H V, KWON O. Synthesis of the
[5-7-6] Tricyclic Core ofGuanacastepene A via an Intramolecular Mukaiyama Aldol Reaction[J]. Org.Lett. 2003,5(11): 1923-1926.
[56] BRUMMOND K M, GAO D. Unique Strategy for the Assembly of the CarbonSkeleton of Guanacastepene A Using an Allenic Pauson−Khand-TypeReaction[J]. Org. Lett. 2003, 5(19): 3491-3494.
[57] LI C C, LIANG S, Yang Z, et al. Exploring an Expedient IMDA ReactionApproach to Construct the Guanacastepene Core[J]. Org. Lett., 2005, 7(17):3709-3712.
[58] GAMPE C M, CARREIRA E M. Total Syntheses of Guanacastepenes N andO[J]. Angew. Chem. Int. Ed, 2011, 50(13): 2962–2965.
[59] ZHURAKOVSKYI O, ELLIS S R, THOMPSON A L, et al. Access to aGuanacastepene and Cortistatin-Related Skeleton via Ethynyl LactoneIreland−Claisen Rearrangement and Transannular (4+3)-Cycloaddition of anAzatrimethylenemethane Diyl[J]. Org. Lett., 2017, 19(8): 2174−2177.
[60] NARASAKA K, SHIBATA T. Conversion of 1-(-Alkynyl)-1,2-propadienylSulfides to Bicyclic Dienones by the Use of Iron Carbonyl Complex[J]. Chem.Lett, 1994, 23(2): 315-318.
[61] ARUN K G, DAI I P, CHANG H O. The Exclusive Formation ofCyclopentenones from Molybdenum Hexacarbonyl-Catalyzed Pauson–Khandreactions of 5-Allenyl-1-Ynes[J]. Tetrahedron Letters, 2005, 46(24):4171–4174.
[62] XIONG H, HSUNG R P, WEI L L, et al. The First Regioselectiveα-Deprotonation and Functionalization of Allenamides. An Application inIntramolecular Pauson−Khand-Type Cycloadditions[J]. Org. Lett, 2000, 2(18):2869-2871.
[63] MUKAI C, HIROSE T, TERAMOTO S, et al. Rh(I)-Catalyzed AllenicPauson–Khand Reaction: First Construction of theBicyclo
[6.3.0]Undecadienone Ring System[J]. Tetrahedron, 2005, 61(46):10983-10994.
[64] HIROSE T, MIYAKOSHI N, MUKAI C. Total Synthesis of (+)-AchalensolideBased on the Rh(I)-Catalyzed Allenic Pauson−Khand-Type Reaction[J]. J.Org. Chem., 2008, 73(3): 1061–1066.
[65] RGENSEN L J, MCKERRALL S J, KUTTRUFF C A, et al. 14-Step Synthesisof (+)-Ingenol from (+)-3-Carene[J]. Science, 2013, 341(23): 878-882.
Edit Comment