中文版 | English
Title

非晶钯基纳米颗粒及热电材料的透射电镜研究

Alternative Title
THE STUDY OF AMORPHOUS PALLADIUM BASED NANOPARTICLES AND THERMOELECTRIC MATERIALS BY TRANSMISSION ELECTRON MICROSCOPY
Author
Name pinyin
HUANG Yi
School number
11849466
Degree
博士
Discipline
0702 物理学
Subject category of dissertation
07 理学
Supervisor
何佳清
Mentor unit
物理系
Publication Years
2022-05-20
Submission date
2022-10-27
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

材料科学的发展与新材料的研发及材料表征技术的进步紧密相连,其中非晶材料与热电材料显示出在储能领域的应用潜力而备受关注。非晶的本质、结构及玻璃形成能力是非晶材料研究常关注的几个问题。单质金属非晶因可以为非晶基本问题的研究提供理想的样品体系,其制备研究一直被视为非晶领域皇冠上的明珠。然而,受限于单质非晶态的玻璃形成条件苛刻等因素,其形成液体的调控及玻璃转变过程的研究少有文献报道。透射电子显微镜作为分析固液相材料微观形貌与结构动态过程的有力工具,已逐渐成为从原子层次窥探材料的合成、相变过程的有效途径。

本论文主要利用透射电子显微镜,重点关注纳米单质非晶的合成、流变行为与电镜分析方法在热电晶体掺杂原子占位上的应用。首先通过合成新的单质金属非晶态,并分析其形成机制与结构演化行为,从微观甚至原子尺度窥探单质非晶形成能力不高的内在原因,为更多单质非晶的制备及相关探索提供有用的实验指导;其次,通过利用电子束在晶体样品中的通道效应拓宽热电材料异质原子的占位表征方法。具体研究内容和主要结果如下:

(1)通过将晶体前驱体Pd与非晶氮化硅组成的体系加热至1073 K,保温20分钟后冷却至室温,制备出了单质非晶Pd纳米颗粒。运用透射电镜成像,分析了非晶Pd颗粒的物相信息。利用电子能量损失谱结合三维原子探针技术,表征了获得的非晶Pd纳米颗粒的成分信息。通过原位透射电镜,分析了非晶Pd颗粒的形成机制。EELS和APT结果分析发现合成的非晶Pd纳米颗粒的纯度为99.35±0.23 at %。原位电镜观察发现在1073 K温度下晶体Pd熔化并与非晶氮化硅基底发生化学反应,在冷却过程中Si原子从PdSi液体中析出形成非晶Si。单质非晶Pd纳米颗粒的形成机制是冷却过程中Si与Pd的相分离。

(2)以非晶Pd颗粒为研究对象,利用电子衍射分析了非晶Pd的结构特征。利用透射电镜高分辨成像,观察了非晶颗粒在受电子束辐照时的晶化过程,研究了颗粒尺寸、电压、温度对晶化的影响,并根据实验结果建立了非晶晶化的自由能模型。通过运用高分辨TEM成像研究粒径为30 nm非晶颗粒,发现剂量率为6680 e/Å2s 的300 keV高能电子束辐照下非晶Pd颗粒逐渐晶化,达到平衡时形成非晶-晶体的核-壳结构,晶体壳层平衡厚度为5 nm。通过观察不同尺寸非晶Pd颗粒的结晶现象,发现半径小于7 nm的非晶Pd颗粒全部晶化,半径大于7 nm的非晶Pd颗粒形成核-壳结构。通过在不同温度下对非晶颗粒进行电子束辐照,发现温度对平衡晶体层的厚度具有调控作用。通过对颗粒的自由能进行分析,发现小颗粒完全晶化的原因源自于非晶自由能拖尾的交叠,大颗粒则随着自由能的降低出现晶化不完全的特征。

(3)以引入异质元素的方式,研究了Au元素添加对PdSi熔体的影响。通过把Au-Pd核-壳纳米棒作为催化剂前驱体放置于非晶氮化硅衬底上,并把该体系加热至1338 K,发现纳米棒会熔化并以液体形式在非晶氮化硅上移动,并在移动后端形成晶体纳米薄膜。透射电镜成像及谱学分析发现该晶体膜结构为β-Si3N4。通过原位电镜分析其形成机制,发现β-Si3N4的合成是一个固-液-固过程:Au-Pd核-壳结构在1338 K温度下形成AuPd熔体并与氮化硅发生反应,氮化硅中的Si原子被吸收进熔体中,熔体中Si原子达到过饱和后在熔体行进后侧析出并与N原子重新结合形成高稳定性的晶体相β-Si3N4。熔体运动的驱动力为非晶基底与晶体氮化硅之间的化学势差。同时,我们还在低温条件下利用EELS研究了非晶Pd颗粒的氢气吸附过程,发现非晶Pd颗粒在吸氢过程中不产生体积膨胀的现象,突出了非晶Pd作为新型储能材料的应用潜力。

(4)异质元素添加对材料稳定性的影响较大,拓展电镜研究方法去量化材料的异质原子含量是非常必要的。在最后一部分内容中,我们以热电晶体材料为模板,通过选取Mn掺杂的SnTe晶体为对象,利用基于通道效应的ALCHEMI技术表征了Mn原子在SnTe晶格中的占位信息,给出了Mn在各原子面上的占位比例。通过分析,发现Mn原子倾向于占据Sn位置。ALCHEMI技术的成功实施,拓展了热电材料等晶体材料中异质原子占位的表征方法。

本文研究结果对认识非晶相的形成机理,探索单质非晶的结构,揭示非晶的本质及玻璃形成能力的来源,从而开发出更多种类的单质非晶态具有重要意义。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-07
References List

[1] Anderson P W. Through the Glass Lightly[J]. Science, 1995, 267(5204): 1615– 1616. 
[2] Hodge I. Mysteries of the glass transition[J]. Physics Today, 2008, 61(1): 15. 
[3] Couzin J. How much can human life span be extended[J]. Science, 2005, 309(5731): 83. 
[4] Bernal J D. Geometry of the Structure of Monatomic Liquids[J]. Nature, 1960, 185(4706): 68–70. 
[5] Bernal J D. A Geometrical Approach to the Structure Of Liquids[J]. Nature, 1959, 183(4655): 141–147. 
[6] Zachariasbn W H. The Atomic Arrangement In Glass[J]. Journal of the American Chemical Society, 1932, 54: 3841–3851. 
[7] Flory P J. The Configuration of Real Polymer Chains[J]. The Journal of Chemical Physics, 2004, 17(3): 303. 
[8] Alexander S. Amorphous solids: their structure, lattice dynamics and elasticity[J]. Physics Reports, 1998, 296(2–4): 65–236. 
[9] Gleiter H. Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today?[J]. Acta Materialia, 2008, 56(19): 5875–5893. 
[10] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48(1): 279–306. 
[11] Wang W H, Dong C, Shek C H. Bulk metallic glasses[J]. Materials Science and Engineering: R: Reports, 2004, 44(2–3): 45–89. 
[12] Wooten F, Weaire D. A computer-generated model of the crystalline/amorphous interface in silicon[J]. Journal of Non-Crystalline Solids, 1989, 114(PART 2): 681–683. 
[13] Johnson W L. Bulk Glass-Forming Metallic Alloys: Science and Technology[J]. MRS Bulletin, 1999, 24(10): 42–56. 
[14] Greer A L. Metallic Glasses[J]. Science, 1995, 267(5206): 1947–1953. 
[15] Qiao J C, Pelletier J M. Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review[J]. Journal of Materials Science & Technology, 2014, 30(6): 523–545. 
[16] Chen N, Martin L, Luzguine-Luzgin D V., et al. Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses[J]. Materials, 2010, 3(12): 5320–5339. 
[17] Qiao J C, Wang Q, Crespo D, et al. Amorphous physics and materials: Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review[J]. Chinese Physics B, 2017, 26(1): 016402. 
[18] Halim Q, Mohamed N A N, Rejab M R M, et al. Metallic glass properties, processing method and development perspective: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(5): 1231–1258. 
[19] Sharma A, Zadorozhnyy V. Review of the Recent Development in Metallic Glass and Its Composites[J]. Metals, 2021, 11(12): 1933. 
[20] Telford M. The case for bulk metallic glass[J]. Materials Today, 2004, 7(3): 36– 43. 
[21] Williams E, Lavery N. Laser processing of bulk metallic glass: A review[J]. Journal of Materials Processing Technology, 2017, 247: 73–91. 
[22] Wang H, Xiao S G, Zhang T, et al. Direct TEM observation of phase separation and crystallization in Cu45Zr45Ag10 metallic glass[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(6): 538–545. 
[23] Ivanov Y P, Meylan C M, Panagiotopoulos N T, et al. In-situ TEM study of the crystallization sequence in a gold-based metallic glass[J]. Acta Materialia, 2020, 196: 52–60. 
[24] Chen L, Wang Y, Zhang Z. Temperature distribution of wedge-shaped specimen in TEM[J]. Micron, 2018, 110: 46–49. 
[25] Saka H, Kamino T, Arai S, et al. In Situ Heating Transmission Electron Microscopy[J]. MRS Bulletin, 2011, 33(2): 93–100. 
[26] Wang K, Wu H, Ge M, et al. Exponential surface melting of Cu nanoparticles observed by in-situ TEM[J]. Materials Characterization, 2018, 145: 246–249. 
[27] Neklyudova M, Sabater C, Erdamar A K, et al. In situ transmission electron microscope formation of a single-crystalline Bi film on an amorphous substrate[J]. Applied Physics Letters, 2017, 110(10): 103101. 
[28] Li Z, Wang Z L, Wang Z. In situ tuning of crystallization pathways by electron beam irradiation and heating in amorphous bismuth ferrite films[J]. RSC Advances, 2018, 8(42): 23522–23528. 
[29] Liu S Y, Cao Q P, Mu X, et al. In-situ TEM study of oxygen-modulated crystallization pathway in Ni-Zr metallic glass[J]. Journal of Alloys and Compounds, 2019, 800: 254–260. 
[30] Zhang Z, Su D. Behaviour of TEM metal grids during in-situ heating experiments[J]. Ultramicroscopy, 2009, 109(6): 766–774. 
[31] Falqui A, Loche D, Casu A. In Situ TEM Crystallization of Amorphous Iron Particles[J]. Crystals, 2020, 10(1): 41. 
[32] Hansen T W, Wagner J B. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope[J]. ACS Catalysis, 2014, 4(6): 1673–1685. 
[33] Jiang Y, Zhang Z, Yuan W, et al. Recent advances in gas-involved in situ studies via transmission electron microscopy[J]. Nano Research, 2017, 11(1): 42–67. 
[34] Wu F, Yao N. Advances in windowed gas cells for in-situ TEM studies[J]. Nano Energy, 2015, 13: 735–756. 
[35] Wu J, Shan H, Chen W, et al. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research[J]. Advanced Materials, 2016, 28(44): 9686–9712. 
[36] Wagner J B, Cavalca F, Damsgaard C D, et al. Exploring the environmental transmission electron microscope[J]. Micron, 2012, 43(11): 1169–1175. 
[37] Han S, Xia G J, Cai C, et al. Gas-assisted transformation of gold from fcc to the metastable 4H phase[J]. Nature Communications, 2020, 11(1): 1–9. 
[38] Yuan W, Zhu B, Fang K, et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation[J]. Science, 2021, 371(6528): 517–521. 
[39] Tang M, Yuan W, Ou Y, et al. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review[J]. ACS Catalysis, 2020, 10(24): 14419–14450. 
[40] Liao H G, Zheng H. Liquid Cell Transmission Electron Microscopy[J]. Annual Review of Physical Chemistry, 2016, 67: 719–747. 
[41] Yuk J M, Park J, Ercius P, et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells[J]. Science, 2012, 335(6077): 61–64. 
[42] Nielsen M H, Aloni S, De Yoreo J J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158–1162. 
[43] Mirsaidov U, Patterson J P, Zheng H. Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution[J]. MRS Bulletin, 2020(45): 704–712. 
[44] Kushima A, So K P, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271–279. 
[45] Zeng Z, Kang J, Yang J, et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates[J]. Nature Materials, 2019(18): 970–976. 
[46] Zheng Q, Shangguan J, Li X, et al. Observation of Surface Ligands-Controlled Etching of Palladium Nanocrystals[J]. Nano Letters, 2021, 21: 6647. 
[47] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243–2267. 
[48] Zhang C, Ouyang D, Pauly S, et al. 3D printing of bulk metallic glasses[J]. Materials Science and Engineering: R, 2021, 145: 100625. 
[49] Li H F, Zheng Y F. Recent advances in bulk metallic glasses for biomedical applications[J]. Acta Biomaterialia, 2016, 36: 1–20. 
[50] Monfared A, Vali H, Faghihi S. Biocorrosion and biocompatibility of Zr–Cu– Fe–Al bulk metallic glasses[J]. Surface and Interface Analysis, 2013, 45(11–12): 1714–1720. 
[51] Budhani R C, Goel T C, Chopra K L. Melt-spinning technique for preparation of metallic glasses[J]. Bulletin of Materials Science, 1982, 4(5): 549–561. 
[52] Filipecka K, Pawlik P, Filipecki J. The effect of annealing on magnetic properties, phase structure and evolution of free volumes in Pr-Fe-B-W metallic glasses[J]. Journal of Alloys and Compounds, 2017, 694: 228–234. 
[53] Wang Z, Georgarakis K, Nakayama K S, et al. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites[J]. Scientific Reports, 2016, 6(1): 1–11. 
[54] Davies H A, Aucote J, Hull J B. Amorphous Nickel produced by Splat Quenching[J]. Nature Physical Science, 1973, 246(149): 13–14. 
[55]Ding S, Liu Y, Li Y, et al. Combinatorial development of bulk metallic glasses[J]. Nature Materials, 2014, 13(5): 494–500. 
[56] Johnson W L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials[J]. Progress in Materials Science, 1986, 30(2): 81–134. 
[57] Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1–2): 37–41. 
[58] Suzuki H, Kanazawa I. Viscosities of the Zr-based bulk metallic glass-forming liquids[J]. Intermetallics, 2010, 18(10): 1809–1812. 
[59] Martinez L M, Angell C A. A thermodynamic connection to the fragility of glass-forming liquids[J]. Nature, 2001, 410(6829): 663–667. 
[60] Fulcher G S. Analysis of Recent Measurements of The Viscosity Of Glasses[J]. Journal of the American Ceramic Society, 1925, 8(6): 339–355. 
[61] Turnbull D. Under what conditions can a glass be formed?[J]. Contemporary Physics, 2006, 10(5): 473–488. 
[62] Bengtzelius U, Gotze W, Sjolander A. Dynamics of supercooled liquids and the glass transition[J]. Journal of Physics C: Solid State Physics, 1984, 17(33): 5915. 
[63] Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition[J]. Nature, 2001, 410(6825): 259–267. 
[64] Angell C A. Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems[J]. Journal of Non-Crystalline Solids, 1991, 131– 133(PART 1): 13–31. 
[65] Novikov V N, Sokolov A P. Poisson’s ratio and the fragility of glass-forming liquids[J]. Nature, 2004, 431(7011): 961–963. 
[66] Roland C M, Ngai K L. The anomalous Debye–Waller factor and the fragility of glasses[J]. The Journal of Chemical Physics, 1998, 104(8): 2967. 
[67] Jiang M, Dai L. Intrinsic correlation between fragility and bulk modulus in metallic glasses[J]. Physical Review B, 2007, 76(5): 054204. 
[68] Pasturel A, Tasci E S, Sluiter M H F, et al. Structural and dynamic evolution in liquid Au-Si eutectic alloy by ab initio molecular dynamics[J]. Physical Review B, 2010, 81(14): 140202. 
[69] Ngai K L. Relaxation and Diffusion in Complex Systems[M]. New York, NY: 2011. 
[70] Stevenson J D, Schmalian J, Wolynes P G. The shapes of cooperatively rearranging regions in glass-forming liquids[J]. Nature Physics, 2006, 2(4): 268– 274. 
[71] Williams G, Watts D C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function[J]. Transactions of the Faraday Society, 1970, 66(0): 80–85. 
[72] Wang W H. Dynamic relaxations and relaxation-property relationships in metallic glasses[J]. Progress in Materials Science, 2019, 106: 100561. 
[73] Ruta B, Pineda E, Evenson Z. Relaxation processes and physical aging in metallic glasses[J]. Journal of Physics: Condensed Matter, 2017, 29(50): 503002. 
[74] Berthier L. Dynamic heterogeneity in amorphous materials[J]. Physics, 2011, 4(42). 
[75] Richert R. Heterogeneous dynamics in liquids: fluctuations inspace and time[J]. Journal of Physics: Condensed Matter, 2002, 14(23): R703. 
[76] Pabst F, Gabriel J P, Böhmer T, et al. Generic Structural Relaxation in Supercooled Liquids[J]. Journal of Physical Chemistry Letters, 2021, 12(14): 3685–3690. 
[77] Gallino I, Busch R. Relaxation Pathways in Metallic Glasses[J]. JOM, 2017, 69(11): 2171–2177. 
[78] Ichitsubo T, Matsubara E, Yamamoto T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses[J]. Physical Review Letters, 2005, 95(24): 245501. 
[79] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177–351. 
[80] Voyles P M, Muller D A. Fluctuation microscopy in the STEM[J]. Ultramicroscopy, 2002, 93(2): 147–159. 
[81] Yang W, Han C, Sun M. A novel medium-range structure in Zr80Pt20 metallic glass[J]. Materials Letters, 2022, 308: 131154. 
[82] Bing W, BaoShuang S, XuanQiao G, et al. Local structural signs for distinct crystallization behaviors of monatomic metals[J]. Journal of Non-Crystalline Solids, 2022, 576: 121247. 
[83] Liu X J, Hui X D, Chen G L, et al. Local atomic structures in Zr–Ni metallic glasses[J]. Physics Letters A, 2009, 373(29): 2488–2493. 
[84] Han C, Yang W, Lan Y, et al. Al addition on the short and medium range order of CuZrAl metallic glasses[J]. Physica B: Condensed Matter, 2021, 619: 413237. 
[85] Miracle D B. A structural model for metallic glasses[J]. Nature Materials, 2004, 3(10): 697–702. 
[86] Cheng Y Q, Ma E. Atomic-level structure and structure–property relationship in metallic glasses[J]. Progress in Materials Science, 2011, 56(4): 379–473. 
[87] Nelson D R. Order, frustration, and defects in liquids and glasses[J]. Physical Review B, 1983, 28(10): 5515. 
[88] Fujita T, Konno K, Zhang W, et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability[J]. Physical Review Letters, 2009, 103(7): 075502. 
[89] Gaskell P H. A new structural model for transition metal–metalloid glasses[J]. Nature, 1978, 276(5687): 484–485. 
[90] Gaskell P H. Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data[J]. Journal of Non-Crystalline Solids, 2005, 351(12– 13): 1003–1013. 
[91] Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-mediumrange order in metallic glasses[J]. Nature, 2006, 439(7075): 419–425. 
[92] Stillinger F H. A Topographic View of Supercooled Liquids and Glass Formation[J]. Science, 1995, 267(5206): 1935–1939. 
[93] Drehman A J, Greer A L, Turnbull D. Bulk formation of a metallic glass: Pd40Ni40P20[J]. Applied Physics Letters, 1998, 41(8): 716. 
[94] Lee D, Zhao B, Perim E, et al. Crystallization behavior upon heating and cooling in Cu50Zr50 metallic glass thin films[J]. Acta Materialia, 2016, 121: 68–77. 
[95] Wu M, Tse J S, Wang S Y, et al. Origin of pressure-induced crystallization of Ce75Al25 metallic glass[J]. Nature Communications, 2015, 6(1): 1–7. 
[96] Wang Z X, Zhao D Q, Pan M X, et al. Formation and crystallization of CuZrHfTi bulk metallic glass under ambient andhigh pressures[J]. Journal of Physics: Condensed Matter, 2003, 15(35): 5923. 
[97] Jinschek J R. Achieve atomic resolution in in situ S/TEM experiments to examine complex interface structures in nanomaterials[J]. Current Opinion in Solid State and Materials Science, 2017, 21(2): 77–91. 
[98] Zhang B, Sheng Su D, Zhang B, et al. Transmission Electron Microscopy and the Science of Carbon Nanomaterials[J]. Small, 2014, 10(2): 222–229. 
[99] Spurgeon S R, Ophus C, Jones L, et al. Towards data-driven next-generation transmission electron microscopy[J]. Nature Materials, 2020, 20(3): 274–279. 
[100] Song Z, Xie Z H. A literature review of in situ transmission electron microscopy technique in corrosion studies[J]. Micron, 2018, 112: 69–83. 
[101] Findlay S D, Huang R, Ishikawa R, et al. Direct visualization of lithium via annular bright field scanning transmission electron microscopy: a review[J]. Microscopy, 2017, 66(1): 3–14. 
[102] Xie L, He D, He J. SnSe, the rising star thermoelectric material: a new paradigm in atomic blocks, building intriguing physical properties[J]. Materials Horizons, 2021, 8(7): 1847–1865. 
[103] Wu H, Zheng F, Wu D, et al. Advanced electron microscopy for thermoelectric materials[J]. Nano Energy, 2015, 13: 626–650. 
[104] Chang C, Wu M, He D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390): 778–783. 
[105] Fu L, Yin M, Wu D, et al. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects[J]. Energy & Environmental Science, 2017, 10(9): 2030–2040. 
[106] Xie L, Wu D, Yang H, et al. Direct atomic-scale observation of the Ag+ diffusion structure in the quasi-2D “liquid-like” state of superionic thermoelectric AgCrSe2[J]. Journal of Materials Chemistry C, 2019, 7(30): 9263–9269. 
[107] Xu X, Xie L, Lou Q, et al. Boosting the Thermoelectric Performance of PseudoLayered Sb2Te3(GeTe)n via Vacancy Engineering[J]. Advanced Science, 2018, 5(12): 1801514. 
[108] Carlton C E, Ferreira P J. In situ TEM nanoindentation of nanoparticles[J]. Micron, 2012, 43(11): 1134–1139. 
[109] Oviedo J P, Kc S, Lu N, et al. In situ TEM characterization of shear-stressinduced interlayer sliding in the cross section view of molybdenum disulfide[J]. ACS Nano, 2015, 9(2): 1543–1551. 
[110] Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010): 1515–1520. 
[111] Wang Z, Santhanagopalan D, Zhang W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760–3767. 
[112] Jinschek J R, Helveg S. Image resolution and sensitivity in an environmental transmission electron microscope[J]. Micron, 2012, 43(11): 1156–1168. 
[113] Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook for Materials Science[M]. New York: Springer. 
[114] KRUMEICH F. Introduction Into Transmission and Scanning Transmission Electron Microscopy[EB/OL]. : 55(2022). https://www.microscopy.ethz.ch/. 
[115] Mu X, Wang D, Feng T, et al. Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses[J]. Ultramicroscopy, 2016, 168: 1–6. 
[116] Bodapati A, Treacy M M J, Falk M, et al. Medium range order and the radial distribution function[J]. Journal of Non-Crystalline Solids, 2006, 352(2): 116– 122. 
[117] Tran D T, Svensson G, Tai C W. SUePDF: a program to obtain quantitative pair distribution functions from electron diffraction data[J]. Journal of Applied Crystallography, 2017, 50(1): 304–312. 
[118] Srolovitz D, Egami T, Vitek V. Radial distribution function and structural relaxation in amorphous solids[J]. Physical Review B, 1981, 24(12): 6936. 
[119] Bogle S N, Nittala L N, Twesten R D, et al. Size analysis of nanoscale order in amorphous materials by variable-resolution fluctuation electron microscopy[J]. Ultramicroscopy, 2010, 110(10): 1273–1278. 
[120] Daulton T L, Bondi K S, Kelton K F. Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials— Application to Al88−xY7Fe5Tix metallic glasses[J]. Ultramicroscopy, 2010, 110(10): 1279–1289. 
[121] Kennedy E, Reynolds N, Rangel Dacosta L, et al. Tilted fluctuation electron microscopy[J]. Applied Physics Letters, 2020, 117(9): 091903. 
[122] Li T T, Darmawikarta K, Abelson J R. Quantifying nanoscale order in amorphous materials via scattering covariance in fluctuation electron microscopy[J]. Ultramicroscopy, 2013, 133: 95–100. 
[123] Treacy M M J, Gibson J M, Fan L, et al. Fluctuation microscopy: A probe of medium range order[J]. Reports on Progress in Physics, 2005, 68(12): 2899– 2944. 
[124] Mitchell D R G, Petersen T C. RDFTools: A software tool for quantifying short-range ordering in amorphous materials[J]. Microscopy Research and Technique, 2012, 75(2): 153–163. 
[125] Lee B-S, Bishop S G, Abelson J R. Fluctuation Transmission Electron Microscopy: Detecting Nanoscale Order in Disordered Structures[J]. ChemPhysChem, 2010, 11(11): 2311–2317. 
[126] Wang Q, Liu C T, Yang Y, et al. Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass[J]. Physical Review Letters, 2011, 106(21): 215505. 
[127] Fan G Y, Cowley J M. Auto-correlation analysis of high resolution electron micrographs of near-amorphous thin films[J]. Ultramicroscopy, 1985, 17(4): 345–355. 
[128] Li Y H, Zhang W, Dong C, et al. Unusual compressive plasticity of a centimeter-diameter Zr-based bulk metallic glass with high Zr content[J]. Journal of Alloys and Compounds, 2010, 504(SUPPL. 1): S2–S5. 
[129] SJ Pennycook P N. Scanning Transmission Electron Microscopy: Imaging and Analysis[M]. Springer Science & Business Media. 
[130] Pennycook S J, Boatner L A. Chemically sensitive structure-imaging with a scanning transmission electron microscope[J]. Nature, 1988, 336(6199): 565– 567. 
[131] Krivanek O L, Chisholm M F, Nicolosi V, et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy[J]. Nature, 2010, 464(7288): 571–574. 
[132] Idrissi H, Ghidelli M, Béché A, et al. Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films[J]. Scientific Reports, 2019, 9(1): 1–11. 
[133] Sarkar R, Ebner C, Izadi E, et al. Revealing anelasticity and structural rearrangements in nanoscale metallic glass films using in situ TEM diffraction[J]. Materials Research Letters, 2017, 5(3): 135–143. 
[134] Ebner C, Sarkar R, Rajagopalan J, et al. Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction[J]. Ultramicroscopy, 2016, 165: 51–58. 
[135] Gammer C, Ophus C, Pekin T C, et al. Local nanoscale strain mapping of a metallic glass during in situ testing[J]. Applied Physics Letters, 2018, 112(17): 171905. 
[136] Ito Y, Alamgir P M, Jain H, et al. EXELFS of metallic glasses[J]. Materials Research Society Symposium - Proceedings, 1999, 554(November): 31–36. 
[137] Diociaiuti M, Picozzi P, Santucci S, et al. Extended electron energy‐loss fine structure and selected‐area electron diffraction studies of small palladium clusters[J]. Journal of Microscopy, 1992, 166(2): 231–245. 
[138] Zhu Y, Zhao H, He Y, et al. In-situ transmission electron microscopy for probing the dynamic processes in materials[J]. Journal of Physics D: Applied Physics, 2021, 54(44): 443002. 
[139] Mele L, Konings S, Dona P, et al. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes[J]. Microscopy Research and Technique, 2016, 79(4): 239–250. 
[140]Egerton R F, Li P, Malac M. Radiation damage in the TEM and SEM[J]. Micron, 2004, 35(6): 399–409. 
[141] Peng L, Zhang Y, Zuo S, et al. Lorentz transmission electron microscopy studies on topological magnetic domains[J]. Chinese Physics B, 2018, 27(6): 066802. 
[142] Phatak C, Petford-Long A K, De Graef M. Recent advances in Lorentz microscopy[J]. Current Opinion in Solid State and Materials Science, 2016, 20(2): 107–114. 
[143] Tang J, Kong L, Wang W, et al. Lorentz transmission electron microscopy for magnetic skyrmions imaging[J]. Chinese Physics B, 2019, 28(8): 087503. 
[144] Shindo D, Tanigaki T, Park H S. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science[J]. Advanced Materials, 2017, 29(25): 1602216. 
[145] Midgley P A, Dunin-Borkowski R E. Electron tomography and holography in materials science[J]. Nature Materials, 2009, 8(4): 271–280. 
[146] Jiang Y, Chen Z, Han Y, et al. Electron ptychography of 2D materials to deep sub-ångström resolution[J]. Nature, 2018, 559(7714): 343–349. 
[147] Ophus C. Four-Dimensional Scanning Transmission Electron Microscopy (4DSTEM): From Scanning Nanodiffraction to Ptychography and Beyond[J]. Microscopy and Microanalysis, 2019(2019): 563–582. 
[148] Bosch E G T, Lazić I. Analysis of HR-STEM theory for thin specimen[J]. Ultramicroscopy, 2015, 156: 59–72. 
[149] Lazić I, Bosch E G T, Lazar S. Phase contrast STEM for thin samples: Integrated differential phase contrast[J]. Ultramicroscopy, 2016, 160: 265–280. 
[150] Midgley P A, Weyland M, Meurig Thomas J, et al. Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering[J]. Chemical Communications, 2001, 0(10): 907–908. 
[151] Hanwell M D, Harris C J, Genova A, et al. Tomviz: Open Source Platform Connecting Image Processing Pipelines to GPU Accelerated 3D Visualization[J]. Microscopy and Microanalysis, 2019, 25(S2): 408–409. 
[152] Kremer J R, Mastronarde D N, McIntosh J R. Computer Visualization of ThreeDimensional Image Data Using IMOD[J]. Journal of Structural Biology, 1996, 116(1): 71–76. 
[153] Yuan Y, Kim D S, Zhou J, et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure[J]. Nature Materials, 2021, 21(1): 95–102. 
[154] Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid[J]. Nature, 2021, 592(7852): 60–64. 
[155] Miao J, Ercius P, Billinge S J L. Atomic electron tomography: 3D structures without crystals[J]. Science, 2016, 353(6306): aaf2157. 
[156] Suslick K S, Choe S B, Cichowlas A A, et al. Sonochemical synthesis of amorphous iron[J]. Nature, 1991, 353(6343): 414–416. 
[157] Rojo J M, Hernando A, El Ghannami M, et al. Observation and Characterization of Ferromagnetic Amorphous Nickel[J]. Physical Review Letters, 1996, 76(25): 4833. 
[158] Zhang J, Zhao Y. Formation of zirconium metallic glass[J]. Nature, 2004, 430(6997): 332–335. 
[159] Wang Y, Fang Y Z, Kikegawa T, et al. Amorphouslike diffraction pattern in solid metallic titanium[J]. Physical Review Letters, 2005, 95(15): 155501. 
[160] Bhat M H, Molinero V, Soignard E, et al. Vitrification of a monatomic metallic liquid[J]. Nature, 2007, 448(7155): 787–790. 
[161] Cheng H, Yang N, Liu G, et al. Ligand-Exchange-Induced Amorphization of Pd Nanomaterials for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction[J]. Advanced Materials, 2020, 32(11): 1902964. 
[162] Wu G, Zheng X, Cui P, et al. A general synthesis approach for amorphous noble metal nanosheets[J]. Nature Communications, 2019, 10(1): 1–8. 
[163] Zhong L, Wang J, Sheng H, et al. Formation of monatomic metallic glasses through ultrafast liquid quenching[J]. Nature, 2014, 512(7513): 177–180. 
[164] Obi T, Ochiai Y, Tsuruoka Y, et al. Amorphization of pure noble metal nanocontacts by nanosecond electrical energization[J]. Journal of Physics and Chemistry of Solids, 2022, 162: 110498. 
[165] Tang D-M, Ren C-L, Lv R, et al. Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy[J]. Nano Letters, 2015, 15(8): 4922–4927. 
[166] Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass[J]. Nature Materials, 2010, 10(1): 28–33. 
[167] Hirata A, Kang L J, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses[J]. Science, 2013, 341(6144): 376–379. 
[168] Zhu F, Hirata A, Liu P, et al. Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass[J]. Physical Review Letters, 2017, 119(21): 215501. 
[169] Liu A C Y, Neish M J, Stokol G, et al. Systematic Mapping of Icosahedral Short-Range Order in a Melt-Spun Zr36Cu64 Metallic Glass[J]. Physical Review Letters, 2013, 110(20): 205505. 
[170] Pekin T C, Ding J, Gammer C, et al. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass[J]. Nature Communications, 2019, 10(1): 1–7. 
[171] Im S, Chen Z, Johnson J M, et al. Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy[J]. Ultramicroscopy, 2018, 195: 189–193. 
[172] Cao C R, Huang K Q, Shi J A, et al. Liquid-like behaviours of metallic glassy nanoparticles at room temperature[J]. Nature Communications, 2019, 10(1): 1– 8. 
[173] Tian Y, Jiao W, Liu P, et al. Fast coalescence of metallic glass nanoparticles[J]. Nature Communications, 2019, 10(1): 1–8. 
[174] He L, Zhang P, Besser M F, et al. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid[J]. Microscopy and Microanalysis, 2015, 21(4): 1026–1033. 
[175] Zhang P, Maldonis J J, Liu Z, et al. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy[J]. Nature Communications, 2018, 9(1): 1–7. 
[176] Chen Z G, Hana G, Yanga L, et al. Nanostructured thermoelectric materials: Current research and future challenge[J]. Progress in Natural Science: Materials International, 2012, 22(6): 535–549. 
[177] Suryanarayana C, Inoue A. Bulk metallic glasses: Second edition[M]. Bulk Metallic Glasses: Second Edition, CRC Press, 2017. 
[178] Heck P R, Stadermann F J, Isheim D, et al. Atom-probe analyses of nanodiamonds from Allende[J]. Meteoritics & Planetary Science, 2014, 49(3): 453–467. 
[179] Back J M, McCue S W, Moroney T J. Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles[J]. Scientific Reports, 2014, 4(1): 1–8. 
[180] Schülli T U, Daudin R, Renaud G, et al. Substrate-enhanced supercooling in AuSi eutectic droplets[J]. Nature, 2010, 464(7292): 1174–1177. 
[181] Chen L, Cao C R, Shi J A, et al. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth[J]. Physical Review Letters, 2017, 118(1): 016101. 
[182] Sohn S, Xie Y, Jung Y, et al. Tailoring crystallization phases in metallic glass nanorods via nucleus starvation[J]. Nature Communications, 2017, 8(1): 1–8. 
[183] Sohn S, Jung Y, Xie Y, et al. Nanoscale size effects in crystallization of metallic glass nanorods[J]. Nature Communications, 2015, 6(1): 1–6. 
[184] Yinnon H, Uhlmann D R. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory[J]. Journal of Non-Crystalline Solids, 1983, 54(3): 253–275. 
[185] Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III[J]. The Journal of Chemical Physics, 2004, 9(2): 177. 
[186] Jimenez C M, Lowe L F, Burke E A, et al. Radiation Damage in Pd Produced by 1-3-MeV Electrons[J]. Physical Review, 1967, 153(3): 735. 
[187] Iijima S, Ichihashi T. Structural Instability of Ultrafine Particles of Metals[J]. Physical Review Letters, 1986, 56(6): 616–619. 
[188] Kim B J, Tersoff J, Kodambaka S, et al. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth[J]. Science, 2008, 322(5904): 1070–1073. 
[189] Kodambaka S, Tersoff J, Reuter M C, et al. Germanium nanowire growth below the eutectic temperature[J]. Science, 2007, 316(5825): 729–732. 
[190] Oh S H, Chisholm M F, Kauffmann Y, et al. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires[J]. Science, 2010, 330(6003): 489–493. 
[191] Fan Z, Maurice J L, Florea I, et al. In situ observation of droplet nanofluidics for yielding low-dimensional nanomaterials[J]. Applied Surface Science, 2022, 573: 151510. 
[192] Curiotto S, Leroy F, Cheynis F, et al. In-Plane Si Nanowire Growth Mechanism in Absence of External Si Flux[J]. Nano Letters, 2015, 15(7): 4788–4792. 
[193] Yu L, Alet P J, Picardi G, et al. An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires[J]. Physical Review Letters, 2009, 102(12): 125501. 
[194] Sinclair R, Konno T J. In situ HREM: application to metal-mediated crystallization[J]. Ultramicroscopy, 1994, 56(1–3): 225–232. 
[195] Wagner R S, Ellis W C. Vapor-Liquid-Solid mechanism of single srystal growth[J]. Applied Physics Letters, 1964, 4(5): 89. 
[196] Panciera F, Tersoff J, Gamalski A D, et al. Surface Crystallization of Liquid Au–Si and Its Impact on Catalysis[J]. Advanced Materials, 2019, 31(5): 1806544. 
[197] Panciera F, Chou Y C, Reuter M C, et al. Synthesis of nanostructures in nanowires using sequential catalyst reactions[J]. Nature Materials, 2015, 14(8): 820–825. 
[198] Riley F L. Silicon Nitride and Related Materials[J]. Journal of the American Ceramic Society, 2000, 83(2): 245–265. 
[199] Klemm H. Silicon Nitride for High-Temperature Applications[J]. Journal of the American Ceramic Society, 2010, 93(6): 1501–1522. 
[200] Ding Y, Fan F, Tian Z, et al. Atomic structure of Au-Pd bimetallic alloyed nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(35): 12480–12486. 
[201] Okamoto H, Massalski T B. The Au−Si (Gold-Silicon) system[J]. Bulletin of Alloy Phase Diagrams 1983 4:2, 1983, 4(2): 190–198. 
[202] Graham T. On the absorption and dialytic separation of gases by colloid septa[J]. Journal of the Franklin Institute, 1867, 83(1): 39–41. 
[203] Baldi A, Narayan T C, Koh A L, et al. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals[J]. Nature Materials, 2014, 13(12): 1143–1148. 
[204] Bennett P A, Fuggle J C. Electronic structure and surface kinetics of palladium hydride studied with x-ray photoelectron spectroscopy and electron-energy - 105 - loss spectroscopy[J]. Physical Review B, 1982, 26(11): 6030. 
[205] Silkin V M, Muino R D, Chernov I, et al. Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration[J]. Journal of Physics: Condensed Matter, 2012, 24: 1–5. 
[206] Jia N, Cao J, Tan X Y, et al. Thermoelectric materials and transport physics[J]. Materials Today Physics, 2021, 21: 100519. 
[207] Wang Y, Lin P, Lou Q, et al. Design guidelines for chalcogenide-based flexible thermoelectric materials[J]. Materials Advances, 2021, 2(8): 2584–2593. 
[208] Guo F, Cui B, Liu Y, et al. Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self-Compensation and Mn Alloying[J]. Small, 2018, 14(37): 1802615. 
[209] Pang H, Qiu Y, Wang D, et al. Realizing N-type SnTe Thermoelectrics with Competitive Performance through Suppressing Sn Vacancies[J]. Journal of the American Chemical Society, 2021, 143(23): 8538–8542. 
[210] Chang C, Wang D, He D, et al. Realizing High-Ranged Out-of-Plane ZTs in NType SnSe Crystals through Promoting Continuous Phase Transition[J]. Advanced Energy Materials, 2019, 9(28): 1901334. 
[211] Tan G, Shi F, Hao S, et al. Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe[J]. Journal of the American Chemical Society, 2015, 137(35): 11507–11516. 
[212] Vatanparast M, Shao Y-T, Rajpalke M, et al. Detecting minute amounts of nitrogen in GaNAs thin films using STEM and CBED[J]. Ultramicroscopy, 2021: 113299. 
[213] Jiang B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance[J]. Science, 2021, 371(6531): 830–834. 
[214] Nüchter W, Sigle W. Electron channelling: A method in real-space crystallography and a comparison with the atomic location by channellingenhanced microanalysis[J]. Philosophical Magazine A, 1995, 71(1): 165–186. 
[215] Morimura T, Hasaka M. Electron channeling X-ray microanalysis for site occupation in β-FeSi2 doped with Co[J]. Materials Characterization, 2004, 52(1): 35–41. 
[216] Spence J C H, Taftø J. ALCHEMI: a new technique for locating atoms in small crystals[J]. Journal of Microscopy, 1983, 130(2): 147–154. 
[217] Fultz B, Howe J M. Transmission Electron Microscopy and Diffractometry of Materials[M]. Springer Science & Business Media, 2012. 
[218] Muto S, Ohtsuka M. High-precision quantitative atomic-site-analysis of functional dopants in crystalline materials by electron-channelling-enhanced microanalysis[J]. Progress in Crystal Growth and Characterization of Materials, 2017, 63(2): 40–61.  
[219] Oxley M P, Allen L J. ICSC: A program for calculating inelastic scattering cross sections for fast electrons incident on crystals[J]. Journal of Applied Crystallography, 2003, 36(3 II): 940–943.

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
TB303
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/406641
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
黄亦. 非晶钯基纳米颗粒及热电材料的透射电镜研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849466-黄亦-物理系.pdf(9046KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[黄亦]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[黄亦]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[黄亦]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.