中文版 | English

Analysis of Uncertainty for Dynamic Pricing: Models, On-demand Attractors, and Artificial Chaos

Name pinyin
LU Shuixiu
School number
Georgios Theodoropoulos
Mentor unit
Publication Years
Submission date
University of Technology Sydney
Place of Publication

Dynamic pricing is a pricing strategy that adapts and optimizes prices based on information about demand. The optimization models interactions between price and demand.  Uncertain  demand poses a challenge in the modeling. In addressing the uncertainty, stochastic demand is widely assumed. From dynamical systems' perspective, nonlinear interactions between variables yield a rational route that can exhibit uncertainty.  However, uncertain demand because of nonlinear interactions remains to be elucidated. 

    This thesis analyzes uncertain demand  from theoretical and empirical perspectives. A theoretical model addresses a hypothetically rational route to uncertain demand. The rational route has discontinuities in demand functions and optimizations. By a bifurcation analysis, the theoretical impacts of discontinuous interactions are investigated. A reconstruction of real-life on-demand attractor addresses a data-driven identification of uncertain demand. Recurrence-based attractor reconstruction is proposed and applied on empirical data from RideAustin, a company providing ride share service in the city of Austin, Texas, the United States. Recurrence plots and Pareto optimality are applied to find optimal embedding and  time delay dimensions.  The ones under which recurrence plots yield  optimal recurrence quantification measures, the determinism and the trapping time, are chosen for an attractor reconstruction.

   Border collision bifurcations are observed from the theoretical mode, justifying  dynamic pricing  from dynamical systems’ perspective. A period-7 limit cycle is reconstructed from empirical data. Results suggest that nonlinear interactions could cause uncertain demand of which a rational route is  a constituent part. The findings emphasize data-driven modeling of uncertain demand. For optimal revenue, demand dynamics should be identified.

    Finally, uncertainty in  deterministic chaos or dynamic pricing is increasingly analyzed by machine learning methods. However, for an artificial  system, a system that employs machine learning methods for mimicking deterministic chaos, the role of initial conditions  remains unclear. This thesis  analyzes the sensitive dependence of an artificial system on initial conditions.  Nonlinear time series analysis is introduced to study machine behavior, the behavior of an artificial system under varying initial conditions. We observe that machine behaviors coincide chaotic trajectories, however, alter original basins. Garbled symbolic dynamics is  observed, further indicating that a coincidence of  a single chaotic trajectory could mislead conclusions. The results highlight that when machine learning meets complex dynamics, an artificial system should be performed under varying initial conditions, instead of a single chaotic trajectory. Machine behaviors would help showing and comparing the sensitive dependence on initial conditions between a mimicked chaotic and an artificial systems. 

Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] D. M. Abrams, H. A. Yaple, and R. J. Wiener. Dynamics of social group competition:modeling the decline of religious affiliation. Physical Review Letters, 107(8):088701, 2011.
[2] G. Abrate, G. Fraquelli, and G. Viglia. Dynamic pricing strategies: Evidence fromeuropean hotels. International Journal of Hospitality Management, 31(1):160–168.
[3] J. Aguirre, R. L. Viana, and M. A. Sanjuán. Fractal structures in nonlineardynamics. Reviews of Modern Physics, 81(1):333, 2009.
[4] A. Ajorlou, A. Jadbabaie, and A. Kakhbod. Dynamic pricing in social networks:The word-of-mouth effect. Management Science, 64(2):971–979, 2018.
[5] J. Amigó. Permutation complexity in dynamical systems. Springer-Verlag, Berlin,2010.
[6] J. Amigó, S. Zambrano, and M. A. Sanjuán. Combinatorial detection of determinismin noisy time series. EPL (Europhysics Letters), 83(6):60005, 2008.
[7] J. M. Amigó, L. Kocarev, and J. Szczepanski. Order patterns and chaos. PhysicsLetters A, 355(1):27–31, 2006.
[8] J. M. Amigó, S. Zambrano, and M. A. Sanjuán. True and false forbidden patternsin deterministic and random dynamics. EPL (Europhysics Letters), 79(5):50001,2007.
[9] J. M. Amigó, S. Zambrano, and M. A. Sanjuán. Detecting determinism in timeseries with ordinal patterns: a comparative study. International Journal of Bifurcationand Chaos, 20(09):2915–2924, 2010.
[10] M. Anufriev, D. Radi, and F. Tramontana. Some reflections on past and futureof nonlinear dynamics in economics and finance. Decisions in Economics andFinance, 41(2):91–118, 2018.
[11] M. Anufriev, L. Gardini, and D. Radi. Chaos, border collisions and stylized empiricalfacts in an asset pricing model with heterogeneous agents. Nonlinear Dynamics,102:993–1017, 2020.
[12] V. F. Araman and R. Caldentey. Dynamic pricing for nonperishable products withdemand learning. Operations research, 57(5):1169–1188, 2009.
[13] A. Arenas, A. DíazGuilera, J. Kurths, Y. Moreno, and C. Zhou. Synchronizationin complex networks. Physics reports, 469(3):93–153, 2008.
[14] A. Avila and I. Mezić. Data-driven analysis and forecasting of highway trafficdynamics. Nature communications, 11(1):1–16, 2020.
[15] Y. Aviv and A. Pazgal. Pricing of short life-cycle products through active learning.Working paper,Washington University, St. Louis, pages 1–32, 2002.
[16] Y. Aviv and A. Pazgal. A partially observed markov decision process for dynamicpricing. Management Science, 51(9):1400–1416, 2005.
[17] V. Avrutin and M. Schanz. On multi-parametric bifurcations in a scalar piecewiselinearmap. Nonlinearity, 19(3):531, 2006.
[18] S. R. Balseiro, D. B. Brown, and C. Chen. Dynamic pricing of relocating resourcesin large networks. Management Science, 67(7):4075–4094, 2021.
[19] G.-Y. Ban and N. B. Keskin. Personalized dynamic pricing with machine learning:High-dimensional features and heterogeneous elasticity. Management Science,2021.
[20] C. Bandt and B. Pompe. Permutation entropy: a natural complexity measure fortime series. Physical Review Letters, 88(17):174102, 2002.
[21] S. Banerjee, C. Riquelme, and R. Johari. Pricing in ride-share platforms: Aqueueing-theoretic approach. Available at SSRN 2568258, 2015.
[22] M. Bardoscia, S. Battiston, F. Caccioli, and G. Caldarelli. Pathways towardsinstability in financial networks. Nature Communications, 8:14416, 2017.
[23] M. Barreiro, A. C. Marti, and C. Masoller. Inferring long memory processes in theclimate network via ordinal pattern analysis. Chaos, 21(1):013101, 2011.
[24] S. Battiston, J. D. Farmer, A. Flache, D. Garlaschelli, A. G. Haldane, H. Heesterbeek,C. Hommes, C. Jaeger, R. May, and M. Scheffer. Complexity theory andfinancial regulation. Science, 351(6275):818–819, 2016.
[25] P. Bauer, A. Thorpe, and G. Brunet. The quiet revolution of numerical weatherprediction. Nature, 525(7567):47–55, 2015.
[26] L. Bauwens and E. Otranto. Nonlinearities and regimes in conditional correlationswith different dynamics. Journal of Econometrics, 217(2):496–522, 2020.
[27] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research,18:1–43, 2018.
[28] R. Bellman. On the theory of dynamic programming. Proceedings of the NationalAcademy of Sciences of the United States of America, 38(8):716, 1952.
[29] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.
[30] A. Belloni and V. Chernozhukov. Least squares after model selection in high dimensional sparse models. Bernoulli, 19(2):521–547, 2013.
[31] S. Ben-David, P.Hrubeš, S. Moran, A. Shpilka, and A. Yehudayoff. Learnabilitycan be undecidable. Nature Machine Intelligence, 1(1):44, 2019.
[32] R. Benzi, A. Sutera, and A. Vulpiani. The mechanism of stochastic resonance.Journal of Physics A: mathematical and general, 14(11):L453, 1981.
[33] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in climaticchange. Tellus, 34(1):10–16, 1982.
[34] M. Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-smoothdynamical systems: theory and applications, volume 163. Springer Science & BusinessMedia, 2008.
[35] D. Bertsimas and V. V. Mišić. Decomposable markov decision processes: A fluidoptimization approach. Operations Research, 64(6):1537–1555, 2016.
[36] O. Besbes and I. Lobel. Intertemporal price discrimination: Structure and computationof optimal policies. Management Science, 61(1):92–110, 2015.
[37] O. Besbes and C. Maglaras. Dynamic pricing with financial milestones: Feedbackformpolicies. Management Science, 58(9):1715–1731, 2012.
[38] O. Besbes and D. Saur´e. Product assortment and price competition under multinomiallogit demand. Production and Operations Management, 25(1):114–127, 2016.
[39] O. Besbes and A. Zeevi. Dynamic pricing without knowing the demand function:Risk bounds and near-optimal algorithms. Operations Research, 57(6):1407–1420, 2009.
[40] O. Besbes and A. Zeevi. On the (surprising) sufficiency of linear models for dynamicpricing with demand learning. Management Science, 61(4):723–739, 2015.
[41] O. Besbes, D. A. Iancu, and N. Trichakis. Dynamic pricing under debt: Spiralingdistortions and efficiency losses. Management Science, 64(10):4572–4589, 2018.
[42] O. Besbes, F. Castro, and I. Lobel. Surge pricing and its spatial supply response.Management Science, 67(3):1350–1367, 2021.
[43] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approachto numerical computing. SIAM review, 59(1):65–98, 2017.
[44] K. Bimpikis, O. Candogan, and D. Saban. Spatial pricing in ride-sharing networks.Operations Research, 67(3):744–769, 2019.
[45] G. Bitran and R. Caldentey. An overview of pricing models for revenue management.Manufacturing & Service Operations Management, 5(3):203–229, 2003.
[46] G. R. Bitran and S. V. Mondschein. Periodic pricing of seasonal products inretailing. Management Science, 43(1):64–79, 1997.
[47] R. Bowen. ω-limit sets for axiom a diffeomorphisms. Journal of differential equations,18(2):333–339, 1975.
[48] E. Bozzo, R. Carniel, and D. Fasino. Relationship between singular spectrumanalysis and fourier analysis: Theory and application to the monitoring of volcanicactivity. Computers & Mathematics with Applications, 60(3):812–820, 2010.
[49] T. Braun, V. R. Unni, R. Sujith, J. Kurths, and N. Marwan. Detection of dynamicalregime transitions with lacunarity as a multiscale recurrence quantificationmeasure. Nonlinear Dynamics, pages 1–19, 2021.
[50] P. G. Breen, C. N. Foley, T. Boekholt, and S. P. Zwart. Newton versus themachine: solving the chaotic three-body problem using deep neural networks.Monthly Notices of the Royal Astronomical Society, 494(2):2465–2470, 2020.
[51] W. A. Brock and C. H. Hommes. A rational route to randomness. Econometrica:Journal of the Econometric Society, 65(5):1059–1095, 1997.
[52] J. Broder and P. Rusmevichientong. Dynamic pricing under a general parametricchoice model. Operations Research, 60(4):965–980, 2012.
[53] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equationsfrom data by sparse identification of nonlinear dynamical systems. Proceedings ofthe National Academy of Sciences, 113(15):3932–3937, 2016.
[54] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz. Chaos asan intermittently forced linear system. Nature Communications, 8(1):19, 2017.
[55] Budget-additive functions. Submodular set function, 2021. URL https://en.wikipedia.org/wiki/Submodular_set_function. Accessed 2021-07-04.
[56] G. Byrne, R. Gilmore, and C. Letellier. Distinguishing between folding and tearingmechanisms in strange attractors. Physical Review E, 70(5):056214, 2004.
[57] M. V. Caballero-Pintado, M. Matilla-García, and M. Ruiz Marín. Symbolic recurrenceplots to analyze dynamical systems. Chaos, 28(6):063112, 2018.
[58] G. P. Cachon, K. M. Daniels, and R. Lobel. The role of surge pricing on a serviceplatform with self-scheduling capacity. Manufacturing & Service OperationsManagement, 19(3):368–384, 2017.
[59] E. Calvano, G. Calzolari, V. Denicolo, and S. Pastorello. Artificial intelligence,algorithmic pricing, and collusion. American Economic Review, 110(10):3267–97,2020.
[60] L. Cao. Practical method for determining the minimum embedding dimension ofa scalar time series. Physica D: Nonlinear Phenomena, 110(1-2):43–50, 1997.
[61] P. Cao, N. Zhao, and J. Wu. Dynamic pricing with bayesian demand learning andreference price effect. European Journal of Operational Research, 279(2):540–556,2019.
[62] L. C. Carpi, P. M. Saco, and O. Rosso. Missing ordinal patterns in correlatednoises. Physica A: Statistical Mechanics and its Applications, 389(10):2020–2029,2010.
[63] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discoveryof coordinates and governing equations. Proceedings of the National Academy ofSciences, 116(45):22445–22451, 2019.
[64] A. Chattopadhyay, P. Hassanzadeh, and D. Subramanian. Data-driven predictionsof a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoircomputing, artificial neural network, and long short-term memory network.Nonlinear Processes in Geophysics, 27(3):373–389, 2020.
[65] R. E. Chatwin. Continuous-time airline overbooking with time-dependent faresand refunds. Transportation Science, 33(2):182–191, 1999.
[66] B. Chen, J. Huang, and J. Ji. Control of flexible single-link manipulators havingduffing oscillator dynamics. Mechanical Systems and Signal Processing, 121:44–57,2019.
[67] K. Chen, Y. Zha, L. C. Alwan, and L. Zhang. Dynamic pricing in the presence ofreference price effect and consumer strategic behaviour. International Journal ofProduction Research, 58(2):546–561, 2020.
[68] L. Chen, A. Mislove, and C. Wilson. Peeking beneath the hood of uber. InProceedings of the 2015 internet measurement conference, pages 495–508, 2015.
[69] L. Chen, A. Mislove, and C. Wilson. An empirical analysis of algorithmic pricingon amazon marketplace. In Proceedings of the 25th international conference onWorld Wide Web, pages 1339–1349, 2016.
[70] M. Chen and Z.-L. Chen. Recent developments in dynamic pricing research: multipleproducts, competition, and limited demand information. Production andOperations Management, 24(5):704–731, 2015.
[71] M. Chen and Z.-L. Chen. Robust dynamic pricing with two substitutable products.Manufacturing & Service Operations Management, 20(2):249–268, 2017.
[72] M. K. Chen and M. Sheldon. Dynamic pricing in a labor market: Surge pricingand flexible work on the uber platform. Ec, 455(10.1145):2940716–2940798, 2016.
[73] N. Chen and G. Gallego. Welfare analysis of dynamic pricing. Management Science,65(1):139–151, 2019.
[74] N. Chen and G. Gallego. Nonparametric pricing analytics with customer covariates.Operations Research, 69(3):974–984, 2021.
[75] Q. Chen, S. Jasin, and I. Duenyas. Nonparametric self-adjusting control for jointlearning and optimization of multiproduct pricing with finite resource capacity.Mathematics of Operations Research, 44(2):601–631, 2019.
[76] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinarydifferential equations. Advances in neural information processing systems, 31, 2018.
[77] X. Chen, P. Hu, and Z. Hu. Efficient algorithms for the dynamic pricing problemwith reference price effect. Management Science, 63(12):4389–4408, 2016.
[78] X. Chen, P. Hu, S. Shum, and Y. Zhang. Dynamic stochastic inventory managementwith reference price effects. Oper. Res., 64(6):1529–1536, 2016.
[79] X. Chen, P. Hu, and Z. Hu. Efficient algorithms for the dynamic pricing problemwith reference price effect. Management Science, 63(12):4389–4408, 2017.
[80] X. Chen, T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small. Mapping topologicalcharacteristics of dynamical systems into neural networks: A reservoir computingapproach. Physical Review E, 102(3):033314, 2020.
[81] X. Chen, Z. Owen, C. Pixton, and D. Simchi-Levi. A statistical learning approachto personalization in revenue management. Management Science, 2021.
[82] Y. Chen and M. Hu. Pricing and matching with forward-looking buyers and sellers.Manufacturing & Service Operations Management, 22(4):717–734, 2020.
[83] W. C. Cheung, D. Simchi-Levi, and H. Wang. Dynamic pricing and demandlearning with limited price experimentation. Operations Research, 65(6):1722–1731, 2017.
[84] M. C. Cohen, R. Lobel, and G. Perakis. The impact of demand uncertainty onconsumer subsidies for green technology adoption. Management Science, 62(5):1235–1258, 2016.
[85] M. C. Cohen, N.-H. Z. Leung, K. Panchamgam, G. Perakis, and A. Smith. Theimpact of linear optimization on promotion planning. Operations Research, 65(2):446–468, 2017.
[86] M. C. Cohen, R. Lobel, and G. Perakis. Dynamic pricing through data sampling.Production and Operations Management, 27(6):1074–1088, 2018.
[87] M. C. Cohen, S. Gupta, J. J. Kalas, and G. Perakis. An efficient algorithm fordynamic pricing using a graphical representation. Production and Operations Management,29(10):2326–2349, 2020.
[88] M. C. Cohen, J. J. Kalas, and G. Perakis. Promotion optimization for multipleitems in supermarkets. Management Science, 67(4):2340–2364, 2021.
[89] A. Corcos, J.-P. Eckmann, A. Malaspinas, Y. Malevergne, and D. Sornette. Imitationand contrarian behaviour: hyperbolic bubbles, crashes and chaos. QuantitativeFinance, 2:264–281, 2002.
[90] K. Cosguner, T. Y. Chan, and P. B. S. Seetharaman. Dynamic pricing in a distributionchannel in the presence of switching costs. Management Science, 64(3):1212–1229, 2018.
[91] B. Coulter and S. Krishnamoorthy. Pricing strategies with reference effects incompetitive industries. International transactions in operational Research, 21(2):263–274, 2014.
[92] P. Cramton, R. R. Geddes, and A. Ockenfels. Set road charges in real time to easetraffic. Nature, 560:23–26, 2018.
[93] J. Croft, C. Makrides, M. Li, A. Petrov, B. Kendrick, N. Balakrishnan, and S. Kotochigova. Universality and chaoticity in ultracold K+ KRb chemical reactions.Nature Communications, 8(1):1–8, 2017.
[94] Y. Cui, A. Y. Orhun, and I. Duenyas. How price dispersion changes when upgradesare introduced: Theory and empirical evidence from the airline industry.Management Science, 65(8):3835–3852, 2019.
[95] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematicsof Control, Signals and Systems, 2(4):303–314, 1989.
[96] H. Dankowicz and A. B. Nordmark. On the origin and bifurcations of stick-sliposcillations. Physica D: Nonlinear Phenomena, 136(3-4):280–302, 2000.
[97] G. Datseris. Dynamicalsystems.jl: A julia software library for chaos and nonlineardynamics. Journal of Open Source Software, 3(23):598, mar 2018. URL https://doi.org/10.21105/joss.00598.
[98] A. M. Davis, V. Gaur, and D. Kim. Consumer learning from own experience andsocial information: An experimental study. Management Science, 67(5):2924–2943,2021.
[99] D. P. De Farias and B. Van Roy. The linear programming approach to approximatedynamic programming. Operations research, 51(6):850–865, 2003.
[100] A. V. den Boer. Dynamic pricing and learning: historical origins, current research,and new directions. Surveys in operations research and management science, 20(1):1–18, 2015.
[101] A. V. Den Boer. Tracking the market: Dynamic pricing and learning in a changingenvironment. European journal of operational research, 247(3):914–927, 2015.
[102] A. V. den Boer and N. B. Keskin. Discontinuous demand functions: estimationand pricing. Management Science, 66(10):4516–4534, 2020.
[103] A. V. den Boer and N. B. Keskin. Dynamic pricing with demand learningand reference effects. Management Science, forthcoming, Available at SSRN:doi:10.2139/ssrn.3092745, April 19, 2021.
[104] A. V. den Boer and B. Zwart. Simultaneously learning and optimizing usingcontrolled variance pricing. Management science, 60(3):770–783, 2014.
[105] A. V. den Boer and B. Zwart. Dynamic pricing and learning with finite inventories.Operations research, 63(4):965–978, 2015.
[106] R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Westview press,2008.
[107] T. Devolder, D. Rontani, S. Petit-Watelot, K. Bouzehouane, S. Andrieu, J. Létang,M.-W. Yoo, J.-P. Adam, C. Chappert, S. Girod, V. Cros, M. Sciamanna, and J.-V. Kim. Chaos in magnetic nanocontact vortex oscillators. Phys. Rev. Lett., 123:147701, Oct 2019.
[108] M. Dinerstein, L. Einav, J. Levin, and N. Sundaresan. Consumer price searchand platform design in internet commerce. American Economic Review, 108(7):1820–59, 2018.
[109] R. Donner, U. Hinrichs, and B. Scholz-Reiter. Symbolic recurrence plots: A newquantitative framework for performance analysis of manufacturing networks. TheEuropean Physical Journal Special Topics, 164(1):85–104, 2008.
[110] B. M. Douglas Lind. An Introduction to Symbolic Dynamics and Coding. CambridgeMathematical Library. Cambridge University Press, 2 edition, 2021. ISBN9781108820288, 9781108899727.
[111] C. Du, W. L. Cooper, and Z. Wang. Optimal pricing for a multinomial logit choicemodel with network effects. Operations Research, 64(2):441–455, 2016.
[112] J. Dushoff, J. B. Plotkin, S. A. Levin, and D. J. Earn. Dynamical resonancecan account for seasonality of influenza epidemics. Proceedings of the NationalAcademy of Sciences, 101(48):16915–16916, 2004.
[113] D. Dutta and J. Bhattacharjee. Period adding bifurcation in a logistic map withmemory. Physica D: Nonlinear Phenomena, 237(23):3153–3158, 2008.
[114] G. Dutta and K. Mitra. A literature review on dynamic pricing of electricity.Journal of the Operational Research Society, 68(10):1131–1145, 2017.
[115] C.-Y. Dye, C.-T. Yang, and C.-C. Wu. Joint dynamic pricing and preservationtechnology investment for an integrated supply chain with reference price effects.Journal of the operational research society, pages 1–14, 2017.
[116] J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. InThe Theory of Chaotic Attractors, pages 273–312. Springer, 1985.
[117] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle. Recurrence plots of dynamicalsystems. Europhys. Lett., 5:973–977, 1987.
[118] J. Eliasson et al. The stockholm congestion charges: an overview. Stockholm:Centre for Transport Studies CTS Working Paper, 7:42, 2014.
[119] W. Elmaghraby and P. Keskinocak. Dynamic pricing in the presence of inventoryconsiderations: Research overview, current practices, and future directions.Management science, 49(10):1287–1309, 2003.
[120] V. F. Farias and B. Van Roy. Dynamic pricing with a prior on market response.Operations Research, 58(1):16–29, 2010.
[121] M. Feigenbaum. Universality in complex discrete dynamics. Los Alamos TheoreticalDivision Annual Report, 1976:1976, 1975.
[122] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations.Journal of statistical physics, 19(1):25–52, 1978.
[123] J. Feng, X. Li, and X. Zhang. Online product reviews-triggered dynamic pricing:Theory and evidence. Information Systems Research, 30(4):1107–1123, 2019.
[124] Y. Feng and B. Xiao. A continuous-time yield management model with multipleprices and reversible price changes. Management science, 46(5):644–657, 2000.
[125] Y. Feng and B. Xiao. Integration of pricing and capacity allocation for perishableproducts. European Journal of Operational Research, 168(1):17–34, 2006.
[126] K. J. Ferreira, B. H. A. Lee, and D. Simchi-Levi. Analytics for an online retailer:Demand forecasting and price optimization. Manufacturing & Service OperationsManagement, 18(1):69–88, 2016.
[127] K. J. Ferreira, D. Simchi-Levi, and H. Wang. Online network revenue managementusing thompson sampling. Operations research, 66(6):1586–1602, 2018.
[128] U. Feudel and C. Grebogi. Multistability and the control of complexity. Chaos:An Interdisciplinary Journal of Nonlinear Science, 7(4):597–604, 1997.
[129] G. Fibich, A. Gavious, and O. Lowengart. Explicit solutions of optimization modelsand differential games with nonsmooth (asymmetric) reference-price effects. Oper.Res., 51(5):721–734, 2003.
[130] M. Fisher, S. Gallino, and J. Li. Competition-based dynamic pricing in onlineretailing: A methodology validated with field experiments. Management Science,64(6):2496–2514, 2017.
[131] R. FitzHugh. Impulses and physiological states in theoretical models of nervemembrane. Biophysical journal, 1(6):445–466, 1961.
[132] B. Futter, V. Avrutin, and M. Schanz. The discontinuous flat top tent map andthe nested period incrementing bifurcation structure. Chaos, Solitons & Fractals,45(4):465 – 482, 2012.
[133] G. Gallego and G. Van Ryzin. Optimal dynamic pricing of inventories with stochasticdemand over finite horizons. Management science, 40(8):999–1020, 1994.
[134] G. Gallego and G. Van Ryzin. A multiproduct dynamic pricing problem and itsapplications to network yield management. Operations research, 45(1):24–41, 1997.
[135] G. Gallego and R. Wang. Multiproduct price optimization and competition underthe nested logit model with product-differentiated price sensitivities. OperationsResearch, 62(2):450–461, 2014.
[136] L. Gammaitoni, P. H¨anggi, P. Jung, and F. Marchesoni. Stochastic resonance.Reviews of modern physics, 70(1):223, 1998.
[137] E. Garbarino and O. F. Lee. Dynamic pricing in internet retail: effects on consumertrust. Psychology & Marketing, 20(6):495–513, 2003.
[138] L. Gardini, V. Avrutin, and I. Sushko. Codimension-2 border collision bifurcationsin one-dimensional discontinuous piecewise smooth maps. Int. J. BifurcationChaos, 24(02):1450024, 2014.
[139] L. Gardini, I. Sushko, and K. Matsuyama. 2d discontinuous piecewise linear map:Emergence of fashion cycles. Chaos: An Interdisciplinary Journal of NonlinearScience, 28(5):055917, 2018.
[140] A. Gershkov, B. Moldovanu, and P. Strack. Revenue-maximizing mechanisms withstrategic customers and unknown, markovian demand. Management Science, 64(5):2031–2046, 2018.
[141] C. Gibbs, D. Guttentag, U. Gretzel, L. Yao, and J. Morton. Use of dynamic pricingstrategies by airbnb hosts. International Journal of Contemporary HospitalityManagement, 2018.
[142] K. Giesecke, G. Liberali, H. Nazerzadeh, J. G. Shanthikumar, and C. P. Teo.Call for papers—management science—special issue on data-driven prescriptiveanalytics. Management Science, 64(6):2972–2972, 2018.
[143] R. Gilmore and M. Lefranc. The Topology of Chaos. John Wiley & Sons, Inc,2011.
[144] N. Golrezaei, A. Javanmard, and V. Mirrokni. Dynamic incentive-aware learning:Robust pricing in contextual auctions. Operations Research, 69(1):297–314, 2021.
[145] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning. MIT pressCambridge, 2016.
[146] B. Goswami, N. Boers, A. Rheinwalt, N. Marwan, J. Heitzig, S. F. Breitenbach,and J. Kurths. Abrupt transitions in time series with uncertainties. Nature communications,9(1):1–10, 2018.
[147] G. A. Gottwald and I. Melbourne. Testing for chaos in deterministic systems withnoise. Physica D: Nonlinear Phenomena, 212(1):100 – 110, 2005.
[148] A. Granados and G. Huguet. Gluing and grazing bifurcations in periodically forced2-dimensional integrate-and-fire models. Communications in Nonlinear Scienceand Numerical Simulation, 2018.
[149] A. Granados, L. Alsedà, and M. Krupa. The period adding and incrementingbifurcations: from rotation theory to applications. SIAM Rev., 59(2):225–292,2017.
[150] P. Grassberger and I. Procaccia. Characterization of strange attractors. Physicalreview letters, 50(5):346, 1983.
[151] P. Grassberger, H. Kantz, and U. Moenig. On the symbolic dynamics of the H\’enonmap. Journal of Physics A: Mathematical and General, 22(24):5217, 1989.
[152] C. Grebogi, S. M. Hammel, J. A. Yorke, and T. Sauer. Shadowing of physicaltrajectories in chaotic dynamics: Containment and refinement. Physical ReviewLetters, 65(13):1527, 1990.
[153] E. A. Greenleaf. The impact of reference price effects on the profitability of pricepromotions. Marketing science, 14(1):82–104, 1995.
[154] A. Griffith, A. Pomerance, and D. J. Gauthier. Forecasting chaotic systems withvery low connectivity reservoir computers. Chaos: An Interdisciplinary Journal ofNonlinear Science, 29(12):123108, 2019.
[155] L. Grigoryeva and J.-P. Ortega. Echo state networks are universal. Neural Networks,108:495 – 508, 2018. ISSN 0893-6080.
[156] A. Groth. Visualization of coupling in time series by order recurrence plots. PhysicalReview E, 72(4):046220, 2005.
[157] S. Gu, B. Kelly, and D. Xiu. Empirical asset pricing via machine learning. TheReview of Financial Studies, 33(5):2223–2273, 2020.
[158] A. Gualandi, J.-P. Avouac, S. Michel, and D. Faranda. The predictable chaos ofslow earthquakes. Science Advances, 6(27):eaaz5548, 2020.
[159] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, andbifurcations of vector fields, volume 42. Springer Science & Business Media, 2013.
[160] H. Guda and U. Subramanian. Your uber is arriving: Managing on-demand workersthrough surge pricing, forecast communication, and worker incentives. ManagementScience, 65(5):1995–2014, 2019.
[161] M. G. Güler, T. Bilgiç , and R. Güllü. Joint pricing and inventory control foradditive demand models with reference effects. Annals of Operations Research,226(1):255–276, 2015.
[162] Z. Guo and J. Ma. Dynamics and implications on a cooperative advertising modelin the supply chain. Communications in Nonlinear Science and Numerical Simulation,64:198–212, 2018.
[163] A. Haluszczynski and C. Räth. Good and bad predictions: Assessing and improvingthe replication of chaotic attractors by means of reservoir computing. Chaos:An Interdisciplinary Journal of Nonlinear Science, 29(10):103143, 2019.
[164] A. Haluszczynski, J. Aumeier, J. Herteux, and C. Räth. Reducing network size andimproving prediction stability of reservoir computing. Chaos: An InterdisciplinaryJournal of Nonlinear Science, 30(6):063136, 2020.
[165] P. Harsha and M. Dahleh. Optimal management and sizing of energy storageunder dynamic pricing for the efficient integration of renewable energy. IEEETrans. Power Syst., 30(3):1164–1181, 2015.
[166] A. Hart, J. Hook, and J. Dawes. Embedding and approximation theorems for echostate networks. Neural Networks, 128:234 – 247, 2020. ISSN 0893-6080.
[167] C. Haxholdt, E. R. Larsen, and A. van Ackere. Mode locking and chaos in adeterministic queueing model with feedback. Management Science, 49(6):816–830,2003.
[168] R. Hegger, H. Kantz, and T. Schreiber. Practical implementation of nonlineartime series methods: The tisean package. Chaos: An Interdisciplinary Journal ofNonlinear Science, 9(2):413–435, 1999.
[169] M. H\’enon. A two-dimensional mapping with a strange attractor. Communicationsin Mathematical Physics, 50:69–77, 1976.
[170] R. C. Hilborn et al. Chaos and nonlinear dynamics: an introduction for scientistsand engineers. Oxford University Press on Demand, 2000.
[171] Y. Hirata. Recurrence plots for characterizing random dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 94:105552, 2021.
[172] Y. Hirata and K. Aihara. Timing matters in foreign exchange markets. PhysicaA: Statistical Mechanics and its Applications, 391(3):760–766, 2012.
[173] T.-P. Hsieh and C.-Y. Dye. Optimal dynamic pricing for deteriorating items withreference price effects when inventories stimulate demand. European Journal ofOperational Research, 262(1):136–150, 2017.
[174] Z. Hu. Dynamic pricing with reference price effects. PhD thesis, University ofIllinois at Urbana-Champaign, 2015.
[175] Z. Hu, X. Chen, and P. Hu. Dynamic pricing with gain-seeking reference priceeffects. Operations Research, 64(1):150–157, 2016.
[176] Y. Huang, G. Kou, and Y. Peng. Nonlinear manifold learning for early warningsin financial markets. European Journal of Operational Research, 258(2):692–702,2017.
[177] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &Engineering, 9(3):90–95, 2007.
[178] Hyperparameter. Hyperparameter (machine learning), 2022. URL https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning). Accessed 2022-07-01.
[179] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting chaotic systems andsaving energy in wireless communication. Science, 304(5667):78–80, 2004.
[180] S. Jagabathula and P. Rusmevichientong. A nonparametric joint assortment andprice choice model. Management Science, 63(9):3128–3145, 2017.
[181] P. Jain and S. Banerjee. Border-collision bifurcations in one-dimensional discontinuousmaps. Int. J. Bifurcation Chaos, 13(11):3341–3351, 2003.
[182] P. L. Joskow and C. D. Wolfram. Dynamic pricing of electricity. American EconomicReview, 102(3):381–85, 2012.
[183] D. Kahneman, Daniel and A. Tversky. Prospect theory: An analysis of decisionunder risk. Econometrica, 47(2):263–292, 1979.
[184] K. Kalyanam and T. S. Shively. Estimating irregular pricing effects: A stochasticspline regression approach. Journal of Marketing Research, 35(1):16–29, 1998.
[185] G. Kalyanaram and R. S. Winer. Empirical generalizations from reference priceresearch. Marketing science, 14(3):G161–G169, 1995.
[186] E. Kamenica, S. Mullainathan, and R. Thaler. Helping consumers know themselves.American Economic Review, 101(3):417–22, 2011.
[187] H. Kantz and L. Jaeger. Improved cost functions for modelling of noisy chaotictime series. Physica D: Nonlinear Phenomena, 109(1):59–69, 1997.
[188] H. Kantz and T. Schreiber. Nonlinear time series analysis, volume 7. Cambridgeuniversity press, 2004.
[189] P. Kasthuri, I. Pavithran, A. Krishnan, S. A. Pawar, R. Sujith, R. Gejji, W. Anderson,N. Marwan, and J. Kurths. Recurrence analysis of slow–fast systems. Chaos:An Interdisciplinary Journal of Nonlinear Science, 30(6):063152, 2020.
[190] C. Kemper and C. Breuer. How efficient is dynamic pricing for sport events?designing a dynamic pricing model for bayern munich. International Journal ofSport Finance, 11(1):4–25, 2016.
[191] N. B. Keskin and A. Zeevi. Dynamic pricing with an unknown demand model:Asymptotically optimal semi-myopic policies. Operations Research, 62(5):1142–1167, 2014.
[192] N. B. Keskin and A. Zeevi. Chasing demand: Learning and earning in a changingenvironment. Mathematics of Operations Research, 42(2):277–307, 2017.
[193] C. J. Keylock. Constrained surrogate time series with preservation of the meanand variance structure. Phys. Rev. E, 73:036707, Mar 2006.
[194] P. Kidger and T. Lyons. Universal approximation with deep narrow networks. InConference on Learning Theory, pages 2306–2327, 2020.
[195] D. Kilminster. Modelling dynamical systems via behaviour criteria. University ofWestern Australia, 2002.
[196] B.-G. Kim, Y. Zhang, M. Van Der Schaar, and J.-W. Lee. Dynamic pricing andenergy consumption scheduling with reinforcement learning. IEEE Transactionson smart grid, 7(5):2187–2198, 2015.
[197] S. Klus, F. Nüske, S. Peitz, J.-H. Niemann, C. Clementi, and C. Schütte. Data-drivenapproximation of the koopman generator: Model reduction, system identification,and control. Physica D: Nonlinear Phenomena, 406:132416, 2020.
[198] A. Komanduri, Z. Wafa, K. Proussaloglou, and S. Jacobs. Assessing the impact ofapp-based ride share systems in an urban context: Findings from austin. TransportationResearch Record, 2672(7):34–46, 2018.
[199] A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization using geneticalgorithms: A tutorial. Reliability engineering & system safety, 91(9):992–1007,2006.
[200] L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai. Machine learning predictionof critical transition and system collapse. Physical Review Research, 3(1):013090,2021.
[201] B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedingsof the national academy of sciences of the united states of america, 17(5):315, 1931.
[202] P. K. Kopalle and D. R. Lehmann. The effects of advertised and observed qualityon expectations about new product quality. Journal of Marketing Research, 32(3):280–290, 1995.
[203] P. K. Kopalle and J. Lindsey-Mullikin. The impact of external reference price onconsumer price expectations. Journal of Retailing, 79(4):225 – 236, 2003.
[204] P. K. Kopalle and R. S. Winer. A dynamic model of reference price and expectedquality. Marketing Letters, 7(1):41–52, 1996.
[205] P. K. Kopalle, A. G. Rao, and J. L. Assuncao. Asymmetric reference price effectsand dynamic pricing policies. Marketing Science, 15(1):60–85, 1996.
[206] P. K. Kopalle, P. Kannan, L. B. Boldt, and N. Arora. The impact of householdlevel heterogeneity in reference price effects on optimal retailer pricing policies.Journal of Retailing, 88(1):102–114, 2012.
[207] I. Kovacic and M. J. Brennan. The Duffing equation: nonlinear oscillators andtheir behaviour. John Wiley & Sons, 2011.
[208] K. H. Kraemer, R. V. Donner, J. Heitzig, and N. Marwan. Recurrence thresholdselection for obtaining robust recurrence characteristics in different embeddingdimensions. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(8):085720, 2018.
[209] M. Kremer, B. Mantin, and A. Ovchinnikov. Dynamic pricing in the presence ofmyopic and strategic consumers: Theory and experiment. Production and OperationsManagement, 26(1):116–133, 2017.
[210] C. Kulp and L. Zunino. Discriminating chaotic and stochastic dynamics throughthe permutation spectrum test. Chaos: An Interdisciplinary Journal of NonlinearScience, 24(3):033116, 2014.
[211] C. Kulp, J. Chobot, B. Niskala, and C. Needhammer. Using forbidden ordinalpatterns to detect determinism in irregularly sampled time series. Chaos, 26(2):023107, 2016.
[212] C. W. Kulp and S. Smith. Characterization of noisy symbolic time series. PhysicalReview E, 83(2):026201, 2011.
[213] N. Kuznetsov, T. Mokaev, O. Kuznetsova, and E. Kudryashova. The Lorenz system:hidden boundary of practical stability and the Lyapunov dimension. NonlinearDynamics, 102(2):713–732, 2020.
[214] D. La Torre, S. Marsiglio, and F. Privileggi. Fractal attractors in economic growthmodels with random pollution externalities. Chaos: An Interdisciplinary Journalof Nonlinear Science, 28(5):055916, 2018.
[215] G. Lancaster, D. Iatsenko, A. Pidde, V. Ticcinelli, and A. Stefanovska. Surrogatedata for hypothesis testing of physical systems. Physics Reports, 748:1–60, 2018.
[216] L. Larger, B. Penkovsky, and Y. Maistrenko. Laser chimeras as a paradigm formultistable patterns in complex systems. Nature Communications, 6(1):1–7, 2015.
[217] P. S. Lavieri, F. F. Dias, N. R. Juri, J. Kuhr, and C. R. Bhat. A model ofridesourcing demand generation and distribution. Transportation Research Record,2672(46):31–40, 2018.
[218] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.
[219] C. Letellier, E. Roulin, and O. E. Rössler. Inequivalent topologies of chaos insimple equations. Chaos, Solitons & Fractals, 28(2):337–360, 2006.
[220] A. Levi, J. Sabuco, and M. A. Sanjuán. Supply based on demand dynamical model.Commun. Nonlinear Sci. Numer. Simul., 57:402–414, 2018.
[221] C. Li, W. Hu, J. C. Sprott, and X. Wang. Multistability in symmetric chaoticsystems. The European Physical Journal Special Topics, 224(8):1493–1506, 2015.
[222] H. Li and W. T. Huh. Pricing multiple products with the multinomial logit andnested logit models: Concavity and implications. Manufacturing & Service OperationsManagement, 13(4):549–563, 2011.
[223] J. Li, N. Granados, and S. Netessine. Are consumers strategic? structural estimationfrom the air-travel industry. Management Science, 60(9):2114–2137, 2014.
[224] X. Li, W. Shang, and S. Wang. Text-based crude oil price forecasting: A deeplearning approach. International Journal of Forecasting, 35(4):1548–1560, 2019.
[225] M. Liao, J. Ing, J. P. Chávez, and M. Wiercigroch. Bifurcation techniques for stiffnessidentification of an impact oscillator. Communications in Nonlinear Scienceand Numerical Simulation, 41:19–31, 2016.
[226] A. E. Lim and J. G. Shanthikumar. Relative entropy, exponential utility, androbust dynamic pricing. Operations Research, 55(2):198–214, 2007.
[227] S. Limmer. Dynamic pricing for electric vehicle charging—a literature review.Energies, 12(18):3574, 2019.
[228] K. Y. Lin. Dynamic pricing with real-time demand learning. European Journal ofOperational Research, 174(1):522–538, 2006.
[229] Y. Liu, Q. Wang, and H. Xu. Bifurcations of periodic motion in a three-degreeof-freedom vibro-impact system with clearance. Communications in NonlinearScience and Numerical Simulation, 48:1–17, 2017.
[230] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences,20(2):130–141, 1963.
[231] S. Lu, Z. Luo, G. Zhang, and S. Oberst. Order pattern recurrence plots: unveilingdeterminism buried in noise. In University of Technology Sydney, FEIT ResearchShowcase, Sydney, NSW, Australia, 14 Jun 2018.
[232] S. Lu, S. Oberst, G. Zhang, and Z. Luo. Bifurcation analysis of dynamic pricingprocesses with nonlinear external reference effects. Communications in NonlinearScience and Numerical Simulation, 79:104929, 2019.
[233] S. Lu, S. Oberst, G. Zhang, and Z. Luo. Period adding bifurcations in dynamicpricing processes. In IEEE CIFEr 2019: 2019 IEEE Conference on ComputationalIntelligence for Financial Engineering and Economics, Shenzhen, China, May 4-5,2019.
[234] S. Lu, S. Oberst, G. Zhang, and Z. Luo. Novel order patterns recurrence plot-basedquantification measures to unveil deterministic dynamics from stochasticprocesses. In ITISE 2018 (International conference on Time Series and Forecasting),September 19th-21th, 2018.
[235] Z. Lu, B. R. Hunt, and E. Ott. Attractor reconstruction by machine learning.Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(6):061104, 2018.
[236] R. D. Luce. Individual choice behavior: A theoretical analysis. Courier Corporation,2012.
[237] B. Lusch, J. N. Kutz, and S. L. Brunton. Deep learning for universal linearembeddings of nonlinear dynamics. Nature Communications, 9(1):4950, 2018.
[238] T. Lymburn, A. Khor, T. Stemler, D. C. Corrêa, M. Small, and T. J¨ungling. Consistency in echo-state networks. Chaos: An Interdisciplinary Journal of NonlinearScience, 29(2):023118, 2019.
[239] C. Maglaras and J. Meissner. Dynamic pricing strategies for multiproduct revenuemanagement problems. Manufacturing & Service Operations Management, 8(2):136–148, 2006.
[240] N. G. Mankiw. Principles of economics. Cengage Learning, 2014.
[241] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods forengineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.
[242] P. Martien, S. Pope, P. Scott, and R. Shaw. The chaotic behavior of the leakyfaucet. Phys. Lett. A, 110:399–404, 1985.
[243] N. Marwan. How to avoid potential pitfalls in recurrence plot based data analysis.International Journal of Bifurcation and Chaos, 21(04):1003–1017, 2011.
[244] N. Marwan and J. Kurths. Comment on “stochastic analysis of recurrence plotswith applications to the detection of deterministic signals” by rohde et al.[physica d237 (2008) 619–629]. Physica D: Nonlinear Phenomena, 238(16):1711–1715, 2009.
[245] N. Marwan, A. Groth, and J. Kurths. Quantification of Order Patterns RecurrencePlots of Event Related Potentials. Chaos and Complexity Letters, 2:301–314, 2007.
[246] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths. Recurrence plots for theanalysis of complex systems. Physics Reports, 438(5-6):237–329, 2007.
[247] Matplotlib. Matplotlib 3.5.0 documentation. https://matplotlib.org/stable/api/mlab_api.html#matplotlib.mlab.psd, 2021. Accessed: 2021-12-13.
[248] A. Maus and J. Sprott. Neural network method for determining embedding dimensionof a time series. Communications in Nonlinear Science and Numerical Simulation, 16(8):3294–3302, 2011.
[249] R. M. May. Simple mathematical models with very complicated dynamics. Nature,261:459–467, 1976.
[250] T. Mazumdar, S. P. Raj, and I. Sinha. Reference price research: Review andpropositions. Journal of marketing, 69(4):84–102, 2005.
[251] T. Mazumdar, S. P. Raj, and I. Sinha. Reference price research: Review andpropositions. Journal of marketing, 69(4):84–102, 2005.
[252] M. McCullough, K. Sakellariou, T. Stemler, and M. Small. Regenerating timeseries from ordinal networks. Chaos, 27(3):035814, 2017.
[253] S. McNally, J. Roche, and S. Caton. Predicting the price of bitcoin using machinelearning. In 2018 26th euromicro international conference on parallel, distributedand network-based processing (PDP), pages 339–343. IEEE, 2018.
[254] P. E. McSharry and L. A. Smith. Better nonlinear models from noisy data: Attractorswith maximum likelihood. Physical review letters, 83(21):4285, 1999.
[255] J. A. Mead and D. M. Hardesty. Price font disfluency: Anchoring effects on futureprice expectations. Journal of Retailing, 94(1):102–112, 2018.
[256] A. Mehra, S. Kumar, and J. S. Raju. Competitive strategies for brick-and-mortarstores to counter “showrooming”. Management Science, 2017.
[257] P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths. How basin stability complementsthe linear-stability paradigm. Nature physics, 9(2):89–92, 2013.
[258] P. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellnhuber. How dead ends underminepower grid stability. Nature communications, 5(1):1–8, 2014.
[259] I. Mezić. Spectral properties of dynamical systems, model reduction and decompositions.Nonlinear Dynamics, 41(1-3):309–325, 2005.
[260] I. Mezić. Analysis of fluid flows via spectral properties of the koopman operator.Annual Review of Fluid Mechanics, 45:357–378, 2013.
[261] S. Miao and X. Chao. Dynamic joint assortment and pricing optimization withdemand learning. Manufacturing & Service Operations Management, 23(2):525–545, 2021.
[262] F. J. Milliken. Three types of perceived uncertainty about the environment: State,effect, and response uncertainty. Academy of Management review, 12(1):133–143,1987.
[263] N. Mizik and R. Jacobson. Myopic marketing management: Evidence of the phenomenon and its long-term performance consequences in the seo context. MarketingScience, 26(3):361–379, 2007.
[264] J. M. Moore, D. C. Corrêa, and M. Small. Is bach’s brain a markov chain?recurrence quantification to assess markov order for short, symbolic, musical compositions.Chaos: An interdisciplinary journal of nonlinear science, 28(8):085715,2018.
[265] A. K. Naimzada and M. Pireddu. Fashion cycle dynamics in a model with endogenousdiscrete evolution of heterogeneous preferences. Chaos: An InterdisciplinaryJournal of Nonlinear Science, 28(5):055907, 2018.
[266] K. Nakai and Y. Saiki. Machine-learning inference of fluid variables from datausing reservoir computing. Physical Review E, 98(2):023111, 2018.
[267] T. Nakamura, M. Small, and Y. Hirata. Testing for nonlinearity in irregularfluctuations with long-term trends. Physical Review E, 74(2):026205, 2006.
[268] M. Nambiar, D. Simchi-Levi, and H. Wang. Dynamic learning and pricing withmodel misspecification. Management Science, 65(11):4980–5000, 2019.
[269] J. Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.
[270] J. Nasiry and I. Popescu. Dynamic pricing with loss-averse consumers and peakendanchoring. Oper. Res., 59(6):1361–1368, 2011.
[271] J. Nasiry and I. Popescu. Dynamic pricing with loss-averse consumers and peakendanchoring. Operations research, 59(6):1361–1368, 2011.
[272] F. Nazarimehr, S. Jafari, S. M. R. Hashemi Golpayegani, M. Perc, and J. C. Sprott.Predicting tipping points of dynamical systems during a period-doubling route tochaos. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):073102,2018.
[273] Neighbourhood. Neighbourhood (mathematics). https://en.wikipedia.org/wiki/Neighbourhood_(mathematics), 2022. Accessed: 2022-01-04.
[274] H. E. Nusse and J. A. Yorke. Border-collision bifurcations including “period twoto period three” for piecewise smooth systems. Physica D: Nonlinear Phenomena,57(1-2):39–57, 1992.
[275] H. E. Nusse and J. A. Yorke. Border-collision bifurcations for piecewise smoothone-dimensional maps. International Journal of Bifurcation and Chaos, 05:189–207, 1994.
[276] S. Oberst. Nonlinear dynamics: Towards a paradigm change via evidence-basedcomplex dynamics modelling. In NOVEM 2018, Ibiza, Spain, 7-9 May 2018.
[277] S. Oberst and J. Lai. Chaos in brake squeal noise. Journal of Sound and Vibration,330(5):955–975, 2011.
[278] S. Oberst and J. Lai. A statistical approach to estimate the lyapunov spectrumin disc brake squeal. Journal of Sound and Vibration, 334:120 – 135, 2015. ISSN0022-460X.
[279] S. Oberst and J. Lai. A statistical approach to estimate the Lyapunov spectrumin disc brake squeal. Journal of Sound and Vibration, 334:120–135, 2015.
[280] S. Oberst and J. Lai. A statistical approach to estimate the lyapunov spectrum indisc brake squeal. Journal of Sound and Vibration, 334:120–135, 2015.
[281] S. Oberst and S. Tuttle. Nonlinear dynamics of thin-walled elastic structures forapplications in space. Mechanical Systems and Signal Processing, 110:469 – 484,2018. ISSN 0888-3270.
[282] S. Oberst, G. Bann, J. C. Lai, and T. A. Evans. Cryptic termites avoid predatoryants by eavesdropping on vibrational cues from their footsteps. Ecology letters, 20(2):212–221, 2017.
[283] S. Oberst, S. Marburg, and N. Hoffmann. Determining periodic orbits via nonlinearfiltering and recurrence spectra in the presence of noise. Procedia engineering, 199:772–777, 2017.
[284] S. Oberst, R. K. Niven, D. Lester, A. Ord, B. Hobbs, and N. Hoffmann. Detectionof unstable periodic orbits in mineralising geological systems. Chaos: AnInterdisciplinary Journal of Nonlinear Science, 28(8):085711, 2018.
[285] F. Olivares, A. Plastino, and O. A. Rosso. Contrasting chaos with noise via localversus global information quantifiers. Physics Letters A, 376(19):1577 – 1583, 2012.ISSN 0375-9601.
[286] P. E. Olsen, J. Laskar, D. V. Kent, S. T. Kinney, D. J. Reynolds, J. Sha, and J. H.Whiteside. Mapping solar system chaos with the Geological Orrery. Proceedingsof the National Academy of Sciences, 116(22):10664–10673, 2019.
[287] E. Özkanand A. R.Ward. Dynamic matching for real-time ride sharing. StochasticSystems, 10(1):29–70, 2020.
[288] S. Pan and K. Duraisamy. Data-driven discovery of closure models. SIAM Journalon Applied Dynamical Systems, 17(4):2381–2413, 2018.
[289] A. Panchuk, I. Sushko, and F. Westerhoff. A financial market model with twodiscontinuities: Bifurcation structures in the chaotic domain. Chaos: An InterdisciplinaryJournal of Nonlinear Science, 28(5):055908, 2018.
[290] U. Parlitz, S. Berg, S. Luther, A. Schirdewan, J. Kurths, and N. Wessel. Classifyingcardiac biosignals using ordinal pattern statistics and symbolic dynamics. Computers in Biology and Medicine, 42(3):319 – 327, 2012.
[291] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrentneural networks. In International Conference on Machine Learning, pages 1310–1318, 2013.
[292] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott. Using machine learning toreplicate chaotic attractors and calculate Lyapunov exponents from data. Chaos:An Interdisciplinary Journal of Nonlinear Science, 27(12):121102, 2017.
[293] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Model-free prediction of largespatiotemporally chaotic systems from data: A reservoir computing approach.Phys. Rev. Lett., 120:024102, Jan 2018.
[294] M. T. Pearce, A. Agarwala, and D. S. Fisher. Stabilization of extensive fine-scalediversity by ecologically driven spatiotemporal chaos. Proceedings of the NationalAcademy of Sciences, 117(25):14572–14583, 2020.
[295] L. M. Pecora, L. Moniz, J. Nichols, and T. L. Carroll. A unified approach to attractorreconstruction. Chaos: An Interdisciplinary Journal of Nonlinear Science,17(1):013110, 2007.
[296] R. Phillips, A. S. Şimşek, and G. Van Ryzin. The effectiveness of field pricediscretion: Empirical evidence from auto lending. Management Science, 61(8):1741–1759, 2015.
[297] R. L. Phillips. Pricing and revenue optimization. Stanford University Press, 2005.
[298] A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths. Synchronization: a universalconcept in nonlinear sciences, 2003.
[299] A. N. Pisarchik and U. Feudel. Control of multistability. Physics Reports, 540(4):167–218, 2014.
[300] I. Popescu and Y. Wu. Dynamic pricing strategies with reference effects. Oper.Res., 55(3):413–429, 2007.
[301] M. Porfiri and M. R. Marín. Symbolic dynamics of animal interaction. Journal oftheoretical biology, 435:145–156, 2017.
[302] Python package. scipy.integrate. https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html, 2022. Accessed: 2022-05-16.
[303] T. Qin, K. Wu, and D. Xiu. Data driven governing equations approximation usingdeep neural networks. Journal of Computational Physics, 395:620–635, 2019.BIBLIOGRAPHY 228
[304] I. Rahwan, M. Cebrian, N. Obradovich, J. Bongard, J.-F. Bonnefon, C. Breazeal,J. W. Crandall, N. A. Christakis, I. D. Couzin, M. O. Jackson, et al. Machinebehaviour. Nature, 568(7753):477, 2019.
[305] M. Raissi. Deep hidden physics models: Deep learning of nonlinear partial differentialequations. The Journal of Machine Learning Research, 19(1):932–955, 2018.
[306] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involvingnonlinear partial differential equations. Journal of Computational physics, 378:686–707, 2019.
[307] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: Learningvelocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030,2020.
[308] B. Rakshit, M. Apratim, and S. Banerjee. Bifurcation phenomena in two-dimensionalpiecewise smooth discontinuous maps. Chaos: An InterdisciplinaryJournal of Nonlinear Science, 20(3):033101, 2010.
[309] R. Rana and F. S. Oliveira. Real-time dynamic pricing in a non-stationary environmentusing model-free reinforcement learning. Omega, 47:116–126, 2014.
[310] RideAustin (2017). Ride-austin-june6-april13 [dataset], 2013. URL https://data.world/ride-austin/ride-austin-june-6-april-13. Accessed: 2021-05-19.
[311] P. Riley. Three pitfalls to avoid in machine learning. Nature, 572:27, 2019.
[312] C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos 2ndEdition (Studies in Advanced Mathematics). CRC Press, 2 edition, 1998. ISBN0849384958, 9780849384950.
[313] M. Rosalie. Templates and subtemplates of Rössler attractors from a bifurcationdiagram. Journal of Physics A: Mathematical and Theoretical, 49(31):315101, 2016.
[314] O. E. Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398,1976.
[315] O. A. Rosso, H. A. Larrondo, M. T. Martin, A. Plastino, and M. A. Fuentes.Distinguishing noise from chaos. Physical Review Letters, 99(15):154102, 2007.
[316] O. A. Rosso, L. C. Carpi, P. M. Saco, M. G. Ravetti, A. Plastino, and H. A.Larrondo. Causality and the entropy–complexity plane: Robustness and missingordinal patterns. Physica A: Statistical Mechanics and its Applications, 391(1):42– 55, 2012. ISSN 0378-4371.
[317] O. A. Rosso, F. Olivares, L. Zunino, L. De Micco, A. L. Aquino, A. Plastino,and H. A. Larrondo. Characterization of chaotic maps using the permutationbandt-pompe probability distribution. The European Physical Journal B, 86(4):116, 2013.
[318] S. H. Rudy, J. N. Kutz, and S. L. Brunton. Deep learning of dynamics and signalnoisedecomposition with time-stepping constraints. Journal of ComputationalPhysics, 396:483 – 506, 2019.
[319] C. M. Rump and S. Stidham. Stability and chaos in input pricing for a servicefacility with adaptive customer response to congestion. Management Science, 44(2):246–261, 1998.
[320] P. Rusmevichientong, Z.-J. M. Shen, and D. B. Shmoys. Dynamic assortmentoptimization with a multinomial logit choice model and capacity constraint. Operationsresearch, 58(6):1666–1680, 2010.
[321] P. Rusmevichientong, D. Shmoys, C. Tong, and H. Topaloglu. Assortment optimization under the multinomial logit model with random choice parameters.Production and Operations Management, 23(11):2023–2039, 2014.
[322] M. Saberi, H. Hamedmoghadam, M. Ashfaq, S. A. Hosseini, Z. Gu, S. Shafiei,D. J. Nair, V. Dixit, L. Gardner, S. T. Waller, et al. A simple contagion processdescribes spreading of traffic jams in urban networks. Nature communications, 11(1):1–9, 2020.
[323] M. Sangiorgio and F. Dercole. Robustness of lstm neural networks for multi-stepforecasting of chaotic time series. Chaos, Solitons & Fractals, 139:110045, 2020.
[324] T. Sauer, J. A. Yorke, and M. Casdagli. Embedology. Journal of statistical Physics,65(3):579–616, 1991.
[325] D. Sauré and A. Zeevi. Optimal dynamic assortment planning with demand learning.Manufacturing & Service Operations Management, 15(3):387–404, 2013.
[326] K. Schindler, H. Gast, L. Stieglitz, A. Stibal, M. Hauf, R. Wiest, L. Mariani,and C. Rummel. Forbidden ordinal patterns of periictal intracranial eeg indicatedeterministic dynamics in human epileptic seizures. Epilepsia, 52(10):1771–1780,2011.
[327] R. M. Schindler. The 99 price ending as a signal of a low-price appeal. Journal ofRetailing, 82(1):71 – 77, 2006. ISSN 0022-4359.
[328] S. Schinkel, N. Marwan, and J. Kurths. Order patterns recurrence plots in theanalysis of erp data. Cognitive neurodynamics, 1(4):317–325, 2007.
[329] C. Schlereth, B. Skiera, and F. Schulz. Why do consumers prefer static insteadof dynamic pricing plans? an empirical study for a better understanding of thelow preferences for time-variant pricing plans. European Journal of OperationalResearch, 269(3):1165–1179, 2018.
[330] R. Schlosser and M. Boissier. Dynamic pricing under competition on online marketplaces: A data-driven approach. In Proceedings of the 24th ACM SIGKDDInternational Conference on Knowledge Discovery & Data Mining, pages 705–714,2018.
[331] T. Schreiber and A. Schmitz. Surrogate time series. Physica D: Nonlinear Phenomena,142(3-4):346–382, 2000.
[332] M. Schröder, D.-M. Storch, P. Marszal, and M. Timme. Anomalous supply shortagesfrom dynamic pricing in on-demand mobility. Nature communications, 11(1):1–8, 2020.
[333] H. G. Schuster and W. Just. Deterministic Chaos: an Introduction. John Wiley& Sons, 2006.
[334] Z.-J. M. Shen and X. Su. Customer behavior modeling in revenue managementand auctions: A review and new research opportunities. Production and operationsmanagement, 16(6):713–728, 2007.
[335] A. Sherstinsky. Fundamentals of recurrent neural network (rnn) and long shorttermmemory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.
[336] N. Shukla, A. Kolbeinsson, K. Otwell, L. Marla, and K. Yellepeddi. Dynamicpricing for airline ancillaries with customer context. In Proceedings of the 25thACM SIGKDD International Conference on knowledge discovery & data mining,pages 2174–2182, 2019.
[337] D. J. Simpson and J. D. Meiss. Simultaneous border-collision and period-doublingbifurcations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(3):033146, 2009.
[338] J. Sirignano and R. Cont. Universal features of price formation in financial markets:perspectives from deep learning. Quantitative Finance, 19(9):1449–1459, 2019.
[339] R. Slonim and E. Garbarino. Similarities and differences between stockpiling andreference effects. Managerial and Decision Economics, 30(6):351–371, 2009.
[340] S. Smale and D.-X. Zhou. Estimating the approximation error in learning theory.Analysis and Applications, 1(01):17–41, 2003.
[341] M. Small. Applied nonlinear time series analysis: applications in physics, physiologyand finance, volume 52. World Scientific, 2005.
[342] M. Small, D. Yu, and R. G. Harrison. Surrogate test for pseudoperiodic time seriesdata. Physical Review Letters, 87(18):188101, 2001.
[343] D. Sornette. Critical phenomena in natural sciences: chaos, fractals, selforganizationand disorder: concepts and tools. Springer Science & Business Media, 2006.
[344] J. Sprott and A. Xiong. Classifying and quantifying basins of attraction. Chaos:An Interdisciplinary Journal of Nonlinear Science, 25(8):083101, 2015.
[345] J. C. Sprott. Chaos and time-series analysis, volume 69. Oxford: Oxford UniversityPress, 2003.
[346] J. C. Sprott. Chaos and time-series analysis. Oxford University Press, 2006.
[347] J. C. Sprott and J. C. Sprott. Chaos and time-series analysis, volume 69. Citeseer,2003.
[348] I. Stamatopoulos, N. Chehrazi, and A. Bassamboo. Welfare implications ofinventory-driven dynamic pricing. Management Science, 65(12):5741–5765, 2019.
[349] M. Stender, M. Tiedemann, N. Hoffmann, and S. Oberst. Impact of an irregularfriction formulation on dynamics of a minimal model for brake squeal. MechanicalSystems and Signal Processing, 107:439–451, 2018.
[350] M. Stender, S. Oberst, M. Tiedemann, and N. Hoffmann. Complex machine dynamics:systematic recurrence quantification analysis of disk brake vibration data.Nonlinear Dynamics, 97(4):2483–2497, 2019.
[351] M. Stender, M. Tiedemann, D. Spieler, D. Schoepflin, N. Hoffmann, and S. Oberst.Deep learning for brake squeal: Brake noise detection, characterization and prediction.Mechanical Systems and Signal Processing, 149:107181, 2021. ISSN 0888-3270.
[352] D.-M. Storch, M. Timme, and M. Schröder. Incentive-driven transition to highride-sharing adoption. Nature communications, 12(1):1–10, 2021.
[353] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,chemistry, and engineering. CRC Press, 2018.
[354] X. Su. A model of consumer inertia with applications to dynamic pricing. Productionand Operations Management, 18(4):365–380, 2009.
[355] J. Subramanian, S. Stidham Jr, and C. J. Lautenbacher. Airline yield managementwith overbooking, cancellations, and no-shows. Transportation science, 33(2):147–167, 1999.
[356] C. Summerfield and F. P. De Lange. Expectation in perceptual decision making:neural and computational mechanisms. Nature Reviews Neuroscience, 15(11):745,2014.
[357] I. Sushko, L. Gardini, and V. Avrutin. Nonsmooth one-dimensional maps: Somebasic concepts and definitions. Journal of Difference Equations and Applications,22(12):1816–1870, 2016.
[358] S. Suzuki, Y. Hirata, and K. Aihara. Definition of distance for marked pointprocess data and its application to recurrence plot-based analysis of exchange tickdata of foreign currencies. International Journal of Bifurcation and Chaos, 20(11):3699–3708, 2010.
[359] N. Takeishi, Y. Kawahara, and T. Yairi. Learning koopman invariant subspacesfor dynamic mode decomposition. In Advances in Neural Information ProcessingSystems, pages 1130–1140, 2017.
[360] F. Takens. Detecting strange attractors in turbulence. In Dynamical Systems andTurbulence, Warwick 1980, pages 366–381. Springer, 1981.
[361] K. T. Talluri and G. J. Van Ryzin. The theory and practice of revenue management,volume 68. Springer Science & Business Media, 2006.
[362] G. Tanaka, T. Yamane, J. B. H´eroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and A. Hirose. Recent advances in physical reservoir computing:A review. Neural Networks, 115:100 – 123, 2019. ISSN 0893-6080.
[363] Y. Tang, J. Kurths, W. Lin, E. Ott, and L. Kocarev. Introduction to focus issue:When machine learning meets complex systems: Networks, chaos, and nonlineardynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(6):063151, 2020.
[364] N. Tereyagoglu, P. S. Fader, and S. Veeraraghavan. Multiattribute loss aversionand reference dependence: Evidence from the performing arts industry. ManagementScience, 64(1):421–436, 2018.
[365] The Prize in Economic Sciences 2010. Nobelprize.org. nobel prize outreach ab 2021.https://www.nobelprize.org/prizes/economic-sciences/2010/summary/, 2010. Accessed: 2021-12-01.
[366] The Prize in Economic Sciences 2010. Markets with search frictions. https://www.nobelprize.org/uploads/2018/06/advanced-economicsciences2010.pdf, 2010. Accessed: 2021-12-01.
[367] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing fornonlinearity in time series: the method of surrogate data. Physica D: NonlinearPhenomena, 58(1-4):77–94, 1992.
[368] J. D. Thompson. Organizations in Action: Social Science Bases of AdministrativeTheory. McGraw-Hill, 1st edition, 1967.
[369] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of theRoyal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.
[370] TimeseriesSurrogates.jl. Timeseriessurrogates, 2022. URL https://github.com/JuliaDynamics/TimeseriesSurrogates.jl.git. Accessed: 2022-05-01.
[371] J. Timmer and M. Koenig. On generating power law noise. Astronomy and Astrophysics, 300:707, 1995.
[372] F. Tramontana and L. Gardini. Border collision bifurcations in discontinuous one dimensional linear-hyperbolic maps. Communications in Nonlinear Science and Numerical Simulation, 16(3):1414–1423, 2011.
[373] T. D. Tsankov and R. Gilmore. Strange attractors are classified by bounding tori.Physical Review Letters, 91(13):134104, 2003.
[374] T. Tsuchiya and D. Yamagishi. The complete bifurcation diagram for the logisticmap. Zeitschrift für Naturforschung A, 52(6-7):513–516, 1997.
[375] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. Ondynamic mode decomposition: Theory and applications. Journal of ComputationalDynamics, 1(2158-2491 2014 2 391):391, 2014. ISSN 2158-2491.
[376] N. B. Tufillaro, H. G. Solari, and R. Gilmore. Relative rotation rates: fingerprintsfor strange attractors. Physical Review A, 41(10):5717, 1990.
[377] A. Tversky and D. Kahneman. Loss aversion in riskless choice: A referencedependentmodel. The quarterly journal of economics, 106(4):1039–1061, 1991.
[378] S.-M. Udrescu and M. Tegmark. AI feynman: A physics-inspired method forsymbolic regression. Science Advances, 6(16):eaay2631, 2020.
[379] K. Valogianni, W. Ketter, J. Collins, and D. Zhdanov. Sustainable electric vehiclecharging using adaptive pricing. Production and Operations Management, 29(6):1550–1572, 2020.
[380] G. J. van Ryzin. Models of demand. The Oxford Handbook of Pricing Management,2012.
[381] R. Vasconcellos and A. Abdelkefi. Nonlinear dynamical analysis of an aeroelasticsystem with multi-segmented moment in the pitch degree-of-freedom. Communicationsin Nonlinear Science and Numerical Simulation, 20(1):324–334, 2015.
[382] R. Vasconcellos, A. Abdelkefi, M. Hajj, and F. Marques. Grazing bifurcationin aeroelastic systems with freeplay nonlinearity. Communications in NonlinearScience and Numerical Simulation, 19(5):1611–1625, 2014.
[383] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos. Datadrivenforecasting of high-dimensional chaotic systems with long short-term memorynetworks. Proceedings of the Royal Society A: Mathematical, Physical andEngineering Sciences, 474(2213):20170844, 2018.
[384] M. Vogl and P. G Rötzel Chaoticity versus stochasticity in financial markets: Aredaily s&p 500 return dynamics chaotic? Communications in Nonlinear Scienceand Numerical Simulation, 108:106218, 2022. ISSN 1007-5704.
[385] R. Wang. Capacitated assortment and price optimization under the multinomiallogit model. Operations Research Letters, 40(6):492–497, 2012.
[386] R. Wang and Z. Wang. Consumer choice models with endogenous network effects.Management Science, 2016.
[387] W.-X. Wang, Y.-C. Lai, and C. Grebogi. Data based identification and predictionof nonlinear and complex dynamical systems. Physics Reports, 644:1 – 76, 2016.ISSN 0370-1573.
[388] Z. Wang. Intertemporal price discrimination via reference price effects. Operationsresearch, 64(2):290–296, 2016.
[389] Z. Wang, S. Deng, and Y. Ye. Close the gaps: A learning-while-doing algorithmfor single-product revenue management problems. Operations Research, 62(2):318–331, 2014.
[390] G. Wanner and E. Hairer. Solving ordinary differential equations I. Nonstiff Problems.Springer Series in Computational Mathematics, Springer-Verlag, 1993.
[391] E. W. Weisstein. Farey sequence. From MathWorld–A Wolfram Web Resource.https://mathworld.wolfram.com/FareySequence.html, 2021. Accessed: 2021-12-07.
[392] E. W. Weisstein. Logistic map. From MathWorld–A Wolfram Web Resource.https://mathworld.wolfram.com/LogisticMap.html, 2022. Accessed: 2022-04-25.
[393] T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small. Synchronization of chaoticsystems and their machine-learning models. Phys. Rev. E, 99:042203, Apr 2019.
[394] T. Wenzel, C. Rames, E. Kontou, and A. Henao. Travel and energy implications ofridesourcing service in austin, texas. Transportation Research Part D: Transportand Environment, 70:18–34, 2019.
[395] B. Wernitz and N. Hoffmann. Recurrence analysis and phase space reconstructionof irregular vibration in friction brakes: Signatures of chaos in steady sliding.Journal of Sound and Vibration, 331(16):3887–3896, 2012.
[396] B. J. West. Fractal physiology and chaos in medicine, volume 16. World Scientific,2012.
[397] T. Westerhold, N. Marwan, A. J. Drury, D. Liebrand, C. Agnini, E. Anagnostou,J. S. Barnet, S. M. Bohaty, D. De Vleeschouwer, F. Florindo, et al. An astronomicallydated record of earth’s climate and its predictability over the last 66 millionyears. Science, 369(6509):1383–1387, 2020.
[398] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos, volume2. Springer Science & Business Media, 2003.
[399] S. Wu, Q. Liu, and R. Q. Zhang. The reference effects on a retailer’s dynamicpricing and inventory strategies with strategic consumers. Operations Research,63(6):1320–1335, 2015.
[400] J. J. Xu, S. P. Fader, and S. Veeraraghavan. Designing and evaluating dynamicpricing policies for major league baseball tickets. Manufacturing & Service OperationsManagement, 21(1):121–138, 2019.
[401] Y. Xu, M. Armony, and A. Ghose. The interplay between online reviews andphysician demand: An empirical investigation. Management Science, 67(12):7344–7361, 2021.
[402] C. Yan, H. Zhu, N. Korolko, and D. Woodard. Dynamic pricing and matching inride-hailing platforms. Naval Research Logistics (NRL), 67(8):705–724, 2020.
[403] I. B. Yildiz, H. Jaeger, and S. J. Kiebel. Re-visiting the echo state property. NeuralNetworks, 35:1–9, 2012.
[404] S. Yin, J. Ji, G. Wen, and X. Wu. Use of degeneration to stabilize near grazingperiodic motion in impact oscillators. Commun. Nonlinear Sci. Numer. Simul.,66:20–30, 2019.
[405] Y. Yin and P. Shang. Multiscale recurrence plot and recurrence quantificationanalysis for financial time series. Nonlinear Dynamics, 85(4):2309–2352, 2016.
[406] Z. You, E. J. Kostelich, and J. A. Yorke. Calculating stable and unstable manifolds.International Journal of Bifurcation and Chaos, 1(03):605–623, 1991.
[407] X. Yuan and H. B. Hwarng. Stability and chaos in demand-based pricing undersocial interactions. European Journal of Operational Research, 253(2):472 – 488,2016. ISSN 0377-2217.
[408] M. Zanin. Forbidden patterns in financial time series. Chaos, 18(1):013119, 2008.
[409] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo. Permutation entropy and itsmain biomedical and econophysics applications: a review. Entropy, 14(8):1553–1577, 2012.
[410] L. Zdeborov´a. Machine learning: New tool in the box. Nature Physics, 13(5):420, 2017.
[411] J. Zhang, W.-y. K. Chiang, and L. Liang. Strategic pricing with reference effectsin a competitive supply chain. Omega, 44:126–135, 2014.
[412] J. Zhang, J. Zhou, M. Tang, H. Guo, M. Small, and Y. Zou. Constructing ordinalpartition transition networks from multivariate time series. Scientific reports, 7(1):7795, 2017.
[413] Y. Zhang and S. H. Strogatz. Basins with tentacles. Phys. Rev. Lett., 127:194101,Nov 2021.
[414] Z. Zhang, S. Oberst, and J. Lai. A non-linear friction work formulation for theanalysis of self-excited vibrations. Journal of Sound and Vibration, 2018. ISSN: 0022-460X.
[415] Z. Zhang, S. Oberst, and J. Lai. A non-linear friction work formulation for theanalysis of self-excited vibrations. Journal of Sound and Vibration, 443:328 – 340,2019. ISSN 0022-460X.
[416] W. Zhao and Y.-S. Zheng. Optimal dynamic pricing for perishable assets withnonhomogeneous demand. Management science, 46(3):375–388, 2000.
[417] Y. Zhao, J. Li, and L. Yu. A deep learning ensemble approach for crude oil priceforecasting. Energy Economics, 66:9–16, 2017.
[418] N. Zheng and N. Geroliminis. Modeling and optimization of multimodal urbannetworks with limited parking and dynamic pricing. Transportation Research PartB: Methodological, 83:36–58, 2016.
[419] Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, and H. Wu. Dynamic memristorbasedreservoir computing for high-efficiency temporal signal processing. NatureCommunications, 12(1):1–9, 2021.
[420] C. Zhou, L. Zemanov´a, G. Zamora, C. C. Hilgetag, and J. Kurths. Hierarchical organization unveiled by functional connectivity in complex brain networks. Physicalreview letters, 97(23):238103, 2006.
[421] Q. Zhu, H. Ma, and W. Lin. Detecting unstable periodic orbits based only ontime series: When adaptive delayed feedback control meets reservoir computing.Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(9):093125, 2019.
[422] Z. T. Zhusubaliyev and E. Mosekilde. Bifurcations and chaos in piecewise-smoothdynamical systems, volume 44. World Scientific, 2003.
[423] R. S. Zimmermann and U. Parlitz. Observing spatio-temporal dynamics of excitablemedia using reservoir computing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(4):043118, 2018.
[424] L. Zunino, M. Zanin, B. M. Tabak, D. G. P´erez, and O. A. Rosso. Forbiddenpatterns, permutation entropy and stock market inefficiency. Physica A: StatisticalMechanics and its Applications, 388(14):2854–2864, 2009.

Data Source
Document TypeThesis
DepartmentDepartment of Computer Science and Engineering
Recommended Citation
GB/T 7714
Lu SX. Analysis of Uncertainty for Dynamic Pricing: Models, On-demand Attractors, and Artificial Chaos[D]. Australia. University of Technology Sydney,2022.
Files in This Item:
File Name/Size DocType Version Access License
11760001-卢水秀-计算机科学与工(19848KB)Thesis Restricted AccessCC BY-NC-SAFulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[卢水秀]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[卢水秀]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[卢水秀]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.