中文版 | English
Title

水溶性金属有机配合物的自聚集

Alternative Title
SELF-AGGREGATION OF WATER-SOLUBLE METAL ORGANIC COMPLEXES
Author
Name pinyin
Liu Wenfeng
School number
11749063
Degree
硕士
Discipline
0703 化学
Subject category of dissertation
07 理学
Supervisor
陆为
Mentor unit
化学系
Publication Years
2019-05
Submission date
2022-10-14
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

具有大共轭体系的炔类化合物,由于它们在非线性光学,液晶,电致发光,
导电和电子/能量转移等方面有潜在的应用前景而受到越来越多的关注。 一价金
配合物丰富的光谱学性质,其自旋轨道耦合常数很大,因而有助于通过系间窜
跃进入低位发射三重态。 一价金配合物由于可能产生具有特定形态的超分子聚
集体,且具有可调节的发光性能,其研究领域正在迅速扩大。目前,关于金(I)
芳香炔金属有机配合物的研究比较少。本课题着眼于调控金(I)芳香炔金属有机
配合物的溶解性以研究其自聚集行为和磷光性质,并探索其在光活化磷光方面
的应用。
基于此,本课题选择不同溶解性的膦配体作为外围基团, 将用于合成磷光
金属有机配合物的经典的芳香炔作为内核骨架,并且与 d10电子构型的线形 Au(I)
配位,设计并合成了一系列金(I)芳香炔模型配合物。 通过 1H NMR、 13C NMR、
31P NMR、 HR-MS 等进行确证和表征。一方面, 基于目标配合物的两亲性结构,
其在 H2O 中发生自聚集,并随着时间延长有红光发射的现象。另一方面,通过
对比这一系列的不同内核和外围基团的 Au(I)芳香炔金属有机配合物在不同溶
剂中的光谱性质,发现浓度依赖的荧光向转换磷光的现象有以下特点: 1. 与配
合物有关,无论是改变外围基团还是内核配体,在分子级的溶液中,都仅有 Au1
出现浓度依赖的荧光向磷光的转换; 2. 与溶剂有关,在 Au1 可以溶解的几种
溶剂中,都仅有在 DMSO 和 MeOH 中才会出现浓度依赖的荧光向磷光的转换。
因此,我们猜想,可能是由于 Au1 在 DMSO 和 MeOH 溶液中出现了与浓度相
关的自聚集。 另外,还研究了 Au(I)芳香炔金属有机配合物在 DMSO 溶液里的
的光活化磷光行为, 并证明其在 PVP/DMSO 流体和 PVP/DMF 流体可以发生光
活化磷光行为,同时能实现光刻,并在流体的立体化光刻方面做了初步探索。
 

Other Abstract

Alkyne compounds with large conjugated systems have received increasing
attention due to their potential applications in nonlinear optics, liquid crystals,
electroluminescence, conduction. The rich spectral properties of monovalent gold
complexes have a large spin coupling constant, which helps to enter the
low-emitting triplet state through intersystem crossing. Research field of Au(I)
complexes are rapidly expanding due to the possibility of producing supramolecular
aggregates with specific morphology and tunable luminescence properties. At
present, there are few studies on metal complexes of Au(I) arylethynyl. This project
focuses on the regulation of the solubility of Au(I) aromatic alkyne metal
complexes to study their self-aggregation behavior and phosphorescence properties
and explore its application in photoactivated phosphorescence.
Therefore, we chose different phosphine ligands with variable solubility as
peripheral groups, classical arylethynyl used to synthesize phosphorescent metal
organic complexes as a core skeleton, to coordinate with the linear Au(I) of the d10
electronic configuration. A series of Au(I) arylethynyl model complexes were
designed and synthesized. Confirmation and characterization by 1H NMR, 13C NMR,
31P NMR, HR-MS and the like. Based on the amphiphilic structure of the target
complex, it self-aggregates in H2O. By comparing the spectral properties of the
Au(I) arylethynyl metal organic complexes of different core and peripheral groups
in different solvents, it is found that the phenomenon of concentration-dependent
fluorescence-to-phosphorescence switching has the following characteristics:1.
Complex-related, whether changing the peripheral group or the core backbone, only
the concentration-dependent fluorescence-to-phosphorescence switching of Au1
occurs in the molecular-scale solution. 2. Solvent-related, in several solvents that
Au1 can be dissolved in, concentration-dependent fluorescence-to-phosphorescence
switching occurs only in DMSO and MeOH solution. Therefore, we suspect that it
may be due to the concentration-dependent self-aggregation of Au1 in DMSO and
MeOH solutions. In addition, the photoactivated phosphorescence behavior of Au(I)
arylethynyl metal complexes in DMSO solution was also studied, and it was proved
that photoactivated phosphorescence behavior can be achieved in PVP/DMSO fluid
and PVP/DMF fluid, can be utilizedfor photo-writing. Besides, a preliminary
exploration in the three-dimensional photo-writng of fluids also demonstrated.
 

Keywords
Other Keyword
Language
Chinese
Training classes
联合培养
Enrollment Year
2017
Year of Degree Awarded
2019-07
References List

[1] Liang J H, Chen Z, Xu L J, et al. Aggregation-Induced Emission-Active Gold(I)Complexes with Multi-Stimuli Luminescence Switching[J]. Journal of MaterialsChemistry C, 2014, 2(12): 2243-2250.
[2] Tam A Y Y, Yam V W W. Recent Advances in Metallogels[J]. Chemical SocietyReviews, 2013, 42(4): 1540-1567.
[3] Valeur B, Berberan-Santos M N. Molecular Fluorescence—Principles andApplications, 2nd Edition[M]. Weinheim: Wiley-VCH, 2012: 13-20.
[4] Baldo M A, Thompson M E, Forrest S R. Phosphorescent Materials forApplication to Organic Light Emitting Devices[J]. Pure and Applied Chemistry,1999, 71(11): 2095-2106.
[5] Pinto A, Svahn N, Lima J C, et al. Aggregation Induced Emission of Gold(I)Complexes in Water or Water Mixtures[J]. Dalton Transactions, 2017, 46(34):11125-11139.
[6] Mohr F, Sanz S, Vergara E, et al. Water-Soluble and Water-Stable Gold(I),Gold(II) and Gold(III) Phosphine Complexes: The Early Years[J]. Gold Bulletin,2006, 39(4): 212-215.
[7] Hristova Y R, Kemper B, Besenius P. Water-Soluble Au(I) Complexes, TheirSynthesis and Applications[J]. Tetrahedron, 2013, 69(49): 10525-10533.
[8] Mohr F. Gold Chemistry: Applications and Future Directions in the LifeSciences[M]. Weinheim: Wiley-VCH, 2012: 2-30.
[9] Beeby A, Findlay K, Low P J, et al. A Re-Evaluation of the PhotophysicalProperties of 1, 4-Bis(phenylethynyl)Benzene: A Model forPoly(phenyleneethynylene)[J]. Journal of the American Chemical Society, 2002,124(28): 8280-8284.
[10] Chao H Y, Lu W, Li Y Q, et al. Organic Triplet Emissions of ArylacetylideMoieties Harnessed through Coordination to [Au(PCy3)]+. Effect of MolecularStructure Upon Photoluminescent Properties[J]. Journal of the American ChemicalSociety, 2002, 124(49): 14696-14706.
[11] Kohler A, Wilson J S, Friend R H, et al. The Singlet-Triplet Energy Gap inOrganic and Pt-Containing Phenylene Ethynylene Polymers and Monomers[J].Journal of Chemical Physics, 2002, 116(21): 9457-9463.
[12] Wilson J S, Chawdhury N, Al-Mandhary M R A, et al. The Energy Gap Law forTriplet States in Pt-Containing Conjugated Polymers and Monomers[J]. Journal ofthe American Chemical Society, 2001, 123(38): 9412-9417.
[13] Lu W, Xiang H F, Zhu N Y, et al. The 3(ππ*) Emission of Cy3PAu(C≡C)nAuPCy3(N=3,4). Effect of Chain Length Upon Acetylenic 3(ππ*) Emission[J].Organometallics, 2002, 21(11): 2343-2346.
[14] Che C M, Chao H Y, Miskowski V M, et al. Luminescent μ-Ethynediyl andμ-Butadiynediyl Binuclear Gold(I) Complexes: Observation of 3(ππ*) Emissionsfrom Bridging Cn2- Units[J]. Journal of the American Chemical Society, 2001,123(21): 4985-4991.
[15] Lu W, Zhu N, Che C M. Luminescent Properties of Carbon-Rich Starburst Gold(I)Acetylide Complexes. Crystal Structure of [TEE][Au(PCy3)]4([TEE]H4=tetraethynylethene)[J]. Journal of Organometallic Chemistry, 2003,670(1): 11-16.
[16] Tong G S M, Chow P K, Che C M. Where Is the Heavy-Atom Effect? Role of theCentral Ligand in Tetragold(I) Ethynyl Complexes[J]. Angewandte ChemieInternational Edition, 2010, 49(48): 9206-9209.
[17] Lu W, Zhu N Y, Che C M. Polymorphic Forms of a Gold(I) ArylacetylideComplex with Contrasting Phosphorescent Characteristics[J]. Journal of theAmerican Chemical Society, 2003, 125(51): 16081-16088.
[18] Korevaar P A, Schaefer C, De Greef T F A, et al. Controlling ChemicalSelf-Assembly by Solvent-Dependent Dynamics[J]. Journal of the AmericanChemical Society, 2012, 134(32): 13482-13491.
[19] Yam V W W, Wong K M C, Zhu N Y. Solvent-Induced Aggregation throughMetal…Metal/π…π Interactions: Large Solvatochromism of LuminescentOrganoplatinum(II) Terpyridyl Complexes[J]. Journal of the American ChemicalSociety, 2002, 124(23): 6506-6507.
[20] Hong E Y-H, Wong H-L, Yam V W-W. Tunable Self-Assembly Properties ofAmphiphilic Phosphole Alkynylgold(I) Complexes through Variation of theExtent of the Aromatic π-Surface at the Alkynyl Moieties[J]. ChemicalCommunications, 2014, 50(87): 13272-13274.
[21] Phillips A D, Gonsalvi L, Romerosa A, et al. Coordination Chemistry of1,3,5-Triaza-7-Phosphaadamantane (PTA): Transition Metal Complexes andRelated Catalytic, Medicinal and Photoluminescent Applications[J]. CoordinationChemistry Reviews, 2004, 248(11): 955-993.
[22] Yam V W-W. Molecular Design of Transition Metal Alkynyl Complexes asBuilding Blocks for Luminescent Metal-Based Materials: Structural andPhotophysical Aspects[J]. Accounts of Chemical Research, 2002, 35(7): 555-563.
[23] Filatov M A, Baluschev S, Landfester K. Protection of Densely Populated ExcitedTriplet State Ensembles against Deactivation by Molecular Oxygen[J]. ChemicalSociety Reviews, 2016, 45(17): 4668-4689.
[24] Diaz Garcia M E, Sanz-Medel A. Facile Chemical Deoxygenation of MicellarSolutions for Room Temperature Phosphorescence[J]. Analytical Chemistry, 1986,58(7): 1436-1440.
[25] Wang H, Wang H, Yang X, et al. Ion-Unquenchable and Thermally “On–Off”Reversible Room Temperature Phosphorescence of 3-Bromoquinoline Induced bySupramolecular Gels[J]. Langmuir, 2015, 31(1): 486-491.
[26] Wan S G, Lu W. Reversible Photoactivated Phosphorescence of Gold(I)Arylethynyl Complexes in Aerated DMSO Solutions and Gels[J]. AngewandteChemie-International Edition, 2017, 56(7): 1784-1788.
[27] Lin J, Wan S, Liu W, et al. Photo-Writing Self-Erasable Phosphorescent ImagesUsing Poly(N-Vinyl-2-Pyrrolidone) as a Photochemically DeoxygenatingMatrix[J]. Chemical Communications, 2019, DOI: 10.1039/c9cc01388a.
[28] Rogovina L Z, Vasil'ev V G, Braudo E E. Definition of the Concept of PolymerGel[J]. Polymer Science Series C, 2008, 50(1): 85-92.
[29] Rawashdeh-Omary M A, Omary M A, Patterson H H. Oligomerization ofAu(CN)2- and Ag(CN)2- Ions in Solution Via Ground-State Aurophilic andArgentophilic Bonding[J]. Journal of the American Chemical Society, 2000,122(42): 10371-10380.
[30] Gavara R, Llorca J, Lima J C, et al. A Luminescent Hydrogel Based on a NewAu(I) Complex[J]. Chemical Communications, 2013, 49(1): 72-74.
[31] Aguiló E, Gavara R, Lima J C, et al. From Au(I) Organometallic Hydrogels toWell-Defined Au(0) Nanoparticles[J]. Journal of Materials Chemistry C, 2013,1(35): 5538-5547.
[32] Wan Q Y, To W P, Yang C, et al. The Metal-Metal-to-Ligand Charge TransferExcited State and Supramolecular Polymerization of Luminescent PincerPdII-Isocyanide Complexes[J]. Angewandte Chemie-International Edition, 2018,57(12): 3089-3093.
[33] Aguiló E, Moro A J, Gavara R, et al. Reversible Self-Assembly of Water-SolubleGold(I) Complexes[J]. Inorganic Chemistry, 2018, 57(3): 1017-1028.
[34] Chow A L F, So M H, Lu W, et al. Synthesis, Photophysical Properties, andMolecular Aggregation of Gold(I) Complexes Containing Carbon-DonorLigands[J]. Chemistry-An Asian Journal, 2011, 6(2): 544-553.
[35] Hong E Y H, Wong H L, Yam V W W. From Spherical to Leaf-Like Morphologies:Tunable Supramolecular Assembly of Alkynylgold(I) Complexes throughVariations of the Alkyl Chain Length[J]. Chemistry-A European Journal, 2015,21(15): 5732-5735.
[36] Li D, Hong X, Che C-M, et al. Luminescent Gold(I) Acetylide Complexes.Photophysical and Photoredox Properties and Crystal Structure of [{Au(C≡CPh)}2(µ-Ph2PCH2CH2PPh2)][J]. Journal of the Chemical Society, DaltonTransactions, 1993, (19): 2929-2932.
[37] Yam V W-W, Choi S W-K. Synthesis, Photophysics and Photochemistry ofAlkynylgold(I) Phosphine Complexes[J]. Journal of the Chemical Society, DaltonTransactions, 1996, (22): 4227-4232.
[38] Carlos Lima J, Rodríguez L. Applications of Gold(I) Alkynyl Systems: A GrowingField to Explore[J]. Chemical Society Reviews, 2011, 40(11): 5442-5456.
[39] Wan S G, Lin J X, Su H M, et al. Photochemically Deoxygenating Solvents forTriplet-Triplet Annihilation Photon Upconversion Operating in Air[J]. ChemicalCommunications, 2018, 54(31): 3907-3910.
[40] Singh-Rachford T N, Castellano F N. Photon Upconversion Based on SensitizedTriplet–Triplet Annihilation[J]. Coordination Chemistry Reviews, 2010, 254(21):2560-2573.
[41] Bourret G R, Goulet P J G, Lennox R B. Synthesis of Porous Metallic MonolithsVia Chemical Reduction of Au(I) and Ag(I) Nanostructured Sheets[J]. Chemistryof Materials, 2011, 23(22): 4954-4959.
[42] Jones L A, Sanz S, Laguna M. Gold Compounds as Efficient Co-Catalysts inPalladium-Catalysed Alkynylation[J]. Catalysis Today, 2007, 122(3-4): 403-406.
[43] Sanz S, Jones L A, Mohr F, et al. Homogenous Catalysis with Gold:  EfficientHydration of Phenylacetylene in Aqueous Media[J]. Organometallics, 2007, 26(4):952-957.
[44] Lu W, Mi B-X, Chan M C W, et al. Light-Emitting Tridentate CyclometalatedPlatinum(II) Complexes Containing σ-Alkynyl Auxiliaries:  Tuning of Photo- andElectrophosphorescence[J]. Journal of the American Chemical Society, 2004,126(15): 4958-4971.
[45] Mba M, D’acunzo M, Salice P, et al. Sensitization of Nanocrystalline TiO2 withMultibranched Organic Dyes and Co(III)/(II) Mediators: Strategies to ImproveCharge Collection Efficiency[J]. The Journal of Physical Chemistry C, 2013,117(39): 19885-19896.
[46] Mazzanti V, Jiang H, Gotfredsen H, et al. The Gilded Edge in AcetylenicScaffolding: Pd-Catalyzed Cross-Coupling Reactions of Phosphine–Gold(I)Oligoynyl Complexes[J]. Organic Letters, 2014, 16(14): 3736-3739.
[47] Wang L, Ji E H, Liu N, et al. Site-Selective N-Arylation of Carbazoles withHalogenated Fluorobenzenes[J]. Synthesis, 2016, 48(5): 737-750.
[48] Chowdhury A, Howlader P, Mukherjee P S. Aggregation-Induced Emission ofPlatinum(II) Metallacycles and Their Ability to Detect Nitroaromatics[J].Chemistry-A European Journal, 2016, 22(22): 7468-7478.
[49] Sirilaksanapong S, Sukwattanasinitt M, Rashatasakhon P. 1,3,5-TriphenylbenzeneFluorophore as a Selective Cu2+ Sensor in Aqueous Media[J]. ChemicalCommunications, 2012, 48(2): 293-295.
[50] Wong W Y, Guo Y H, Ho C L. Synthesis, Optical Properties and Photophysics ofGroup 10-12 Transition Metal Complexes and Polymer Derived from a CentralTris(p-ethynylphenyl)Amine Unit[J]. Journal of Inorganic and OrganometallicPolymers and Materials, 2009, 19(1): 46-54.
[51] Terech P, Weiss R G. Low Molecular Mass Gelators of Organic Liquids and theProperties of Their Gels[J]. Chemical reviews, 1997, 97(8): 3133-3160.
[52] Tian Y, Zhang L, Duan P, et al. Fabrication of Organogels Composed from CarbonNanotubes through a Supramolecular Approach[J]. New Journal of Chemistry,2010, 34(12): 2847-2852.
[53]Derosa M C, Crutchley R J. Photosensitized Singlet Oxygen and ItsApplications[J]. Coordination Chemistry Reviews, 2002, 233-234: 351-371.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O61
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/406023
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
刘文丰. 水溶性金属有机配合物的自聚集[D]. 哈尔滨. 哈尔滨工业大学,2019.
Files in This Item:
File Name/Size DocType Version Access License
11749063-刘文丰-化学系.pdf(7312KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘文丰]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘文丰]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘文丰]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.