中文版 | English

m 6A 修饰调控小鼠大脑皮层 神经发育的机制研究

Alternative Title
Name pinyin
SUN Yuxi
School number
0710 生物学
Subject category of dissertation
07 理学
Mentor unit
Publication Years
Submission date
Place of Publication

m6A 是一种在 mRNA 和非编码 RNAs 中广泛存在的动态且可逆的甲基化
修饰, m6A 修饰在干细胞增殖与分化、癌症发生、神经发育、神经环路形成
等过程中有着重要调控作用。然而目前为止 m6A 修饰调控神经系统的研究主
要集中于其甲基化酶即‘writers’和去甲基化酶即‘erasers’, 而对其阅读器蛋白
甚少。本课题利用小鼠大脑皮层神经系统,主要通过免疫荧光、 条件性敲除
小鼠表型分析、 体外原代神经细胞培养、 细胞增殖和分化分析等手段研究
m6A 的阅读器蛋白 YTHDF1、 YTHDF2 在大脑皮层发育中的时空表达谱与功
能。 我们得到了 YTHDF1、 YTHDF2 在小鼠大脑皮层内的表达谱;针对
YTHDF1 与 YTHDF2 蛋白功能,我们初步分析了 Emx1-cre+/-,Ythdf1fl/fl;
Emx1-cre+/-,Ythdf2fl/fl; Nestin-cre+/-,Ythdf1 fl/fl; Nestin-cre+/-,Ythdf2fl/fl 四种 cKO
小鼠的大脑皮层在发育过程中与对照组相比皮层厚度的变化; 建立了大脑皮
层体外细胞培养体系并进行 EdU 实验研究 m6A 修饰对细胞增殖的影响; 且
对后续实验中继续深一步研究 m6A 修饰在小鼠大脑皮层神经发育中的功能
与具体调控机制提供了合理、可行的实验方案。 我们的实验结果证明了
YTHDF2 在小鼠大脑皮层神经发育中存在重要的调控作用,初步分析结果显
示条件性敲除 YTHDF2 仔鼠的大脑皮层显著变薄;在领域内现有研究结果的
基础上, 本课题对 m6A 修饰在小鼠大脑皮层神经发生过程中的功能与调控机
制进行了进一步的解析。尤其对 YTHDF2 参与的 m6A 调控过程, 我们计划
在后续实验中得到较完整的调控机制,对研究 m6A 在神经系统发育与功能等

Other Abstract

N6-methyladenosine (m6A) is a dynamic and reversible modification in
mRNA and non-coding RNAs, and has been shown to regulate the proliferation
and differentiation in stem cells, tumorigenesis, neurodevelopment and nerve
circuit formation. However, current studies on m6A modification mediating nerve
system mainly have been focusing on its ‘writers’ and ‘erasers’. How m6A
‘readers’ regulate neurodevelopment by targeting specific neural target mRNAs
is still unclear. In this project, using mouse cerebral cortex system, we studied
expression patterns of m6A readers YTHDF1, YTHDF2 proteins and functions of
YTHDF1,YTHDF2 in cortex neurogenesis in vivo and in vitro by
immunofluorescence, conditional knockout mice phenotype analysis, primary
neuron culture, cell proliferation assay. Firstly, we checked expression patterns
of YTHDF1 and YTHDF2 in mouse cortex in different developmental stages.
Then we analyzed the cortical tissues in conditional knockout mice, and we
found that YTHDF2 could play an important role in cortical neurogenesis
because preliminary results have shown that the cortical thickness in cKO
embryos is significantly decreased compared with littermate controls. Thirdly,
we cultured embryonic primary cortical neurons and carried out EdU assay to
check the cell proliferation. Moreover, we have made reasonable and feasible
future plans to further explore the functions and mechanisms of YTHDF2 in
mouse cerebral cortex neurogenesis. These findings collectively suggest that
m6A modification regulates mouse cerebral cortex neurodevelopment.

Other Keyword
Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] KATKOV M, ROMANI S, TSODYKS M. Memory Retrieval from FirstPrinciples [J]. Neuron, 2017, 94(5): 1027-32.
[2] BERRIDGE K C, KRINGELBACH M L. Pleasure systems in the brain [J].Neuron, 2015, 86(3): 646-64.
[3] MENDELSOHN A I, DASEN J S, JESSELL T M. Divergent Hox Coding andEvasion of Retinoid Signaling Specifies Motor Neurons Innervating DigitMuscles [J]. Neuron, 2017, 93(4): 792-805.e4.
[4] KIM J, ZHANG X, MURALIDHAR S, et al. Basolateral to Central AmygdalaNeural Circuits for Appetitive Behaviors [J]. Neuron, 2017, 93(6):1464-79.e5.
[5] DOYLE M, KIEBLER M A. Mechanisms of dendritic mRNA transport andits role in synaptic tagging [J]. Embo j, 2011, 30(17): 3540-52.
[6] WIDAGDO J, ANGGONO V. The m6A-epitranscriptomic signature inneurobiology: from neurodevelopment to brain plasticity [J]. J Neurochem,2018, 147(2): 137-52.
[7] DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylatednucleosides in messenger RNA from Novikoff hepatoma cells [J]. Proc NatlAcad Sci U S A, 1974, 71(10): 3971-5.
[8] MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive analysis ofmRNA methylation reveals enrichment in 3' UTRs and near stop codons [J].Cell, 2012, 149(7): 1635-46.
[9] DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al.Topology of the human and mouse m6A RNA methylomes revealed bym6A-seq [J]. Nature, 2012, 485(7397): 201-6.
[10] SCHWARTZ S, MUMBACH M R, JOVANOVIC M, et al. Perturbation ofm6A writers reveals two distinct classes of mRNA methylation at internaland 5' sites [J]. Cell reports, 2014, 8(1): 284-96.
[11] CHANG M, LV H, ZHANG W, et al. Region-specific RNA m(6)Amethylation represents a new layer of control in the gene regulatory networkin the mouse brain [J]. Open biology, 2017, 7(9):
[12] WIDAGDO J, ZHAO Q Y, KEMPEN M J, et al. Experience-DependentAccumulation of N6-Methyladenosine in the Prefrontal Cortex Is Associatedwith Memory Processes in Mice [J]. The Journal of neuroscience : the officialjournal of the Society for Neuroscience, 2016, 36(25): 6771-7.
[13] ENGEL M, CHEN A. The emerging role of mRNA methylation in normal andpathological behavior [J]. Genes, brain, and behavior, 2018, 17(3): e12428.
[14] WENG Y L, WANG X, AN R, et al. Epitranscriptomic m(6)A Regulation ofAxon Regeneration in the Adult Mammalian Nervous System [J]. Neuron,2018, 97(2): 313-25.e6.
[15] BOKAR J A, SHAMBAUGH M E, POLAYES D, et al. Purification andcDNA cloning of the AdoMet-binding subunit of the human mRNA(N6-adenosine)-methyltransferase [J]. RNA (New York, NY), 1997, 3(11):1233-47.
[16] WANG X, LU Z, GOMEZ A, et al. N6-methyladenosine-dependentregulation of messenger RNA stability [J]. Nature, 2014, 505(7481): 117-20.
[17] LIU N, ZHOU K I, PARISIEN M, et al. N6-methyladenosine alters RNAstructure to regulate binding of a low-complexity protein [J]. Nucleic acidsresearch, 2017, 45(10): 6051-63.
[18] KE S, PANDYA-JONES A, SAITO Y, et al. m(6)A mRNA modifications aredeposited in nascent pre-mRNA and are not required for splicing but dospecify cytoplasmic turnover [J]. Genes & development, 2017, 31(10):990-1006.
[19] ALARCON C R, LEE H, GOODARZI H, et al. N6-methyladenosine marksprimary microRNAs for processing [J]. Nature, 2015, 519(7544): 482-5.
[20] LIN S, CHOE J, DU P, et al. The m(6)A Methyltransferase METTL3Promotes Translation in Human Cancer Cells [J]. Molecular cell, 2016, 62(3):335-45.
[21] JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a majorsubstrate of the obesity-associated FTO [J]. Nature chemical biology, 2011,7(12): 885-7.
[22] ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNAdemethylase that impacts RNA metabolism and mouse fertility [J]. Molecularcell, 2013, 49(1): 18-29.
[23] AIK W, SCOTTI J S, CHOI H, et al. Structure of human RNAN(6)-methyladenine demethylase ALKBH5 provides insights into itsmechanisms of nucleic acid recognition and demethylation [J]. Nucleic acidsresearch, 2014, 42(7): 4741-54.
[24] GERKEN T, GIRARD C A, TUNG Y C, et al. The obesity-associated FTOgene encodes a 2-oxoglutarate-dependent nucleic acid demethylase [J].Science, 2007, 318(5855): 1469-72.
[25] MCTAGGART J S, LEE S, IBERL M, et al. FTO is expressed in neuronesthroughout the brain and its expression is unaltered by fasting [J]. PloS one,2011, 6(11): e27968.
[26] HESS M E, HESS S, MEYER K D, et al. The fat mass and obesity associatedgene (Fto) regulates activity of the dopaminergic midbrain circuitry [J].Nature neuroscience, 2013, 16(8): 1042-8.
[27] LI L, ZANG L, ZHANG F, et al. Fat mass and obesity-associated (FTO)protein regulates adult neurogenesis [J]. Human molecular genetics, 2017,26(13): 2398-411.
[28] ZOU S, TOH J D, WONG K H, et al. N(6)-Methyladenosine: aconformational marker that regulates the substrate specificity of humandemethylases FTO and ALKBH5 [J]. Scientific reports, 2016, 6(25677.
[29] SPITALE R C, FLYNN R A, ZHANG Q C, et al. Structural imprints in vivodecode RNA regulatory mechanisms [J]. Nature, 2015, 519(7544): 486-90.
[30] LIU N, DAI Q, ZHENG G, et al. N(6)-methyladenosine-dependent RNAstructural switches regulate RNA-protein interactions [J]. Nature, 2015,518(7540): 560-4.
[31] ZHANG Z, THELER D, KAMINSKA K H, et al. The YTH domain is a novelRNA binding domain [J]. The Journal of biological chemistry, 2010, 285(19):14701-10.
[32] ARGUELLO A E, DELIBERTO A N, KLEINER R E. RNA ChemicalProteomics Reveals the N(6)-Methyladenosine (m(6)A)-RegulatedProtein-RNA Interactome [J]. Journal of the American Chemical Society,2017, 139(48): 17249-52.
[33] EDUPUGANTI R R, GEIGER S, LINDEBOOM R G H, et al.N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulatemRNA homeostasis [J]. Nature structural & molecular biology, 2017, 24(10):870-8.
[34] FU Y, DOMINISSINI D, RECHAVI G, et al. Gene expression regulationmediated through reversible m(6)A RNA methylation [J]. Nature reviewsGenetics, 2014, 15(5): 293-306.
[35] MOLINIE B, WANG J, LIM K S, et al. m(6)A-LAIC-seq reveals the censusand complexity of the m(6)A epitranscriptome [J]. Nature methods, 2016,13(8): 692-8.
[36] DU H, ZHAO Y, HE J, et al. YTHDF2 destabilizes m(6)A-containing RNAthrough direct recruitment of the CCR4-NOT deadenylase complex [J].Nature communications, 2016, 7(12626.
[37] SIMONE L E, KEENE J D. Mechanisms coordinating ELAV/Hu mRNAregulons [J]. Current opinion in genetics & development, 2013, 23(1): 35-43.
[38] LI A, CHEN Y S, PING X L, et al. Cytoplasmic m(6)A reader YTHDF3promotes mRNA translation [J]. Cell research, 2017, 27(3): 444-7.
[39] SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay ofN(6)-methyladenosine-modified RNA [J]. Cell research, 2017, 27(3):315-28.
[40] BASSELL G J, WARREN S T. Fragile X syndrome: loss of local mRNAregulation alters synaptic development and function [J]. Neuron, 2008, 60(2):201-14.
[41] YU J, CHEN M, HUANG H, et al. Dynamic m6A modification regulateslocal translation of mRNA in axons [J]. Nucleic acids research, 2018, 46(3):1412-23.
[42] GERSHONI-EMEK N, MAZZA A, CHEIN M, et al. Proteomic Analysis ofDynein-Interacting Proteins in Amyotrophic Lateral Sclerosis SynaptosomesReveals Alterations in the RNA-Binding Protein Staufen1 [J]. Molecular &cellular proteomics : MCP, 2016, 15(2): 506-22.
[43] FLAVELL S W, GREENBERG M E. Signaling mechanisms linking neuronalactivity to gene expression and plasticity of the nervous system [J]. Annualreview of neuroscience, 2008, 31(563-90.
[44] WALTERS B J, MERCALDO V, GILLON C J, et al. The Role of The RNADemethylase FTO (Fat Mass and Obesity-Associated) and mRNAMethylation in Hippocampal Memory Formation [J].Neuropsychopharmacology : official publication of the American College ofNeuropsychopharmacology, 2017, 42(7): 1502-10.
[45] GILMARTIN M R, BALDERSTON N L, HELMSTETTER F J. Prefrontalcortical regulation of fear learning [J]. Trends in neurosciences, 2014, 37(8):455-64.
[46] LIU N, PAN T. N6-methyladenosine-encoded epitranscriptomics [J]. Naturestructural & molecular biology, 2016, 23(2): 98-102.
[47] HSU P J, SHI H, HE C. Epitranscriptomic influences on development anddisease [J]. Genome biology, 2017, 18(1): 197.
[48] FISCHER J, KOCH L, EMMERLING C, et al. Inactivation of the Fto geneprotects from obesity [J]. Nature, 2009, 458(7240): 894-8.
[49] GAO X, SHIN Y H, LI M, et al. The fat mass and obesity associated geneFTO functions in the brain to regulate postnatal growth in mice [J]. PloS one,2010, 5(11): e14005.
[50] GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. Stemcells. m6A mRNA methylation facilitates resolution of naive pluripotencytoward differentiation [J]. Science, 2015, 347(6225): 1002-6.
[51] YOON K J, RINGELING F R, VISSERS C, et al. Temporal Control ofMammalian Cortical Neurogenesis by m(6)A Methylation [J]. Cell, 2017,171(4): 877-89.e17.
[52] LEE J A, DAMIANOV A, LIN C H, et al. Cytoplasmic Rbfox1 Regulates theExpression of Synaptic and Autism-Related Genes [J]. Neuron, 2016, 89(1):113-28.
[53] FRAKES A E, FERRAIUOLO L, HAIDET-PHILLIPS A M, et al. Microgliainduce motor neuron death via the classical NF-kappaB pathway inamyotrophic lateral sclerosis [J]. Neuron, 2014, 81(5): 1009-23.
[54] GAL J S, MOROZOV Y M, AYOUB A E, et al. Molecular and morphologicalheterogeneity of neural precursors in the mouse neocortical proliferativezones [J]. The Journal of neuroscience : the official journal of the Society forNeuroscience, 2006, 26(3): 1045-56.
[55] FERNANDEZ V, LLINARES-BENADERO C, BORRELL V. Cerebral cortexexpansion and folding: what have we learned? [J]. EMBO J, 2016, 35(10):1021-44.
[56] BAYER S A, ALTMAN J. Development of the endopiriform nucleus and theclaustrum in the rat brain [J]. Neuroscience, 1991, 45(2): 391-412.
[57] MIYATA T, KAWAGUCHI D, KAWAGUCHI A, et al. Mechanisms thatregulate the number of neurons during mouse neocortical development [J].Current opinion in neurobiology, 2010, 20(1): 22-8.
[58] CHENN A, WALSH C A. Regulation of cerebral cortical size by control ofcell cycle exit in neural precursors [J]. Science, 2002, 297(5580): 365-9.
[59] KINGSBURY M A, REHEN S K, CONTOS J J, et al. Non-proliferativeeffects of lysophosphatidic acid enhance cortical growth and folding [J].Nature neuroscience, 2003, 6(12): 1292-9.
[60] GOTZ M, HUTTNER W B. The cell biology of neurogenesis [J]. Nat RevMol Cell Biol, 2005, 6(10): 777-88.
[61] HANSEN D V, LUI J H, PARKER P R, et al. Neurogenic radial glia in theouter subventricular zone of human neocortex [J]. Nature, 2010, 464(7288):554-61.
[62] HAUBENSAK W, ATTARDO A, DENK W, et al. Neurons arise in the basalneuroepithelium of the early mammalian telencephalon: a major site ofneurogenesis [J]. Proceedings of the National Academy of Sciences of theUnited States of America, 2004, 101(9): 3196-201.
[63] MIYATA T, KAWAGUCHI A, SAITO K, et al. Asymmetric production ofsurface-dividing and non-surface-dividing cortical progenitor cells [J].Development (Cambridge, England), 2004, 131(13): 3133-45.
[64] NOCTOR S C, MARTINEZ-CERDENO V, IVIC L, et al. Cortical neuronsarise in symmetric and asymmetric division zones and migrate throughspecific phases [J]. Nature neuroscience, 2004, 7(2): 136-44.
[65] BETIZEAU M, CORTAY V, PATTI D, et al. Precursor diversity andcomplexity of lineage relationships in the outer subventricular zone of theprimate [J]. Neuron, 2013, 80(2): 442-57.
[66] ATTARDO A, CALEGARI F, HAUBENSAK W, et al. Live imaging at theonset of cortical neurogenesis reveals differential appearance of the neuronalphenotype in apical versus basal progenitor progeny [J]. PloS one, 2008, 3(6):e2388.
[67] WANG X, TSAI J W, LAMONICA B, et al. A new subtype of progenitor cellin the mouse embryonic neocortex [J]. Nature neuroscience, 2011, 14(5):555-61.
[68] FISH J L, DEHAY C, KENNEDY H, et al. Making bigger brains-theevolution of neural-progenitor-cell division [J]. Journal of cell science, 2008,121(Pt 17): 2783-93.
[69] TAVERNA E, GOTZ M, HUTTNER W B. The cell biology of neurogenesis:toward an understanding of the development and evolution of the neocortex[J]. Annual review of cell and developmental biology, 2014, 30(465-502.
[70] ENGLUND C, FINK A, LAU C, et al. Pax6, Tbr2, and Tbr1 are expressedsequentially by radial glia, intermediate progenitor cells, and postmitoticneurons in developing neocortex [J]. The Journal of neuroscience : theofficial journal of the Society for Neuroscience, 2005, 25(1): 247-51.
[71] KOWALCZYK T, PONTIOUS A, ENGLUND C, et al. Intermediate neuronalprogenitors (basal progenitors) produce pyramidal-projection neurons for alllayers of cerebral cortex [J]. Cerebral cortex (New York, NY : 1991), 2009,19(10): 2439-50.
[72] ANDERSON S A, EISENSTAT D D, SHI L, et al. Interneuron migration frombasal forebrain to neocortex: dependence on Dlx genes [J]. Science, 1997,278(5337): 474-6.
[73] STANCIK E K, NAVARRO-QUIROGA I, SELLKE R, et al. Heterogeneity inventricular zone neural precursors contributes to neuronal fate diversity inthe postnatal neocortex [J]. The Journal of neuroscience : the official journalof the Society for Neuroscience, 2010, 30(20): 7028-36.
[74] TYLER W A, MEDALLA M, GUILLAMON-VIVANCOS T, et al. Neuralprecursor lineages specify distinct neocortical pyramidal neuron types [J].The Journal of neuroscience : the official journal of the Society forNeuroscience, 2015, 35(15): 6142-52.
[75] PILZ G A, SHITAMUKAI A, REILLO I, et al. Amplification of progenitorsin the mammalian telencephalon includes a new radial glial cell type [J].Nature communications, 2013, 4(2125.
[76] SHITAMUKAI A, KONNO D, MATSUZAKI F. Oblique radial glialdivisions in the developing mouse neocortex induce self-renewingprogenitors outside the germinal zone that resemble primate outersubventricular zone progenitors [J]. The Journal of neuroscience : the officialjournal of the Society for Neuroscience, 2011, 31(10): 3683-95.
[77] KWAN K Y, SESTAN N, ANTON E S. Transcriptional co-regulation ofneuronal migration and laminar identity in the neocortex [J]. Development(Cambridge, England), 2012, 139(9): 1535-46.
[78] DEFELIPE J, FARINAS I. The pyramidal neuron of the cerebral cortex:morphological and chemical characteristics of the synaptic inputs [J].Progress in neurobiology, 1992, 39(6): 563-607.
[79] O'LEARY D D, KOESTER S E. Development of projection neuron types,axon pathways, and patterned connections of the mammalian cortex [J].Neuron, 1993, 10(6): 991-1006.
[80] MOLYNEAUX B J, ARLOTTA P, MENEZES J R, et al. Neuronal subtypespecification in the cerebral cortex [J]. Nature reviews Neuroscience, 2007,8(6): 427-37.
[81] MIYOSHI G, BUTT S J, TAKEBAYASHI H, et al. Physiologically distincttemporal cohorts of cortical interneurons arise from telencephalicOlig2-expressing precursors [J]. The Journal of neuroscience : the officialjournal of the Society for Neuroscience, 2007, 27(29): 7786-98.
[82] ANGEVINE J B, JR., SIDMAN R L. Autoradiographic study of cellmigration during histogenesis of cerebral cortex in the mouse [J]. Nature,1961, 192(766-8.
[83] RAKIC P. Specification of cerebral cortical areas [J]. Science, 1988,241(4862): 170-6.
[84] MARIN-PADILLA M. Early prenatal ontogenesis of the cerebral cortex(neocortex) of the cat (Felis domestica). A Golgi study. I. The primordialneocortical organization [J]. Zeitschrift fur Anatomie undEntwicklungsgeschichte, 1971, 134(2): 117-45.
[85] MARIN-PADILLA M. Dual origin of the mammalian neocortex andevolution of the cortical plate [J]. Anatomy and embryology, 1978, 152(2):109-26.
[86] DE CARLOS J A, O'LEARY D D. Growth and targeting of subplate axonsand establishment of major cortical pathways [J]. The Journal ofneuroscience : the official journal of the Society for Neuroscience, 1992,12(4): 1194-211.
[87] MOLLIVER M E, KOSTOVIC I, VAN DER LOOS H. The development ofsynapses in cerebral cortex of the human fetus [J]. Brain research, 1973,50(2): 403-7.
[88] RAKIC P. Prenatal genesis of connections subserving ocular dominance inthe rhesus monkey [J]. Nature, 1976, 261(5560): 467-71.
[89] KOSTOVIC I, RAKIC P. Cytology and time of origin of interstitial neuronsin the white matter in infant and adult human and monkey telencephalon [J].Journal of neurocytology, 1980, 9(2): 219-42.
[90] ALLENDOERFER K L, SHATZ C J. The subplate, a transient neocorticalstructure: its role in the development of connections between thalamus andcortex [J]. Annual review of neuroscience, 1994, 17(185-218.
[91] HERRMANN K, ANTONINI A, SHATZ C J. Ultrastructural evidence forsynaptic interactions between thalamocortical axons and subplate neurons [J].The European journal of neuroscience, 1994, 6(11): 1729-42.
[92] RAKIC P. Neurons in rhesus monkey visual cortex: systematic relationbetween time of origin and eventual disposition [J]. Science, 1974,183(4123): 425-7.
[93] CAVINESS V S, JR. Neocortical histogenesis in normal and reeler mice: adevelopmental study based upon
[3H]thymidine autoradiography [J]. Brainresearch, 1982, 256(3): 293-302.
[94] FRANTZ G D, MCCONNELL S K. Restriction of late cerebral corticalprogenitors to an upper-layer fate [J]. Neuron, 1996, 17(1): 55-61.
[95] D'ARCANGELO G, CURRAN T. Reeler: new tales on an old mutant mouse[J]. BioEssays : news and reviews in molecular, cellular and developmentalbiology, 1998, 20(3): 235-44.
[96] LAMBERT DE ROUVROIT C, GOFFINET A M. A new view of earlycortical development [J]. Biochemical pharmacology, 1998, 56(11): 1403-9.
[97] ANTON E S, KREIDBERG J A, RAKIC P. Distinct functions of alpha3 andalpha(v) integrin receptors in neuronal migration and laminar organization ofthe cerebral cortex [J]. Neuron, 1999, 22(2): 277-89.
[98] YOKOTA Y, GASHGHAEI H T, HAN C, et al. Radial glial dependent andindependent dynamics of interneuronal migration in the developing cerebralcortex [J]. PloS one, 2007, 2(8): e794.
[99] TISSIR F, GOFFINET A M. Reelin and brain development [J]. Naturereviews Neuroscience, 2003, 4(6): 496-505.
[100]KRIEGSTEIN A R, NOCTOR S C. Patterns of neuronal migration in theembryonic cortex [J]. Trends in neurosciences, 2004, 27(7): 392-9.
[101]LOTURCO J J, BAI J. The multipolar stage and disruptions in neuronalmigration [J]. Trends in neurosciences, 2006, 29(7): 407-13.
[102]LIU J S. Molecular genetics of neuronal migration disorders [J]. Currentneurology and neuroscience reports, 2011, 11(2): 171-8.
[103]MANZINI M C, WALSH C A. What disorders of cortical development tell usabout the cortex: one plus one does not always make two [J]. Current opinionin genetics & development, 2011, 21(3): 333-9.
[104]NAGANO T, MORIKUBO S, SATO M. Filamin A and FILIP (FilaminA-Interacting Protein) regulate cell polarity and motility in neocorticalsubventricular and intermediate zones during radial migration [J]. TheJournal of neuroscience : the official journal of the Society for Neuroscience,2004, 24(43): 9648-57.
[105]BAI J, RAMOS R L, ACKMAN J B, et al. RNAi reveals doublecortin isrequired for radial migration in rat neocortex [J]. Nature neuroscience, 2003,6(12): 1277-83.
[106]GONGIDI V, RING C, MOODY M, et al. SPARC-like 1 regulates theterminal phase of radial glia-guided migration in the cerebral cortex [J].Neuron, 2004, 41(1): 57-69.
[107]RICE D S, CURRAN T. Role of the reelin signaling pathway in centralnervous system development [J]. Annual review of neuroscience, 2001,24(1005-39.
[108]NADARAJAH B, PARNAVELAS J G. Modes of neuronal migration in thedeveloping cerebral cortex [J]. Nature reviews Neuroscience, 2002, 3(6):423-32.
[109]MARIN O, RUBENSTEIN J L. Cell migration in the forebrain [J]. Annualreview of neuroscience, 2003, 26(441-83.
[110]XU Q, COBOS I, DE LA CRUZ E, et al. Origins of cortical interneuronsubtypes [J]. The Journal of neuroscience : the official journal of the Societyfor Neuroscience, 2004, 24(11): 2612-22.
[111]WONDERS C P, ANDERSON S A. The origin and specification of corticalinterneurons [J]. Nature reviews Neuroscience, 2006, 7(9): 687-96.
[112]SESSA A, MAO C A, COLASANTE G, et al. Tbr2-positive intermediate(basal) neuronal progenitors safeguard cerebral cortex expansion bycontrolling amplification of pallial glutamatergic neurons and attraction ofsubpallial GABAergic interneurons [J]. Genes & development, 2010, 24(16):1816-26.
[113]SANCHEZ-ALCANIZ J A, HAEGE S, MUELLER W, et al. Cxcr7 controlsneuronal migration by regulating chemokine responsiveness [J]. Neuron,2011, 69(1): 77-90.
[114]HONGAY C F, ORR-WEAVER T L. Drosophila Inducer of MEiosis 4 (IME4)is required for Notch signaling during oogenesis [J]. Proc Natl Acad Sci U SA, 2011, 108(36): 14855-60.
[115]LETINIC K, ZONCU R, RAKIC P. Origin of GABAergic neurons in thehuman neocortex [J]. Nature, 2002, 417(6889): 645-9.
[116]YU X, ZECEVIC N. Dorsal radial glial cells have the potential to generatecortical interneurons in human but not in mouse brain [J]. The Journal ofneuroscience : the official journal of the Society for Neuroscience, 2011,31(7): 2413-20.
[117]FERTUZINHOS S, KRSNIK Z, KAWASAWA Y I, et al. Selective depletionof molecularly defined cortical interneurons in human holoprosencephalywith severe striatal hypoplasia [J]. Cerebral cortex (New York, NY : 1991),2009, 19(9): 2196-207.
[118]ANG E S, JR., HAYDAR T F, GLUNCIC V, et al. Four-dimensionalmigratory coordinates of GABAergic interneurons in the developing mousecortex [J]. The Journal of neuroscience : the official journal of the Society forNeuroscience, 2003, 23(13): 5805-15.
[119]MIYOSHI G, FISHELL G. GABAergic interneuron lineages selectively sortinto specific cortical layers during early postnatal development [J]. Cerebralcortex (New York, NY : 1991), 2011, 21(4): 845-52.
[120]MIYOSHI G, HJERLING-LEFFLER J, KARAYANNIS T, et al. Genetic fatemapping reveals that the caudal ganglionic eminence produces a large anddiverse population of superficial cortical interneurons [J]. The Journal ofneuroscience : the official journal of the Society for Neuroscience, 2010,30(5): 1582-94.
[121]LODATO S, ROUAUX C, QUAST K B, et al. Excitatory projection neuronsubtypes control the distribution of local inhibitory interneurons in thecerebral cortex [J]. Neuron, 2011, 69(4): 763-79.
[122]PORTER F D, DRAGO J, XU Y, et al. Lhx2, a LIM homeobox gene, isrequired for eye, forebrain, and definitive erythrocyte development [J].Development, 1997, 124(15): 2935-44.
[123]DUAN W, ZHANG Y P, HOU Z, et al. Novel Insights into NeuN: fromNeuronal Marker to Splicing Regulator [J]. Molecular neurobiology, 2016,53(3): 1637-47.
[124]CEPKO C. Intrinsically different retinal progenitor cells produce specifictypes of progeny [J]. Nat Rev Neurosci, 2014, 15(9): 615-27.
[125]KRANZ A, FU J, DUERSCHKE K, et al. An improved Flp deleter mouse inC57Bl/6 based on Flpo recombinase [J]. Genesis, 2010, 48(8): 512-20.
[126]YAMAUCHI Y, ABE K, MANTANI A, et al. A novel transgenic techniquethat allows specific marking of the neural crest cell lineage in mice [J].Developmental biology, 1999, 212(1): 191-203.
[127]CHAI Y, JIANG X, ITO Y, et al. Fate of the mammalian cranial neural crestduring tooth and mandibular morphogenesis [J]. Development (Cambridge,England), 2000, 127(8): 1671-9.
[128]SIMEONE A, GULISANO M, ACAMPORA D, et al. Two vertebratehomeobox genes related to the Drosophila empty spiracles gene areexpressed in the embryonic cerebral cortex [J]. Embo j, 1992, 11(7):2541-50.
[129]SIMEONE A, ACAMPORA D, GULISANO M, et al. Nested expressiondomains of four homeobox genes in developing rostral brain [J]. Nature,1992, 358(6388): 687-90.
[130]BRIATA P, DI BLAS E, GULISANO M, et al. EMX1 homeoprotein isexpressed in cell nuclei of the developing cerebral cortex and in the axons ofthe olfactory sensory neurons [J]. Mechanisms of development, 1996, 57(2):169-80.
[131]PUELLES L, KUWANA E, PUELLES E, et al. Pallial and subpallialderivatives in the embryonic chick and mouse telencephalon, traced by theexpression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1 [J]. TheJournal of comparative neurology, 2000, 424(3): 409-38.
[132]CHAN C H, GODINHO L N, THOMAIDOU D, et al. Emx1 is a marker forpyramidal neurons of the cerebral cortex [J]. Cerebral cortex (New York, NY :1991), 2001, 11(12): 1191-8.

Academic Degree Assessment Sub committee
Domestic book classification number
Data Source
Document TypeThesis
DepartmentDepartment of Biomedical Engineering
Recommended Citation
GB/T 7714
孙玉玺. m 6A 修饰调控小鼠大脑皮层 神经发育的机制研究[D]. 哈尔滨. 哈尔滨工业大学,2019.
Files in This Item:
File Name/Size DocType Version Access License
11749076-孙玉玺-生物系.pdf(5254KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[孙玉玺]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[孙玉玺]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孙玉玺]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.