中文版 | English
Title

基于转录组学的人参属多药材多组分的药效 和分子机制研究

Alternative Title
TRANSCRIPTOME-BASED INVESTIGATION OF THE MOLECULAR MECHANISM OF THE GENUS PANAX BIOACTIVITIES
Author
Name pinyin
LIN ya
School number
11749220
Degree
硕士
Discipline
086001 生物技术与工程
Subject category of dissertation
0860 生物与医药
Supervisor
胡宇慧
Mentor unit
药理学系
Publication Years
2019-05
Submission date
2022-10-14
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

中药由于其特殊的方剂用法, 使其良好的药效未能得到广泛的应用与推广。
目前从中药中提取出来的化合物数量繁多, 并且在临床使用中也具有明显的效果,
具有药理活性化合物的寻找及其作用机制的研究, 是一个亟待解决的问题。 人参
(Panax ginseng) 是一种用于医疗保健和治疗疾病的中药材, 主要通过其含有的人
参皂苷等生物活性物质发挥其多种治疗功效。 过去对人参的分子药理研究主要在
个别基因和分子通路上分析单一化合物的作用机理, 脱离了中医整体观的指导原
理, 未能阐明中药发挥系统功效的作用机理。
本文利用多种系统生物学手段对人参属四种药典记载药材(人参、 西洋参、
三七和竹节参) 中近 60 种单体和混合活性成份进行系统的功效分析和分子机制研
究。 通过根据化合物引起的基因表达差异建立该化合物的“基因标签”, 与 1309 个
现行药物的基因表达谱比对以分析其功能, 并找寻出化合物作用的靶点和通路等,
把受中药化合物调控的基因和细胞通路、 疾病、 以及药物交叉连接起来, 完成药
物/ 基因/ 病理/ 靶点的系统网络分析, 从而揭示中药化合物可能的疗效和作用
原理。
本文首先建立了四种人参属人参皂苷的结构分类全景图, 并选择出具有结构
代表性的化合物进行研究。 利用 XTT 比色法测定化合物对人乳腺癌细胞的增殖影
响, 并初步探究了人参皂苷发挥毒性作用可能与 6 位碳原子以及 20 位碳原子上基
团的数量和种类有关。 再通过获取约 40 个化合物的近 180 个转录组数据, 进一步
探究化合物潜在的功效关系以及可能的作用机制。 利用连接图谱(connectivity map
profiles)发现 ginsenoside Rg1 和 ginsenoside Rb1 具有雌激素样作用, 20(S) 原人参
二醇和 20(S) 原人参三醇具有细胞毒性样作用。 20(S) 原人参三醇与细胞致死和多
巴胺受体拮抗剂类化合物的表达谱高度相似, 利用 GO 分析和 KEGG 分析, 本文
初步探索了 20(S) 原人参三醇可能的作用机制。 发现其可能通过上调血管生成相
关基因, 下调细胞复制和 ERBB 通路相关基因发挥作用, 这些数据为开发 20(S)
protopanaxatriol 作为抗癌药物或者抗精神病类药物提供了理论依据。
综上, 本文为人参属化合物人参皂苷建立了第一个基于转录组数据的功能网
络平台“MecoTCM”, 并证明了其用于天然化合物功能预测和阐明分子机制的可靠
性, 本文认为这是中药现代化和全球化的关键。
 

Other Abstract

Traditional Chinese medicines (TCMs) has not been widely recognized and
promoted because of its special prescription. Encouraged by the good clinic efficacy,
large number of compounds have been extracted from many TCM materials. Therefore,
how to explain the mechanism of action of pharmacologically active compounds in
TCMs is the pivotal problem for globalization of TCM. Panax ginseng is a precious
Chinese herbal medicine that is widely used on health care. The main active
components in ginseng are ginsenosides, which had been suggested to promote the
immune system and treat cardiovascular diseases and cancer. However, these studies
mainly focused on single ginsenoside and investigated normally individual gene and
pathway in one experiment, the concept that contradict the holistic therapeutic principle
of TCM. Rapid progress in systems biology paved the way for understanding both the
effects and mechanism of TCM at global level.
The purpose of the project is to explore the relationship between the structure and
functions of more than 50 ginseng compounds through constructing TCM transcriptome
data analysis platform—MecoTCM, which utilized several systems biology approaches.
On the platform, both the functions and molecular mechanisms of ginseng compounds
can be revealed. After collecting the transcriptome data via RNA-seq, the altered gene
expressions caused by the compounds were regarded as the "gene signature" of each
compound for functional annotation by comparing with the gene expression profiles of
1309 known drugs in connectivity map database. Furthermore, the possible pathways
impacted by compounds could also be discovered via Gene Set Enrichment Analysis
(GO and KEGG). Thus, gene expression levels can be correlated with cellular pathways,
disease, and drugs to complete a systematic network analysis of
drugs/genes/pathology/targets, which can reveal possible therapeutic effects and
mechanisms of action of Chinese herbal ingredients.
The detailed chemical structure classification of ginsenosides was built up in this
research, and then several compounds with structural characteristics were selected to
study molecular mechanism. The effect of the compounds on the proliferation of human
breast cancer cells (MCF7) was determined by XTT colorimetry. The toxic effects of
ginsenosides may be related to the number of carbon atoms and functional groups on
the 6th position and the 20th position of compound. The potential efficacy relationship
and possible mechanism of action of the compounds were further explored by around180 transcriptome profiles generated by around 40 compounds. Additionally, by using
the connectivity map, ginsenoside Rg1 and ginsenoside Rb1 were found to exert
estrogen-like effects, while both 20(S) protopanaxadiol and 20(S) protopanaxatriol
possess cytotoxicity.
The results of connectivity map indicate that expression profile of 20(S)
protopanaxatriol is highly similar to the drugs causing cell death and having functions
of dopamine receptor antagonists. 20(S) protopanaxatriol may perform biological
functions by upregulating the gene expression in angiogenesis pathway, and
downregulating gene expression related to cell replication and ERBB pathway. These
data provide experimental evidence to further development of the compound as an
anticancer or antipsychotic drug.
In summary, we established the 1st transcriptome-based functional network
“MecoTCM” for large number of genus Ginseng compounds and demonstrated the high
reliability in functional prediction and molecular mechanism elucidation of natural
compounds, which we regard as the key for TCM modernization and globalization.
 

Keywords
Other Keyword
Language
Chinese
Training classes
联合培养
Enrollment Year
2017
Year of Degree Awarded
2019-07
References List

[1] 张均田。 人参研究的最新进展[J]. 江苏大学学报: 医学版, 2009(3): 185-191
[2] 张晓芳, 康永波, 苏君鸿等. Connectivity map 技术在中药研究中的应用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 543-550.
[3] 宋齐. 人参化学成分和药理作用研究进展[J]. 人参研究, 2017(2).
[4] 朱晓丽. 人参皂苷药理作用研究进展[J]. 中国药物经济学, 2017, 12(12)154-156.
[5] 王思明, 赵雨, 赵大庆. 人参产业现状及发展思路[J]. 中国现代中药, 2016,18(1): 3-6.
[6] 赵英, 刘学周, 潘文涛等. 我国人参产业实施专利战略的思考[J]. 中草药,2010, 41(10): 1729-1732.
[7] 王德富. 人参文化之人参故事[J]. 人参研究, 2017(2): 60-64.
[8] 封颖璐, 凌昌全. 人参皂苷与肿瘤[J]. 国际肿瘤学杂志, 2005, 32(9): 665-668.L
[9] 权恺, 刘群, 李萍等. 人参皂苷抗癌活性的最新研究进展[J]. 医学研究生学报,2015(4): 427-431.
[10] Wu W, Jiao C, Li H, et al. LC-MS based metabolic and metabonomic studies ofPanax ginseng[J]. Phytochem Anal, 2018, 29(4):331-340.L
[11] 冯传平, 黄鹏, 王效山. 人参的分子生物学鉴定概况[J]. 现代中药研究与实践,2004, 18(4):62-64.
[12] 刘鲲, 刘娜, 刘苾川等. 人参免疫和保护作用研究进展?[J]. 光明中医, 2016,31(10): 1503-1505.
[13] 杨世雷, 杨扬. 人参历代方剂应用解析[J]. 浙江中医药大学学报, 2017(7).
[14] Wishart D S, Knox C, Guo A C, et al. DrugBank: a knowledgebase for drugs, drugactions and drug targets[J]. Nucleic Acids Research, 2008, 36(Databaseissue):901-6.
[15] 陈磊, 王淑美, 梁生旺. 中药分析学的内涵与外延[J]. 中医教育, 2016, 35(1):21-24.
[16] Lamb, J. The Connectivity Map: Using Gene-Expression Signatures to ConnectSmall Molecules, Genes, and Disease[J]. Science, 2006, 313(5795):1929-1935.
[17] DAI J, LIANG K, ZHAO S, et al. Chemoproteomics reveals baicalin activateshepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis [J]. ProcNatl Acad Sci U S A, 2018, 115(26): E5896-E905.
[18] Brum A M, Peppel J V D, Leije C S V D, et al. Connectivity Map-based discoveryof parbendazole reveals targetable human osteogenic pathway[J]. Proceedings ofthe National Academy of Sciences, 2015, 112(41):12711-12716.
[19] Wen Z, Wang Z, Wang S, et al. Discovery of Molecular Mechanisms of TraditionalChinese Medicinal Formula Si-Wu-Tang Using Gene Expression Microarray andConnectivity Map[J]. PLOS ONE, 2011, 6.
[20] BRumA M, VAN DE PEPPEL J, VAN DER LEIJE C S, et al. ConnectivityMap-based discovery of parbendazole reveals targetable human osteogenicpathway [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America, 2015, 112(41): 12711-6.
[21] 张彩, 史磊. 人参化学成分和药理作用研究进展[J]. 食品与药品, 2016, 18(4):300-304.
[22] 杨鑫宝, 杨秀伟, 刘建勋. 人参中皂苷类化学成分的研究[J]. 中国现代中药,2013, 15(5): 349-358.
[23] McKinney, J. D. The Practice of Structure Activity Relationships (SAR) inToxicology[J]. Toxicological Sciences, 2000, 56(1):8-17.
[24] 曹满, 余河水, 宋新波等. 人参皂苷衍生化及其抗肿瘤构效关系研究进展[J].药学学报, 2012(7): 836-843.
[25] 邓泽元. 人参皂苷的结构修饰、 抗癌活性及其作用机理的研究 [M]. 2017 中国营养医学发展论坛暨全军营养医学大会论文集. 呼和浩特. 2017: 31-2.
[26] 陈俊江, 孙月丽, 肖芷洁等. 西地那非和伐地那非逆转 MRP7 介导的紫杉醇耐药[J]. 广东药学院学报, 2012(2): 183-187.
[27] Xiao-Jia C, Xiao-Jing Z, Yan-Mei S, et al. Anticancer Activities ofProtopanaxadiol- and Protopanaxatriol-Type Ginsenosides and TheirMetabolites[J]. Evidence-Based Complementary and Alternative Medicine, 2016,2016:1-19.
[28] Hang D, Li-Ping B, Wai W V K, et al. The in Vitro Structure-Related Anti-CancerActivity of Ginsenosides and Their Derivatives[J]. Molecules, 2011,16(12):10619-10630.
[29] Hong Z, Hua-Li X, Yu-Chen W, et al. 20(S)-Protopanaxadiol-Induced Apoptosis inMCF-7 Breast Cancer Cell Line through the Inhibition of PI3K/AKT/mTORSignaling Pathway[J]. International Journal of Molecular Sciences, 2018,19(4):1053-.
[30] Zhang H, Xu H L, Fu W W, et al. 20(S)-Protopanaxadiol Induces Human BreastCancer MCF-7 Apoptosis through a Caspase-Mediated Pathway[J]. Asian Pacificjournal of cancer prevention: APJCP, 2014, 15(18):7919-7923.
[31] Li B, Zhao J, Wang C Z, et al. Ginsenoside Rh2 induces apoptosis andparaptosis-like cell death in colorectal cancer cells through activation of p53[J].Cancer Letters, 2011, 301(2):0-192.
[32] Yang X D, Yang Y Y, Ouyang D S, et al. A review of biotransformation andpharmacology of ginsenoside compound K[J]. Fitoterapia, 2014, 100:208-220.
[33] Wit P D, Pespeni M H, Ladner J T, et al. The Simple Fool's Guide to populationgenomics via RNA-Seq: an introduction to high-throughput sequencing dataanalysis[J]. Molecular Ecology Resources, 2012, 12(6):1058-1067.
[34] Chu Y, Corey D R. RNA sequencing: platform selection, experimental design, anddata interpretation.[J]. Nucleic Acid Therapeutics, 2015, 22(4):271.
[35] 谢浩, 胡志迪, 赵明等. 核酸定量检测方法研究进展[J]. 生命的化学, 2014,34(6): 737-743.
[36] Conesa A, Madrigal P, Tarazona S, et al. Erratum to: A survey of best practices forRNA-seq data analysis[J]. Genome Biology, 2016, 17(1):181.
[37] ANDREWS S. FastQC: a quality control tool for high throughput sequence data[M]. 2010.
[38] Martin M. Cutadapt removes adapter sequences from high-throughput sequencingreads[J]. Embnet Journal, 2011, 17(1).
[39] Kim D, Langmead B, Salzberg S L . HISAT: a fast spliced aligner with lowmemory requirements[J]. Nature Methods, 2015, 12(4):357-360.
[40] Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose programfor assigning sequence reads to genomic features[J]. Bioinformatics, 2014,30(7):923-930.
[41] Love M I, Huber W, Anders S. Moderated estimation of fold change anddispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.
[42] SUBRAMANIAN A, NARAYAN R, CORSELLO S M, et al. A Next GenerationConnectivity Map: L1000 Platform and the First 1,000,000 Profiles [J]. Cell, 2017,171(6): 1437-52 e17.
[43] JIN L, FU X, YAO S, et al. Protective effects of protopanaxatriol on acute liverinjury induced by concanavalin A [J]. Naunyn-Schmiedebergs Archives ofPharmacology, 2019, 392(1): 81-7.
[44] Lu C, Lv J, Dong L, et al. Neuroprotective effects of 20(S)-protopanaxatriol (PPT)on scopolamine-induced cognitive deficits in mice[J]. Phytotherapy Research,2018, 32(6): 1056-63.
[45] Cho J Y, Park W, Lee S K, et al. Ginsenoside-Rb1 from\r, Panax ginseng C.A.Meyer\r, Activates Estrogen Receptor-α and -β, Independent of Ligand Binding[J].The Journal of Clinical Endocrinology & Metabolism, 2004, 89(7):3510-3515.
[46] Chan R Y K, Chen W F, Dong A, et al. Estrogen-Like Activity of Ginsenoside Rg1Derived from Panax notoginseng[J]. Journal of Clinical Endocrinology &Metabolism, 2002, 87(8):3691-3695.
[47] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for theunification of biology. The Gene Ontology Consortium [J]. Nat Genet, 2000, 25(1):25-9.
[48] Yu G, Wang L G, Han Y, et al. clusterProfiler: an R Package for ComparingBiological Themes Among Gene Clusters[J]. OMICS-A JOURNAL OFINTEGRATIVE BIOLOGY, 2012, 16(5):284-287.
[49] PAGES H, CARLSON M, FALCON S, et al. Annotation database interface [J]. Rpackage version, 2008, 1(2):
[50] 王莹, 孙瑞红. 泛素-蛋白酶体抑制剂对血管平滑肌细胞凋亡和动脉粥样硬化的影响[J]. 实用药物与临床, 2016(6): 768-772.
[51] Bertoli C, Skotheim J M, Bruin R A M D. Control of cell cycle transcriptionduring G1 and S phases[J]. Nature Reviews Molecular Cell Biology, 2013,14(8):518-528.
[52] Bublil E M, Yarden Y. The EGF receptor family: spearheading a merger ofsignaling and therapeutics[J]. Current Opinion in Cell Biology, 2007,19(2):124-134.
[53] Sengupta, S. Modulating Angiogenesis: The Yin and the Yang in Ginseng[J].Circulation, 2004, 110(10):1219-1225.
[54] YUE P Y, MAK N K, CHENG Y K, et al. Pharmacogenomics And The Yin/YangActions of Ginseng:Anti-Tumor,Angiomodulating And Steroid-Like Activities ofGinsenosides[J]. Chinese Medicine,2,1(2007-05-15).
[55] Hong S Y, Kim J Y, Ahn H Y, et al. Panax ginseng Extract Rich in GinsenosideProtopanaxatriol Attenuates Blood Pressure Elevation in SpontaneouslyHypertensive Rats by Affecting the Akt-Dependent Phosphorylation of EndothelialNitric Oxide Synthase[J]. Journal of Agricultural and Food Chemistry, 2012,60(12):3086-3091.
[56] Kuo J C. Focal adhesions function as a mechanosensor[J]. Progress in MolecularBiology & Translational Science, 2014, 126(126):55-73.
[57] Pearson G, Robinson F, Gibson T B, et al. Mitogen-Activated Protein (MAP)Kinase Pathways: Regulation and Physiological Functions 1[J]. EndocrineReviews, 2001, 22(2):153-183.
[58] 张殿增. 肿瘤坏死因子与脑卒中发生机制[J]. 世界最新医学信息文摘,2003(3): 668-671.
[59] Tribble G D, Lamont R J . Bacterial invasion of epithelial cells and spreading inperiodontal tissue[J]. Periodontology 2000, 2010, 52(1):68-83.

Academic Degree Assessment Sub committee
生物系
Domestic book classification number
R932
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/406013
DepartmentDepartment of Biomedical Engineering
Recommended Citation
GB/T 7714
林 迓. 基于转录组学的人参属多药材多组分的药效 和分子机制研究[D]. 哈尔滨. 哈尔滨工业大学,2019.
Files in This Item:
File Name/Size DocType Version Access License
11749220-林迓-生物系.pdf(3972KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[林 迓]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[林 迓]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[林 迓]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.