[1] D. M. Abrams, H. A. Yaple, and R. J. Wiener. Dynamics of social group competition:modeling the decline of religious affiliation. Physical Review Letters, 107(8):088701, 2011.
[2] G. Abrate, G. Fraquelli, and G. Viglia. Dynamic pricing strategies: Evidence fromeuropean hotels. International Journal of Hospitality Management, 31(1):160–168.
[3] J. Aguirre, R. L. Viana, and M. A. Sanjuán. Fractal structures in nonlineardynamics. Reviews of Modern Physics, 81(1):333, 2009.
[4] A. Ajorlou, A. Jadbabaie, and A. Kakhbod. Dynamic pricing in social networks:The word-of-mouth effect. Management Science, 64(2):971–979, 2018.
[5] J. Amigó. Permutation complexity in dynamical systems. Springer-Verlag, Berlin,2010.
[6] J. Amigó, S. Zambrano, and M. A. Sanjuán. Combinatorial detection of determinismin noisy time series. EPL (Europhysics Letters), 83(6):60005, 2008.
[7] J. M. Amigó, L. Kocarev, and J. Szczepanski. Order patterns and chaos. PhysicsLetters A, 355(1):27–31, 2006.
[8] J. M. Amigó, S. Zambrano, and M. A. Sanjuán. True and false forbidden patternsin deterministic and random dynamics. EPL (Europhysics Letters), 79(5):50001,2007.
[9] J. M. Amigó, S. Zambrano, and M. A. Sanjuán. Detecting determinism in timeseries with ordinal patterns: a comparative study. International Journal of Bifurcationand Chaos, 20(09):2915–2924, 2010.
[10] M. Anufriev, D. Radi, and F. Tramontana. Some reflections on past and futureof nonlinear dynamics in economics and finance. Decisions in Economics andFinance, 41(2):91–118, 2018.
[11] M. Anufriev, L. Gardini, and D. Radi. Chaos, border collisions and stylized empiricalfacts in an asset pricing model with heterogeneous agents. Nonlinear Dynamics,102:993–1017, 2020.
[12] V. F. Araman and R. Caldentey. Dynamic pricing for nonperishable products withdemand learning. Operations research, 57(5):1169–1188, 2009.
[13] A. Arenas, A. DíazGuilera, J. Kurths, Y. Moreno, and C. Zhou. Synchronizationin complex networks. Physics reports, 469(3):93–153, 2008.
[14] A. Avila and I. Mezić. Data-driven analysis and forecasting of highway trafficdynamics. Nature communications, 11(1):1–16, 2020.
[15] Y. Aviv and A. Pazgal. Pricing of short life-cycle products through active learning.Working paper,Washington University, St. Louis, pages 1–32, 2002.
[16] Y. Aviv and A. Pazgal. A partially observed markov decision process for dynamicpricing. Management Science, 51(9):1400–1416, 2005.
[17] V. Avrutin and M. Schanz. On multi-parametric bifurcations in a scalar piecewiselinearmap. Nonlinearity, 19(3):531, 2006.
[18] S. R. Balseiro, D. B. Brown, and C. Chen. Dynamic pricing of relocating resourcesin large networks. Management Science, 67(7):4075–4094, 2021.
[19] G.-Y. Ban and N. B. Keskin. Personalized dynamic pricing with machine learning:High-dimensional features and heterogeneous elasticity. Management Science,2021.
[20] C. Bandt and B. Pompe. Permutation entropy: a natural complexity measure fortime series. Physical Review Letters, 88(17):174102, 2002.
[21] S. Banerjee, C. Riquelme, and R. Johari. Pricing in ride-share platforms: Aqueueing-theoretic approach. Available at SSRN 2568258, 2015.
[22] M. Bardoscia, S. Battiston, F. Caccioli, and G. Caldarelli. Pathways towardsinstability in financial networks. Nature Communications, 8:14416, 2017.
[23] M. Barreiro, A. C. Marti, and C. Masoller. Inferring long memory processes in theclimate network via ordinal pattern analysis. Chaos, 21(1):013101, 2011.
[24] S. Battiston, J. D. Farmer, A. Flache, D. Garlaschelli, A. G. Haldane, H. Heesterbeek,C. Hommes, C. Jaeger, R. May, and M. Scheffer. Complexity theory andfinancial regulation. Science, 351(6275):818–819, 2016.
[25] P. Bauer, A. Thorpe, and G. Brunet. The quiet revolution of numerical weatherprediction. Nature, 525(7567):47–55, 2015.
[26] L. Bauwens and E. Otranto. Nonlinearities and regimes in conditional correlationswith different dynamics. Journal of Econometrics, 217(2):496–522, 2020.
[27] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine learning: a survey. Journal of Marchine Learning Research,18:1–43, 2018.
[28] R. Bellman. On the theory of dynamic programming. Proceedings of the NationalAcademy of Sciences of the United States of America, 38(8):716, 1952.
[29] R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.
[30] A. Belloni and V. Chernozhukov. Least squares after model selection in high dimensional sparse models. Bernoulli, 19(2):521–547, 2013.
[31] S. Ben-David, P.Hrubeš, S. Moran, A. Shpilka, and A. Yehudayoff. Learnabilitycan be undecidable. Nature Machine Intelligence, 1(1):44, 2019.
[32] R. Benzi, A. Sutera, and A. Vulpiani. The mechanism of stochastic resonance.Journal of Physics A: mathematical and general, 14(11):L453, 1981.
[33] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in climaticchange. Tellus, 34(1):10–16, 1982.
[34] M. Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-smoothdynamical systems: theory and applications, volume 163. Springer Science & BusinessMedia, 2008.
[35] D. Bertsimas and V. V. Mišić. Decomposable markov decision processes: A fluidoptimization approach. Operations Research, 64(6):1537–1555, 2016.
[36] O. Besbes and I. Lobel. Intertemporal price discrimination: Structure and computationof optimal policies. Management Science, 61(1):92–110, 2015.
[37] O. Besbes and C. Maglaras. Dynamic pricing with financial milestones: Feedbackformpolicies. Management Science, 58(9):1715–1731, 2012.
[38] O. Besbes and D. Saur´e. Product assortment and price competition under multinomiallogit demand. Production and Operations Management, 25(1):114–127, 2016.
[39] O. Besbes and A. Zeevi. Dynamic pricing without knowing the demand function:Risk bounds and near-optimal algorithms. Operations Research, 57(6):1407–1420, 2009.
[40] O. Besbes and A. Zeevi. On the (surprising) sufficiency of linear models for dynamicpricing with demand learning. Management Science, 61(4):723–739, 2015.
[41] O. Besbes, D. A. Iancu, and N. Trichakis. Dynamic pricing under debt: Spiralingdistortions and efficiency losses. Management Science, 64(10):4572–4589, 2018.
[42] O. Besbes, F. Castro, and I. Lobel. Surge pricing and its spatial supply response.Management Science, 67(3):1350–1367, 2021.
[43] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approachto numerical computing. SIAM review, 59(1):65–98, 2017.
[44] K. Bimpikis, O. Candogan, and D. Saban. Spatial pricing in ride-sharing networks.Operations Research, 67(3):744–769, 2019.
[45] G. Bitran and R. Caldentey. An overview of pricing models for revenue management.Manufacturing & Service Operations Management, 5(3):203–229, 2003.
[46] G. R. Bitran and S. V. Mondschein. Periodic pricing of seasonal products inretailing. Management Science, 43(1):64–79, 1997.
[47] R. Bowen. ω-limit sets for axiom a diffeomorphisms. Journal of differential equations,18(2):333–339, 1975.
[48] E. Bozzo, R. Carniel, and D. Fasino. Relationship between singular spectrumanalysis and fourier analysis: Theory and application to the monitoring of volcanicactivity. Computers & Mathematics with Applications, 60(3):812–820, 2010.
[49] T. Braun, V. R. Unni, R. Sujith, J. Kurths, and N. Marwan. Detection of dynamicalregime transitions with lacunarity as a multiscale recurrence quantificationmeasure. Nonlinear Dynamics, pages 1–19, 2021.
[50] P. G. Breen, C. N. Foley, T. Boekholt, and S. P. Zwart. Newton versus themachine: solving the chaotic three-body problem using deep neural networks.Monthly Notices of the Royal Astronomical Society, 494(2):2465–2470, 2020.
[51] W. A. Brock and C. H. Hommes. A rational route to randomness. Econometrica:Journal of the Econometric Society, 65(5):1059–1095, 1997.
[52] J. Broder and P. Rusmevichientong. Dynamic pricing under a general parametricchoice model. Operations Research, 60(4):965–980, 2012.
[53] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equationsfrom data by sparse identification of nonlinear dynamical systems. Proceedings ofthe National Academy of Sciences, 113(15):3932–3937, 2016.
[54] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz. Chaos asan intermittently forced linear system. Nature Communications, 8(1):19, 2017.
[55] Budget-additive functions. Submodular set function, 2021. URL https://en.wikipedia.org/wiki/Submodular_set_function. Accessed 2021-07-04.
[56] G. Byrne, R. Gilmore, and C. Letellier. Distinguishing between folding and tearingmechanisms in strange attractors. Physical Review E, 70(5):056214, 2004.
[57] M. V. Caballero-Pintado, M. Matilla-García, and M. Ruiz Marín. Symbolic recurrenceplots to analyze dynamical systems. Chaos, 28(6):063112, 2018.
[58] G. P. Cachon, K. M. Daniels, and R. Lobel. The role of surge pricing on a serviceplatform with self-scheduling capacity. Manufacturing & Service OperationsManagement, 19(3):368–384, 2017.
[59] E. Calvano, G. Calzolari, V. Denicolo, and S. Pastorello. Artificial intelligence,algorithmic pricing, and collusion. American Economic Review, 110(10):3267–97,2020.
[60] L. Cao. Practical method for determining the minimum embedding dimension ofa scalar time series. Physica D: Nonlinear Phenomena, 110(1-2):43–50, 1997.
[61] P. Cao, N. Zhao, and J. Wu. Dynamic pricing with bayesian demand learning andreference price effect. European Journal of Operational Research, 279(2):540–556,2019.
[62] L. C. Carpi, P. M. Saco, and O. Rosso. Missing ordinal patterns in correlatednoises. Physica A: Statistical Mechanics and its Applications, 389(10):2020–2029,2010.
[63] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discoveryof coordinates and governing equations. Proceedings of the National Academy ofSciences, 116(45):22445–22451, 2019.
[64] A. Chattopadhyay, P. Hassanzadeh, and D. Subramanian. Data-driven predictionsof a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoircomputing, artificial neural network, and long short-term memory network.Nonlinear Processes in Geophysics, 27(3):373–389, 2020.
[65] R. E. Chatwin. Continuous-time airline overbooking with time-dependent faresand refunds. Transportation Science, 33(2):182–191, 1999.
[66] B. Chen, J. Huang, and J. Ji. Control of flexible single-link manipulators havingduffing oscillator dynamics. Mechanical Systems and Signal Processing, 121:44–57,2019.
[67] K. Chen, Y. Zha, L. C. Alwan, and L. Zhang. Dynamic pricing in the presence ofreference price effect and consumer strategic behaviour. International Journal ofProduction Research, 58(2):546–561, 2020.
[68] L. Chen, A. Mislove, and C. Wilson. Peeking beneath the hood of uber. InProceedings of the 2015 internet measurement conference, pages 495–508, 2015.
[69] L. Chen, A. Mislove, and C. Wilson. An empirical analysis of algorithmic pricingon amazon marketplace. In Proceedings of the 25th international conference onWorld Wide Web, pages 1339–1349, 2016.
[70] M. Chen and Z.-L. Chen. Recent developments in dynamic pricing research: multipleproducts, competition, and limited demand information. Production andOperations Management, 24(5):704–731, 2015.
[71] M. Chen and Z.-L. Chen. Robust dynamic pricing with two substitutable products.Manufacturing & Service Operations Management, 20(2):249–268, 2017.
[72] M. K. Chen and M. Sheldon. Dynamic pricing in a labor market: Surge pricingand flexible work on the uber platform. Ec, 455(10.1145):2940716–2940798, 2016.
[73] N. Chen and G. Gallego. Welfare analysis of dynamic pricing. Management Science,65(1):139–151, 2019.
[74] N. Chen and G. Gallego. Nonparametric pricing analytics with customer covariates.Operations Research, 69(3):974–984, 2021.
[75] Q. Chen, S. Jasin, and I. Duenyas. Nonparametric self-adjusting control for jointlearning and optimization of multiproduct pricing with finite resource capacity.Mathematics of Operations Research, 44(2):601–631, 2019.
[76] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinarydifferential equations. Advances in neural information processing systems, 31, 2018.
[77] X. Chen, P. Hu, and Z. Hu. Efficient algorithms for the dynamic pricing problemwith reference price effect. Management Science, 63(12):4389–4408, 2016.
[78] X. Chen, P. Hu, S. Shum, and Y. Zhang. Dynamic stochastic inventory managementwith reference price effects. Oper. Res., 64(6):1529–1536, 2016.
[79] X. Chen, P. Hu, and Z. Hu. Efficient algorithms for the dynamic pricing problemwith reference price effect. Management Science, 63(12):4389–4408, 2017.
[80] X. Chen, T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small. Mapping topologicalcharacteristics of dynamical systems into neural networks: A reservoir computingapproach. Physical Review E, 102(3):033314, 2020.
[81] X. Chen, Z. Owen, C. Pixton, and D. Simchi-Levi. A statistical learning approachto personalization in revenue management. Management Science, 2021.
[82] Y. Chen and M. Hu. Pricing and matching with forward-looking buyers and sellers.Manufacturing & Service Operations Management, 22(4):717–734, 2020.
[83] W. C. Cheung, D. Simchi-Levi, and H. Wang. Dynamic pricing and demandlearning with limited price experimentation. Operations Research, 65(6):1722–1731, 2017.
[84] M. C. Cohen, R. Lobel, and G. Perakis. The impact of demand uncertainty onconsumer subsidies for green technology adoption. Management Science, 62(5):1235–1258, 2016.
[85] M. C. Cohen, N.-H. Z. Leung, K. Panchamgam, G. Perakis, and A. Smith. Theimpact of linear optimization on promotion planning. Operations Research, 65(2):446–468, 2017.
[86] M. C. Cohen, R. Lobel, and G. Perakis. Dynamic pricing through data sampling.Production and Operations Management, 27(6):1074–1088, 2018.
[87] M. C. Cohen, S. Gupta, J. J. Kalas, and G. Perakis. An efficient algorithm fordynamic pricing using a graphical representation. Production and Operations Management,29(10):2326–2349, 2020.
[88] M. C. Cohen, J. J. Kalas, and G. Perakis. Promotion optimization for multipleitems in supermarkets. Management Science, 67(4):2340–2364, 2021.
[89] A. Corcos, J.-P. Eckmann, A. Malaspinas, Y. Malevergne, and D. Sornette. Imitationand contrarian behaviour: hyperbolic bubbles, crashes and chaos. QuantitativeFinance, 2:264–281, 2002.
[90] K. Cosguner, T. Y. Chan, and P. B. S. Seetharaman. Dynamic pricing in a distributionchannel in the presence of switching costs. Management Science, 64(3):1212–1229, 2018.
[91] B. Coulter and S. Krishnamoorthy. Pricing strategies with reference effects incompetitive industries. International transactions in operational Research, 21(2):263–274, 2014.
[92] P. Cramton, R. R. Geddes, and A. Ockenfels. Set road charges in real time to easetraffic. Nature, 560:23–26, 2018.
[93] J. Croft, C. Makrides, M. Li, A. Petrov, B. Kendrick, N. Balakrishnan, and S. Kotochigova. Universality and chaoticity in ultracold K+ KRb chemical reactions.Nature Communications, 8(1):1–8, 2017.
[94] Y. Cui, A. Y. Orhun, and I. Duenyas. How price dispersion changes when upgradesare introduced: Theory and empirical evidence from the airline industry.Management Science, 65(8):3835–3852, 2019.
[95] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematicsof Control, Signals and Systems, 2(4):303–314, 1989.
[96] H. Dankowicz and A. B. Nordmark. On the origin and bifurcations of stick-sliposcillations. Physica D: Nonlinear Phenomena, 136(3-4):280–302, 2000.
[97] G. Datseris. Dynamicalsystems.jl: A julia software library for chaos and nonlineardynamics. Journal of Open Source Software, 3(23):598, mar 2018. URL https://doi.org/10.21105/joss.00598.
[98] A. M. Davis, V. Gaur, and D. Kim. Consumer learning from own experience andsocial information: An experimental study. Management Science, 67(5):2924–2943,2021.
[99] D. P. De Farias and B. Van Roy. The linear programming approach to approximatedynamic programming. Operations research, 51(6):850–865, 2003.
[100] A. V. den Boer. Dynamic pricing and learning: historical origins, current research,and new directions. Surveys in operations research and management science, 20(1):1–18, 2015.
[101] A. V. Den Boer. Tracking the market: Dynamic pricing and learning in a changingenvironment. European journal of operational research, 247(3):914–927, 2015.
[102] A. V. den Boer and N. B. Keskin. Discontinuous demand functions: estimationand pricing. Management Science, 66(10):4516–4534, 2020.
[103] A. V. den Boer and N. B. Keskin. Dynamic pricing with demand learningand reference effects. Management Science, forthcoming, Available at SSRN:doi:10.2139/ssrn.3092745, April 19, 2021.
[104] A. V. den Boer and B. Zwart. Simultaneously learning and optimizing usingcontrolled variance pricing. Management science, 60(3):770–783, 2014.
[105] A. V. den Boer and B. Zwart. Dynamic pricing and learning with finite inventories.Operations research, 63(4):965–978, 2015.
[106] R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Westview press,2008.
[107] T. Devolder, D. Rontani, S. Petit-Watelot, K. Bouzehouane, S. Andrieu, J. Létang,M.-W. Yoo, J.-P. Adam, C. Chappert, S. Girod, V. Cros, M. Sciamanna, and J.-V. Kim. Chaos in magnetic nanocontact vortex oscillators. Phys. Rev. Lett., 123:147701, Oct 2019.
[108] M. Dinerstein, L. Einav, J. Levin, and N. Sundaresan. Consumer price searchand platform design in internet commerce. American Economic Review, 108(7):1820–59, 2018.
[109] R. Donner, U. Hinrichs, and B. Scholz-Reiter. Symbolic recurrence plots: A newquantitative framework for performance analysis of manufacturing networks. TheEuropean Physical Journal Special Topics, 164(1):85–104, 2008.
[110] B. M. Douglas Lind. An Introduction to Symbolic Dynamics and Coding. CambridgeMathematical Library. Cambridge University Press, 2 edition, 2021. ISBN9781108820288, 9781108899727.
[111] C. Du, W. L. Cooper, and Z. Wang. Optimal pricing for a multinomial logit choicemodel with network effects. Operations Research, 64(2):441–455, 2016.
[112] J. Dushoff, J. B. Plotkin, S. A. Levin, and D. J. Earn. Dynamical resonancecan account for seasonality of influenza epidemics. Proceedings of the NationalAcademy of Sciences, 101(48):16915–16916, 2004.
[113] D. Dutta and J. Bhattacharjee. Period adding bifurcation in a logistic map withmemory. Physica D: Nonlinear Phenomena, 237(23):3153–3158, 2008.
[114] G. Dutta and K. Mitra. A literature review on dynamic pricing of electricity.Journal of the Operational Research Society, 68(10):1131–1145, 2017.
[115] C.-Y. Dye, C.-T. Yang, and C.-C. Wu. Joint dynamic pricing and preservationtechnology investment for an integrated supply chain with reference price effects.Journal of the operational research society, pages 1–14, 2017.
[116] J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. InThe Theory of Chaotic Attractors, pages 273–312. Springer, 1985.
[117] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle. Recurrence plots of dynamicalsystems. Europhys. Lett., 5:973–977, 1987.
[118] J. Eliasson et al. The stockholm congestion charges: an overview. Stockholm:Centre for Transport Studies CTS Working Paper, 7:42, 2014.
[119] W. Elmaghraby and P. Keskinocak. Dynamic pricing in the presence of inventoryconsiderations: Research overview, current practices, and future directions.Management science, 49(10):1287–1309, 2003.
[120] V. F. Farias and B. Van Roy. Dynamic pricing with a prior on market response.Operations Research, 58(1):16–29, 2010.
[121] M. Feigenbaum. Universality in complex discrete dynamics. Los Alamos TheoreticalDivision Annual Report, 1976:1976, 1975.
[122] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations.Journal of statistical physics, 19(1):25–52, 1978.
[123] J. Feng, X. Li, and X. Zhang. Online product reviews-triggered dynamic pricing:Theory and evidence. Information Systems Research, 30(4):1107–1123, 2019.
[124] Y. Feng and B. Xiao. A continuous-time yield management model with multipleprices and reversible price changes. Management science, 46(5):644–657, 2000.
[125] Y. Feng and B. Xiao. Integration of pricing and capacity allocation for perishableproducts. European Journal of Operational Research, 168(1):17–34, 2006.
[126] K. J. Ferreira, B. H. A. Lee, and D. Simchi-Levi. Analytics for an online retailer:Demand forecasting and price optimization. Manufacturing & Service OperationsManagement, 18(1):69–88, 2016.
[127] K. J. Ferreira, D. Simchi-Levi, and H. Wang. Online network revenue managementusing thompson sampling. Operations research, 66(6):1586–1602, 2018.
[128] U. Feudel and C. Grebogi. Multistability and the control of complexity. Chaos:An Interdisciplinary Journal of Nonlinear Science, 7(4):597–604, 1997.
[129] G. Fibich, A. Gavious, and O. Lowengart. Explicit solutions of optimization modelsand differential games with nonsmooth (asymmetric) reference-price effects. Oper.Res., 51(5):721–734, 2003.
[130] M. Fisher, S. Gallino, and J. Li. Competition-based dynamic pricing in onlineretailing: A methodology validated with field experiments. Management Science,64(6):2496–2514, 2017.
[131] R. FitzHugh. Impulses and physiological states in theoretical models of nervemembrane. Biophysical journal, 1(6):445–466, 1961.
[132] B. Futter, V. Avrutin, and M. Schanz. The discontinuous flat top tent map andthe nested period incrementing bifurcation structure. Chaos, Solitons & Fractals,45(4):465 – 482, 2012.
[133] G. Gallego and G. Van Ryzin. Optimal dynamic pricing of inventories with stochasticdemand over finite horizons. Management science, 40(8):999–1020, 1994.
[134] G. Gallego and G. Van Ryzin. A multiproduct dynamic pricing problem and itsapplications to network yield management. Operations research, 45(1):24–41, 1997.
[135] G. Gallego and R. Wang. Multiproduct price optimization and competition underthe nested logit model with product-differentiated price sensitivities. OperationsResearch, 62(2):450–461, 2014.
[136] L. Gammaitoni, P. H¨anggi, P. Jung, and F. Marchesoni. Stochastic resonance.Reviews of modern physics, 70(1):223, 1998.
[137] E. Garbarino and O. F. Lee. Dynamic pricing in internet retail: effects on consumertrust. Psychology & Marketing, 20(6):495–513, 2003.
[138] L. Gardini, V. Avrutin, and I. Sushko. Codimension-2 border collision bifurcationsin one-dimensional discontinuous piecewise smooth maps. Int. J. BifurcationChaos, 24(02):1450024, 2014.
[139] L. Gardini, I. Sushko, and K. Matsuyama. 2d discontinuous piecewise linear map:Emergence of fashion cycles. Chaos: An Interdisciplinary Journal of NonlinearScience, 28(5):055917, 2018.
[140] A. Gershkov, B. Moldovanu, and P. Strack. Revenue-maximizing mechanisms withstrategic customers and unknown, markovian demand. Management Science, 64(5):2031–2046, 2018.
[141] C. Gibbs, D. Guttentag, U. Gretzel, L. Yao, and J. Morton. Use of dynamic pricingstrategies by airbnb hosts. International Journal of Contemporary HospitalityManagement, 2018.
[142] K. Giesecke, G. Liberali, H. Nazerzadeh, J. G. Shanthikumar, and C. P. Teo.Call for papers—management science—special issue on data-driven prescriptiveanalytics. Management Science, 64(6):2972–2972, 2018.
[143] R. Gilmore and M. Lefranc. The Topology of Chaos. John Wiley & Sons, Inc,2011.
[144] N. Golrezaei, A. Javanmard, and V. Mirrokni. Dynamic incentive-aware learning:Robust pricing in contextual auctions. Operations Research, 69(1):297–314, 2021.
[145] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning. MIT pressCambridge, 2016.
[146] B. Goswami, N. Boers, A. Rheinwalt, N. Marwan, J. Heitzig, S. F. Breitenbach,and J. Kurths. Abrupt transitions in time series with uncertainties. Nature communications,9(1):1–10, 2018.
[147] G. A. Gottwald and I. Melbourne. Testing for chaos in deterministic systems withnoise. Physica D: Nonlinear Phenomena, 212(1):100 – 110, 2005.
[148] A. Granados and G. Huguet. Gluing and grazing bifurcations in periodically forced2-dimensional integrate-and-fire models. Communications in Nonlinear Scienceand Numerical Simulation, 2018.
[149] A. Granados, L. Alsedà, and M. Krupa. The period adding and incrementingbifurcations: from rotation theory to applications. SIAM Rev., 59(2):225–292,2017.
[150] P. Grassberger and I. Procaccia. Characterization of strange attractors. Physicalreview letters, 50(5):346, 1983.
[151] P. Grassberger, H. Kantz, and U. Moenig. On the symbolic dynamics of the H\’enonmap. Journal of Physics A: Mathematical and General, 22(24):5217, 1989.
[152] C. Grebogi, S. M. Hammel, J. A. Yorke, and T. Sauer. Shadowing of physicaltrajectories in chaotic dynamics: Containment and refinement. Physical ReviewLetters, 65(13):1527, 1990.
[153] E. A. Greenleaf. The impact of reference price effects on the profitability of pricepromotions. Marketing science, 14(1):82–104, 1995.
[154] A. Griffith, A. Pomerance, and D. J. Gauthier. Forecasting chaotic systems withvery low connectivity reservoir computers. Chaos: An Interdisciplinary Journal ofNonlinear Science, 29(12):123108, 2019.
[155] L. Grigoryeva and J.-P. Ortega. Echo state networks are universal. Neural Networks,108:495 – 508, 2018. ISSN 0893-6080.
[156] A. Groth. Visualization of coupling in time series by order recurrence plots. PhysicalReview E, 72(4):046220, 2005.
[157] S. Gu, B. Kelly, and D. Xiu. Empirical asset pricing via machine learning. TheReview of Financial Studies, 33(5):2223–2273, 2020.
[158] A. Gualandi, J.-P. Avouac, S. Michel, and D. Faranda. The predictable chaos ofslow earthquakes. Science Advances, 6(27):eaaz5548, 2020.
[159] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, andbifurcations of vector fields, volume 42. Springer Science & Business Media, 2013.
[160] H. Guda and U. Subramanian. Your uber is arriving: Managing on-demand workersthrough surge pricing, forecast communication, and worker incentives. ManagementScience, 65(5):1995–2014, 2019.
[161] M. G. Güler, T. Bilgiç , and R. Güllü. Joint pricing and inventory control foradditive demand models with reference effects. Annals of Operations Research,226(1):255–276, 2015.
[162] Z. Guo and J. Ma. Dynamics and implications on a cooperative advertising modelin the supply chain. Communications in Nonlinear Science and Numerical Simulation,64:198–212, 2018.
[163] A. Haluszczynski and C. Räth. Good and bad predictions: Assessing and improvingthe replication of chaotic attractors by means of reservoir computing. Chaos:An Interdisciplinary Journal of Nonlinear Science, 29(10):103143, 2019.
[164] A. Haluszczynski, J. Aumeier, J. Herteux, and C. Räth. Reducing network size andimproving prediction stability of reservoir computing. Chaos: An InterdisciplinaryJournal of Nonlinear Science, 30(6):063136, 2020.
[165] P. Harsha and M. Dahleh. Optimal management and sizing of energy storageunder dynamic pricing for the efficient integration of renewable energy. IEEETrans. Power Syst., 30(3):1164–1181, 2015.
[166] A. Hart, J. Hook, and J. Dawes. Embedding and approximation theorems for echostate networks. Neural Networks, 128:234 – 247, 2020. ISSN 0893-6080.
[167] C. Haxholdt, E. R. Larsen, and A. van Ackere. Mode locking and chaos in adeterministic queueing model with feedback. Management Science, 49(6):816–830,2003.
[168] R. Hegger, H. Kantz, and T. Schreiber. Practical implementation of nonlineartime series methods: The tisean package. Chaos: An Interdisciplinary Journal ofNonlinear Science, 9(2):413–435, 1999.
[169] M. H\’enon. A two-dimensional mapping with a strange attractor. Communicationsin Mathematical Physics, 50:69–77, 1976.
[170] R. C. Hilborn et al. Chaos and nonlinear dynamics: an introduction for scientistsand engineers. Oxford University Press on Demand, 2000.
[171] Y. Hirata. Recurrence plots for characterizing random dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 94:105552, 2021.
[172] Y. Hirata and K. Aihara. Timing matters in foreign exchange markets. PhysicaA: Statistical Mechanics and its Applications, 391(3):760–766, 2012.
[173] T.-P. Hsieh and C.-Y. Dye. Optimal dynamic pricing for deteriorating items withreference price effects when inventories stimulate demand. European Journal ofOperational Research, 262(1):136–150, 2017.
[174] Z. Hu. Dynamic pricing with reference price effects. PhD thesis, University ofIllinois at Urbana-Champaign, 2015.
[175] Z. Hu, X. Chen, and P. Hu. Dynamic pricing with gain-seeking reference priceeffects. Operations Research, 64(1):150–157, 2016.
[176] Y. Huang, G. Kou, and Y. Peng. Nonlinear manifold learning for early warningsin financial markets. European Journal of Operational Research, 258(2):692–702,2017.
[177] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &Engineering, 9(3):90–95, 2007.
[178] Hyperparameter. Hyperparameter (machine learning), 2022. URL https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning). Accessed 2022-07-01.
[179] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting chaotic systems andsaving energy in wireless communication. Science, 304(5667):78–80, 2004.
[180] S. Jagabathula and P. Rusmevichientong. A nonparametric joint assortment andprice choice model. Management Science, 63(9):3128–3145, 2017.
[181] P. Jain and S. Banerjee. Border-collision bifurcations in one-dimensional discontinuousmaps. Int. J. Bifurcation Chaos, 13(11):3341–3351, 2003.
[182] P. L. Joskow and C. D. Wolfram. Dynamic pricing of electricity. American EconomicReview, 102(3):381–85, 2012.
[183] D. Kahneman, Daniel and A. Tversky. Prospect theory: An analysis of decisionunder risk. Econometrica, 47(2):263–292, 1979.
[184] K. Kalyanam and T. S. Shively. Estimating irregular pricing effects: A stochasticspline regression approach. Journal of Marketing Research, 35(1):16–29, 1998.
[185] G. Kalyanaram and R. S. Winer. Empirical generalizations from reference priceresearch. Marketing science, 14(3):G161–G169, 1995.
[186] E. Kamenica, S. Mullainathan, and R. Thaler. Helping consumers know themselves.American Economic Review, 101(3):417–22, 2011.
[187] H. Kantz and L. Jaeger. Improved cost functions for modelling of noisy chaotictime series. Physica D: Nonlinear Phenomena, 109(1):59–69, 1997.
[188] H. Kantz and T. Schreiber. Nonlinear time series analysis, volume 7. Cambridgeuniversity press, 2004.
[189] P. Kasthuri, I. Pavithran, A. Krishnan, S. A. Pawar, R. Sujith, R. Gejji, W. Anderson,N. Marwan, and J. Kurths. Recurrence analysis of slow–fast systems. Chaos:An Interdisciplinary Journal of Nonlinear Science, 30(6):063152, 2020.
[190] C. Kemper and C. Breuer. How efficient is dynamic pricing for sport events?designing a dynamic pricing model for bayern munich. International Journal ofSport Finance, 11(1):4–25, 2016.
[191] N. B. Keskin and A. Zeevi. Dynamic pricing with an unknown demand model:Asymptotically optimal semi-myopic policies. Operations Research, 62(5):1142–1167, 2014.
[192] N. B. Keskin and A. Zeevi. Chasing demand: Learning and earning in a changingenvironment. Mathematics of Operations Research, 42(2):277–307, 2017.
[193] C. J. Keylock. Constrained surrogate time series with preservation of the meanand variance structure. Phys. Rev. E, 73:036707, Mar 2006.
[194] P. Kidger and T. Lyons. Universal approximation with deep narrow networks. InConference on Learning Theory, pages 2306–2327, 2020.
[195] D. Kilminster. Modelling dynamical systems via behaviour criteria. University ofWestern Australia, 2002.
[196] B.-G. Kim, Y. Zhang, M. Van Der Schaar, and J.-W. Lee. Dynamic pricing andenergy consumption scheduling with reinforcement learning. IEEE Transactionson smart grid, 7(5):2187–2198, 2015.
[197] S. Klus, F. Nüske, S. Peitz, J.-H. Niemann, C. Clementi, and C. Schütte. Data-drivenapproximation of the koopman generator: Model reduction, system identification,and control. Physica D: Nonlinear Phenomena, 406:132416, 2020.
[198] A. Komanduri, Z. Wafa, K. Proussaloglou, and S. Jacobs. Assessing the impact ofapp-based ride share systems in an urban context: Findings from austin. TransportationResearch Record, 2672(7):34–46, 2018.
[199] A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization using geneticalgorithms: A tutorial. Reliability engineering & system safety, 91(9):992–1007,2006.
[200] L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai. Machine learning predictionof critical transition and system collapse. Physical Review Research, 3(1):013090,2021.
[201] B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedingsof the national academy of sciences of the united states of america, 17(5):315, 1931.
[202] P. K. Kopalle and D. R. Lehmann. The effects of advertised and observed qualityon expectations about new product quality. Journal of Marketing Research, 32(3):280–290, 1995.
[203] P. K. Kopalle and J. Lindsey-Mullikin. The impact of external reference price onconsumer price expectations. Journal of Retailing, 79(4):225 – 236, 2003.
[204] P. K. Kopalle and R. S. Winer. A dynamic model of reference price and expectedquality. Marketing Letters, 7(1):41–52, 1996.
[205] P. K. Kopalle, A. G. Rao, and J. L. Assuncao. Asymmetric reference price effectsand dynamic pricing policies. Marketing Science, 15(1):60–85, 1996.
[206] P. K. Kopalle, P. Kannan, L. B. Boldt, and N. Arora. The impact of householdlevel heterogeneity in reference price effects on optimal retailer pricing policies.Journal of Retailing, 88(1):102–114, 2012.
[207] I. Kovacic and M. J. Brennan. The Duffing equation: nonlinear oscillators andtheir behaviour. John Wiley & Sons, 2011.
[208] K. H. Kraemer, R. V. Donner, J. Heitzig, and N. Marwan. Recurrence thresholdselection for obtaining robust recurrence characteristics in different embeddingdimensions. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(8):085720, 2018.
[209] M. Kremer, B. Mantin, and A. Ovchinnikov. Dynamic pricing in the presence ofmyopic and strategic consumers: Theory and experiment. Production and OperationsManagement, 26(1):116–133, 2017.
[210] C. Kulp and L. Zunino. Discriminating chaotic and stochastic dynamics throughthe permutation spectrum test. Chaos: An Interdisciplinary Journal of NonlinearScience, 24(3):033116, 2014.
[211] C. Kulp, J. Chobot, B. Niskala, and C. Needhammer. Using forbidden ordinalpatterns to detect determinism in irregularly sampled time series. Chaos, 26(2):023107, 2016.
[212] C. W. Kulp and S. Smith. Characterization of noisy symbolic time series. PhysicalReview E, 83(2):026201, 2011.
[213] N. Kuznetsov, T. Mokaev, O. Kuznetsova, and E. Kudryashova. The Lorenz system:hidden boundary of practical stability and the Lyapunov dimension. NonlinearDynamics, 102(2):713–732, 2020.
[214] D. La Torre, S. Marsiglio, and F. Privileggi. Fractal attractors in economic growthmodels with random pollution externalities. Chaos: An Interdisciplinary Journalof Nonlinear Science, 28(5):055916, 2018.
[215] G. Lancaster, D. Iatsenko, A. Pidde, V. Ticcinelli, and A. Stefanovska. Surrogatedata for hypothesis testing of physical systems. Physics Reports, 748:1–60, 2018.
[216] L. Larger, B. Penkovsky, and Y. Maistrenko. Laser chimeras as a paradigm formultistable patterns in complex systems. Nature Communications, 6(1):1–7, 2015.
[217] P. S. Lavieri, F. F. Dias, N. R. Juri, J. Kuhr, and C. R. Bhat. A model ofridesourcing demand generation and distribution. Transportation Research Record,2672(46):31–40, 2018.
[218] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.
[219] C. Letellier, E. Roulin, and O. E. Rössler. Inequivalent topologies of chaos insimple equations. Chaos, Solitons & Fractals, 28(2):337–360, 2006.
[220] A. Levi, J. Sabuco, and M. A. Sanjuán. Supply based on demand dynamical model.Commun. Nonlinear Sci. Numer. Simul., 57:402–414, 2018.
[221] C. Li, W. Hu, J. C. Sprott, and X. Wang. Multistability in symmetric chaoticsystems. The European Physical Journal Special Topics, 224(8):1493–1506, 2015.
[222] H. Li and W. T. Huh. Pricing multiple products with the multinomial logit andnested logit models: Concavity and implications. Manufacturing & Service OperationsManagement, 13(4):549–563, 2011.
[223] J. Li, N. Granados, and S. Netessine. Are consumers strategic? structural estimationfrom the air-travel industry. Management Science, 60(9):2114–2137, 2014.
[224] X. Li, W. Shang, and S. Wang. Text-based crude oil price forecasting: A deeplearning approach. International Journal of Forecasting, 35(4):1548–1560, 2019.
[225] M. Liao, J. Ing, J. P. Chávez, and M. Wiercigroch. Bifurcation techniques for stiffnessidentification of an impact oscillator. Communications in Nonlinear Scienceand Numerical Simulation, 41:19–31, 2016.
[226] A. E. Lim and J. G. Shanthikumar. Relative entropy, exponential utility, androbust dynamic pricing. Operations Research, 55(2):198–214, 2007.
[227] S. Limmer. Dynamic pricing for electric vehicle charging—a literature review.Energies, 12(18):3574, 2019.
[228] K. Y. Lin. Dynamic pricing with real-time demand learning. European Journal ofOperational Research, 174(1):522–538, 2006.
[229] Y. Liu, Q. Wang, and H. Xu. Bifurcations of periodic motion in a three-degreeof-freedom vibro-impact system with clearance. Communications in NonlinearScience and Numerical Simulation, 48:1–17, 2017.
[230] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences,20(2):130–141, 1963.
[231] S. Lu, Z. Luo, G. Zhang, and S. Oberst. Order pattern recurrence plots: unveilingdeterminism buried in noise. In University of Technology Sydney, FEIT ResearchShowcase, Sydney, NSW, Australia, 14 Jun 2018.
[232] S. Lu, S. Oberst, G. Zhang, and Z. Luo. Bifurcation analysis of dynamic pricingprocesses with nonlinear external reference effects. Communications in NonlinearScience and Numerical Simulation, 79:104929, 2019.
[233] S. Lu, S. Oberst, G. Zhang, and Z. Luo. Period adding bifurcations in dynamicpricing processes. In IEEE CIFEr 2019: 2019 IEEE Conference on ComputationalIntelligence for Financial Engineering and Economics, Shenzhen, China, May 4-5,2019.
[234] S. Lu, S. Oberst, G. Zhang, and Z. Luo. Novel order patterns recurrence plot-basedquantification measures to unveil deterministic dynamics from stochasticprocesses. In ITISE 2018 (International conference on Time Series and Forecasting),September 19th-21th, 2018.
[235] Z. Lu, B. R. Hunt, and E. Ott. Attractor reconstruction by machine learning.Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(6):061104, 2018.
[236] R. D. Luce. Individual choice behavior: A theoretical analysis. Courier Corporation,2012.
[237] B. Lusch, J. N. Kutz, and S. L. Brunton. Deep learning for universal linearembeddings of nonlinear dynamics. Nature Communications, 9(1):4950, 2018.
[238] T. Lymburn, A. Khor, T. Stemler, D. C. Corrêa, M. Small, and T. J¨ungling. Consistency in echo-state networks. Chaos: An Interdisciplinary Journal of NonlinearScience, 29(2):023118, 2019.
[239] C. Maglaras and J. Meissner. Dynamic pricing strategies for multiproduct revenuemanagement problems. Manufacturing & Service Operations Management, 8(2):136–148, 2006.
[240] N. G. Mankiw. Principles of economics. Cengage Learning, 2014.
[241] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods forengineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.
[242] P. Martien, S. Pope, P. Scott, and R. Shaw. The chaotic behavior of the leakyfaucet. Phys. Lett. A, 110:399–404, 1985.
[243] N. Marwan. How to avoid potential pitfalls in recurrence plot based data analysis.International Journal of Bifurcation and Chaos, 21(04):1003–1017, 2011.
[244] N. Marwan and J. Kurths. Comment on “stochastic analysis of recurrence plotswith applications to the detection of deterministic signals” by rohde et al.[physica d237 (2008) 619–629]. Physica D: Nonlinear Phenomena, 238(16):1711–1715, 2009.
[245] N. Marwan, A. Groth, and J. Kurths. Quantification of Order Patterns RecurrencePlots of Event Related Potentials. Chaos and Complexity Letters, 2:301–314, 2007.
[246] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths. Recurrence plots for theanalysis of complex systems. Physics Reports, 438(5-6):237–329, 2007.
[247] Matplotlib. Matplotlib 3.5.0 documentation. https://matplotlib.org/stable/api/mlab_api.html#matplotlib.mlab.psd, 2021. Accessed: 2021-12-13.
[248] A. Maus and J. Sprott. Neural network method for determining embedding dimensionof a time series. Communications in Nonlinear Science and Numerical Simulation, 16(8):3294–3302, 2011.
[249] R. M. May. Simple mathematical models with very complicated dynamics. Nature,261:459–467, 1976.
[250] T. Mazumdar, S. P. Raj, and I. Sinha. Reference price research: Review andpropositions. Journal of marketing, 69(4):84–102, 2005.
[251] T. Mazumdar, S. P. Raj, and I. Sinha. Reference price research: Review andpropositions. Journal of marketing, 69(4):84–102, 2005.
[252] M. McCullough, K. Sakellariou, T. Stemler, and M. Small. Regenerating timeseries from ordinal networks. Chaos, 27(3):035814, 2017.
[253] S. McNally, J. Roche, and S. Caton. Predicting the price of bitcoin using machinelearning. In 2018 26th euromicro international conference on parallel, distributedand network-based processing (PDP), pages 339–343. IEEE, 2018.
[254] P. E. McSharry and L. A. Smith. Better nonlinear models from noisy data: Attractorswith maximum likelihood. Physical review letters, 83(21):4285, 1999.
[255] J. A. Mead and D. M. Hardesty. Price font disfluency: Anchoring effects on futureprice expectations. Journal of Retailing, 94(1):102–112, 2018.
[256] A. Mehra, S. Kumar, and J. S. Raju. Competitive strategies for brick-and-mortarstores to counter “showrooming”. Management Science, 2017.
[257] P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths. How basin stability complementsthe linear-stability paradigm. Nature physics, 9(2):89–92, 2013.
[258] P. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellnhuber. How dead ends underminepower grid stability. Nature communications, 5(1):1–8, 2014.
[259] I. Mezić. Spectral properties of dynamical systems, model reduction and decompositions.Nonlinear Dynamics, 41(1-3):309–325, 2005.
[260] I. Mezić. Analysis of fluid flows via spectral properties of the koopman operator.Annual Review of Fluid Mechanics, 45:357–378, 2013.
[261] S. Miao and X. Chao. Dynamic joint assortment and pricing optimization withdemand learning. Manufacturing & Service Operations Management, 23(2):525–545, 2021.
[262] F. J. Milliken. Three types of perceived uncertainty about the environment: State,effect, and response uncertainty. Academy of Management review, 12(1):133–143,1987.
[263] N. Mizik and R. Jacobson. Myopic marketing management: Evidence of the phenomenon and its long-term performance consequences in the seo context. MarketingScience, 26(3):361–379, 2007.
[264] J. M. Moore, D. C. Corrêa, and M. Small. Is bach’s brain a markov chain?recurrence quantification to assess markov order for short, symbolic, musical compositions.Chaos: An interdisciplinary journal of nonlinear science, 28(8):085715,2018.
[265] A. K. Naimzada and M. Pireddu. Fashion cycle dynamics in a model with endogenousdiscrete evolution of heterogeneous preferences. Chaos: An InterdisciplinaryJournal of Nonlinear Science, 28(5):055907, 2018.
[266] K. Nakai and Y. Saiki. Machine-learning inference of fluid variables from datausing reservoir computing. Physical Review E, 98(2):023111, 2018.
[267] T. Nakamura, M. Small, and Y. Hirata. Testing for nonlinearity in irregularfluctuations with long-term trends. Physical Review E, 74(2):026205, 2006.
[268] M. Nambiar, D. Simchi-Levi, and H. Wang. Dynamic learning and pricing withmodel misspecification. Management Science, 65(11):4980–5000, 2019.
[269] J. Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.
[270] J. Nasiry and I. Popescu. Dynamic pricing with loss-averse consumers and peakendanchoring. Oper. Res., 59(6):1361–1368, 2011.
[271] J. Nasiry and I. Popescu. Dynamic pricing with loss-averse consumers and peakendanchoring. Operations research, 59(6):1361–1368, 2011.
[272] F. Nazarimehr, S. Jafari, S. M. R. Hashemi Golpayegani, M. Perc, and J. C. Sprott.Predicting tipping points of dynamical systems during a period-doubling route tochaos. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):073102,2018.
[273] Neighbourhood. Neighbourhood (mathematics). https://en.wikipedia.org/wiki/Neighbourhood_(mathematics), 2022. Accessed: 2022-01-04.
[274] H. E. Nusse and J. A. Yorke. Border-collision bifurcations including “period twoto period three” for piecewise smooth systems. Physica D: Nonlinear Phenomena,57(1-2):39–57, 1992.
[275] H. E. Nusse and J. A. Yorke. Border-collision bifurcations for piecewise smoothone-dimensional maps. International Journal of Bifurcation and Chaos, 05:189–207, 1994.
[276] S. Oberst. Nonlinear dynamics: Towards a paradigm change via evidence-basedcomplex dynamics modelling. In NOVEM 2018, Ibiza, Spain, 7-9 May 2018.
[277] S. Oberst and J. Lai. Chaos in brake squeal noise. Journal of Sound and Vibration,330(5):955–975, 2011.
[278] S. Oberst and J. Lai. A statistical approach to estimate the lyapunov spectrumin disc brake squeal. Journal of Sound and Vibration, 334:120 – 135, 2015. ISSN0022-460X.
[279] S. Oberst and J. Lai. A statistical approach to estimate the Lyapunov spectrumin disc brake squeal. Journal of Sound and Vibration, 334:120–135, 2015.
[280] S. Oberst and J. Lai. A statistical approach to estimate the lyapunov spectrum indisc brake squeal. Journal of Sound and Vibration, 334:120–135, 2015.
[281] S. Oberst and S. Tuttle. Nonlinear dynamics of thin-walled elastic structures forapplications in space. Mechanical Systems and Signal Processing, 110:469 – 484,2018. ISSN 0888-3270.
[282] S. Oberst, G. Bann, J. C. Lai, and T. A. Evans. Cryptic termites avoid predatoryants by eavesdropping on vibrational cues from their footsteps. Ecology letters, 20(2):212–221, 2017.
[283] S. Oberst, S. Marburg, and N. Hoffmann. Determining periodic orbits via nonlinearfiltering and recurrence spectra in the presence of noise. Procedia engineering, 199:772–777, 2017.
[284] S. Oberst, R. K. Niven, D. Lester, A. Ord, B. Hobbs, and N. Hoffmann. Detectionof unstable periodic orbits in mineralising geological systems. Chaos: AnInterdisciplinary Journal of Nonlinear Science, 28(8):085711, 2018.
[285] F. Olivares, A. Plastino, and O. A. Rosso. Contrasting chaos with noise via localversus global information quantifiers. Physics Letters A, 376(19):1577 – 1583, 2012.ISSN 0375-9601.
[286] P. E. Olsen, J. Laskar, D. V. Kent, S. T. Kinney, D. J. Reynolds, J. Sha, and J. H.Whiteside. Mapping solar system chaos with the Geological Orrery. Proceedingsof the National Academy of Sciences, 116(22):10664–10673, 2019.
[287] E. Özkanand A. R.Ward. Dynamic matching for real-time ride sharing. StochasticSystems, 10(1):29–70, 2020.
[288] S. Pan and K. Duraisamy. Data-driven discovery of closure models. SIAM Journalon Applied Dynamical Systems, 17(4):2381–2413, 2018.
[289] A. Panchuk, I. Sushko, and F. Westerhoff. A financial market model with twodiscontinuities: Bifurcation structures in the chaotic domain. Chaos: An InterdisciplinaryJournal of Nonlinear Science, 28(5):055908, 2018.
[290] U. Parlitz, S. Berg, S. Luther, A. Schirdewan, J. Kurths, and N. Wessel. Classifyingcardiac biosignals using ordinal pattern statistics and symbolic dynamics. Computers in Biology and Medicine, 42(3):319 – 327, 2012.
[291] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrentneural networks. In International Conference on Machine Learning, pages 1310–1318, 2013.
[292] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott. Using machine learning toreplicate chaotic attractors and calculate Lyapunov exponents from data. Chaos:An Interdisciplinary Journal of Nonlinear Science, 27(12):121102, 2017.
[293] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Model-free prediction of largespatiotemporally chaotic systems from data: A reservoir computing approach.Phys. Rev. Lett., 120:024102, Jan 2018.
[294] M. T. Pearce, A. Agarwala, and D. S. Fisher. Stabilization of extensive fine-scalediversity by ecologically driven spatiotemporal chaos. Proceedings of the NationalAcademy of Sciences, 117(25):14572–14583, 2020.
[295] L. M. Pecora, L. Moniz, J. Nichols, and T. L. Carroll. A unified approach to attractorreconstruction. Chaos: An Interdisciplinary Journal of Nonlinear Science,17(1):013110, 2007.
[296] R. Phillips, A. S. Şimşek, and G. Van Ryzin. The effectiveness of field pricediscretion: Empirical evidence from auto lending. Management Science, 61(8):1741–1759, 2015.
[297] R. L. Phillips. Pricing and revenue optimization. Stanford University Press, 2005.
[298] A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths. Synchronization: a universalconcept in nonlinear sciences, 2003.
[299] A. N. Pisarchik and U. Feudel. Control of multistability. Physics Reports, 540(4):167–218, 2014.
[300] I. Popescu and Y. Wu. Dynamic pricing strategies with reference effects. Oper.Res., 55(3):413–429, 2007.
[301] M. Porfiri and M. R. Marín. Symbolic dynamics of animal interaction. Journal oftheoretical biology, 435:145–156, 2017.
[302] Python package. scipy.integrate. https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html, 2022. Accessed: 2022-05-16.
[303] T. Qin, K. Wu, and D. Xiu. Data driven governing equations approximation usingdeep neural networks. Journal of Computational Physics, 395:620–635, 2019.BIBLIOGRAPHY 228
[304] I. Rahwan, M. Cebrian, N. Obradovich, J. Bongard, J.-F. Bonnefon, C. Breazeal,J. W. Crandall, N. A. Christakis, I. D. Couzin, M. O. Jackson, et al. Machinebehaviour. Nature, 568(7753):477, 2019.
[305] M. Raissi. Deep hidden physics models: Deep learning of nonlinear partial differentialequations. The Journal of Machine Learning Research, 19(1):932–955, 2018.
[306] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involvingnonlinear partial differential equations. Journal of Computational physics, 378:686–707, 2019.
[307] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: Learningvelocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030,2020.
[308] B. Rakshit, M. Apratim, and S. Banerjee. Bifurcation phenomena in two-dimensionalpiecewise smooth discontinuous maps. Chaos: An InterdisciplinaryJournal of Nonlinear Science, 20(3):033101, 2010.
[309] R. Rana and F. S. Oliveira. Real-time dynamic pricing in a non-stationary environmentusing model-free reinforcement learning. Omega, 47:116–126, 2014.
[310] RideAustin (2017). Ride-austin-june6-april13 [dataset], 2013. URL https://data.world/ride-austin/ride-austin-june-6-april-13. Accessed: 2021-05-19.
[311] P. Riley. Three pitfalls to avoid in machine learning. Nature, 572:27, 2019.
[312] C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos 2ndEdition (Studies in Advanced Mathematics). CRC Press, 2 edition, 1998. ISBN0849384958, 9780849384950.
[313] M. Rosalie. Templates and subtemplates of Rössler attractors from a bifurcationdiagram. Journal of Physics A: Mathematical and Theoretical, 49(31):315101, 2016.
[314] O. E. Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398,1976.
[315] O. A. Rosso, H. A. Larrondo, M. T. Martin, A. Plastino, and M. A. Fuentes.Distinguishing noise from chaos. Physical Review Letters, 99(15):154102, 2007.
[316] O. A. Rosso, L. C. Carpi, P. M. Saco, M. G. Ravetti, A. Plastino, and H. A.Larrondo. Causality and the entropy–complexity plane: Robustness and missingordinal patterns. Physica A: Statistical Mechanics and its Applications, 391(1):42– 55, 2012. ISSN 0378-4371.
[317] O. A. Rosso, F. Olivares, L. Zunino, L. De Micco, A. L. Aquino, A. Plastino,and H. A. Larrondo. Characterization of chaotic maps using the permutationbandt-pompe probability distribution. The European Physical Journal B, 86(4):116, 2013.
[318] S. H. Rudy, J. N. Kutz, and S. L. Brunton. Deep learning of dynamics and signalnoisedecomposition with time-stepping constraints. Journal of ComputationalPhysics, 396:483 – 506, 2019.
[319] C. M. Rump and S. Stidham. Stability and chaos in input pricing for a servicefacility with adaptive customer response to congestion. Management Science, 44(2):246–261, 1998.
[320] P. Rusmevichientong, Z.-J. M. Shen, and D. B. Shmoys. Dynamic assortmentoptimization with a multinomial logit choice model and capacity constraint. Operationsresearch, 58(6):1666–1680, 2010.
[321] P. Rusmevichientong, D. Shmoys, C. Tong, and H. Topaloglu. Assortment optimization under the multinomial logit model with random choice parameters.Production and Operations Management, 23(11):2023–2039, 2014.
[322] M. Saberi, H. Hamedmoghadam, M. Ashfaq, S. A. Hosseini, Z. Gu, S. Shafiei,D. J. Nair, V. Dixit, L. Gardner, S. T. Waller, et al. A simple contagion processdescribes spreading of traffic jams in urban networks. Nature communications, 11(1):1–9, 2020.
[323] M. Sangiorgio and F. Dercole. Robustness of lstm neural networks for multi-stepforecasting of chaotic time series. Chaos, Solitons & Fractals, 139:110045, 2020.
[324] T. Sauer, J. A. Yorke, and M. Casdagli. Embedology. Journal of statistical Physics,65(3):579–616, 1991.
[325] D. Sauré and A. Zeevi. Optimal dynamic assortment planning with demand learning.Manufacturing & Service Operations Management, 15(3):387–404, 2013.
[326] K. Schindler, H. Gast, L. Stieglitz, A. Stibal, M. Hauf, R. Wiest, L. Mariani,and C. Rummel. Forbidden ordinal patterns of periictal intracranial eeg indicatedeterministic dynamics in human epileptic seizures. Epilepsia, 52(10):1771–1780,2011.
[327] R. M. Schindler. The 99 price ending as a signal of a low-price appeal. Journal ofRetailing, 82(1):71 – 77, 2006. ISSN 0022-4359.
[328] S. Schinkel, N. Marwan, and J. Kurths. Order patterns recurrence plots in theanalysis of erp data. Cognitive neurodynamics, 1(4):317–325, 2007.
[329] C. Schlereth, B. Skiera, and F. Schulz. Why do consumers prefer static insteadof dynamic pricing plans? an empirical study for a better understanding of thelow preferences for time-variant pricing plans. European Journal of OperationalResearch, 269(3):1165–1179, 2018.
[330] R. Schlosser and M. Boissier. Dynamic pricing under competition on online marketplaces: A data-driven approach. In Proceedings of the 24th ACM SIGKDDInternational Conference on Knowledge Discovery & Data Mining, pages 705–714,2018.
[331] T. Schreiber and A. Schmitz. Surrogate time series. Physica D: Nonlinear Phenomena,142(3-4):346–382, 2000.
[332] M. Schröder, D.-M. Storch, P. Marszal, and M. Timme. Anomalous supply shortagesfrom dynamic pricing in on-demand mobility. Nature communications, 11(1):1–8, 2020.
[333] H. G. Schuster and W. Just. Deterministic Chaos: an Introduction. John Wiley& Sons, 2006.
[334] Z.-J. M. Shen and X. Su. Customer behavior modeling in revenue managementand auctions: A review and new research opportunities. Production and operationsmanagement, 16(6):713–728, 2007.
[335] A. Sherstinsky. Fundamentals of recurrent neural network (rnn) and long shorttermmemory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.
[336] N. Shukla, A. Kolbeinsson, K. Otwell, L. Marla, and K. Yellepeddi. Dynamicpricing for airline ancillaries with customer context. In Proceedings of the 25thACM SIGKDD International Conference on knowledge discovery & data mining,pages 2174–2182, 2019.
[337] D. J. Simpson and J. D. Meiss. Simultaneous border-collision and period-doublingbifurcations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(3):033146, 2009.
[338] J. Sirignano and R. Cont. Universal features of price formation in financial markets:perspectives from deep learning. Quantitative Finance, 19(9):1449–1459, 2019.
[339] R. Slonim and E. Garbarino. Similarities and differences between stockpiling andreference effects. Managerial and Decision Economics, 30(6):351–371, 2009.
[340] S. Smale and D.-X. Zhou. Estimating the approximation error in learning theory.Analysis and Applications, 1(01):17–41, 2003.
[341] M. Small. Applied nonlinear time series analysis: applications in physics, physiologyand finance, volume 52. World Scientific, 2005.
[342] M. Small, D. Yu, and R. G. Harrison. Surrogate test for pseudoperiodic time seriesdata. Physical Review Letters, 87(18):188101, 2001.
[343] D. Sornette. Critical phenomena in natural sciences: chaos, fractals, selforganizationand disorder: concepts and tools. Springer Science & Business Media, 2006.
[344] J. Sprott and A. Xiong. Classifying and quantifying basins of attraction. Chaos:An Interdisciplinary Journal of Nonlinear Science, 25(8):083101, 2015.
[345] J. C. Sprott. Chaos and time-series analysis, volume 69. Oxford: Oxford UniversityPress, 2003.
[346] J. C. Sprott. Chaos and time-series analysis. Oxford University Press, 2006.
[347] J. C. Sprott and J. C. Sprott. Chaos and time-series analysis, volume 69. Citeseer,2003.
[348] I. Stamatopoulos, N. Chehrazi, and A. Bassamboo. Welfare implications ofinventory-driven dynamic pricing. Management Science, 65(12):5741–5765, 2019.
[349] M. Stender, M. Tiedemann, N. Hoffmann, and S. Oberst. Impact of an irregularfriction formulation on dynamics of a minimal model for brake squeal. MechanicalSystems and Signal Processing, 107:439–451, 2018.
[350] M. Stender, S. Oberst, M. Tiedemann, and N. Hoffmann. Complex machine dynamics:systematic recurrence quantification analysis of disk brake vibration data.Nonlinear Dynamics, 97(4):2483–2497, 2019.
[351] M. Stender, M. Tiedemann, D. Spieler, D. Schoepflin, N. Hoffmann, and S. Oberst.Deep learning for brake squeal: Brake noise detection, characterization and prediction.Mechanical Systems and Signal Processing, 149:107181, 2021. ISSN 0888-3270.
[352] D.-M. Storch, M. Timme, and M. Schröder. Incentive-driven transition to highride-sharing adoption. Nature communications, 12(1):1–10, 2021.
[353] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,chemistry, and engineering. CRC Press, 2018.
[354] X. Su. A model of consumer inertia with applications to dynamic pricing. Productionand Operations Management, 18(4):365–380, 2009.
[355] J. Subramanian, S. Stidham Jr, and C. J. Lautenbacher. Airline yield managementwith overbooking, cancellations, and no-shows. Transportation science, 33(2):147–167, 1999.
[356] C. Summerfield and F. P. De Lange. Expectation in perceptual decision making:neural and computational mechanisms. Nature Reviews Neuroscience, 15(11):745,2014.
[357] I. Sushko, L. Gardini, and V. Avrutin. Nonsmooth one-dimensional maps: Somebasic concepts and definitions. Journal of Difference Equations and Applications,22(12):1816–1870, 2016.
[358] S. Suzuki, Y. Hirata, and K. Aihara. Definition of distance for marked pointprocess data and its application to recurrence plot-based analysis of exchange tickdata of foreign currencies. International Journal of Bifurcation and Chaos, 20(11):3699–3708, 2010.
[359] N. Takeishi, Y. Kawahara, and T. Yairi. Learning koopman invariant subspacesfor dynamic mode decomposition. In Advances in Neural Information ProcessingSystems, pages 1130–1140, 2017.
[360] F. Takens. Detecting strange attractors in turbulence. In Dynamical Systems andTurbulence, Warwick 1980, pages 366–381. Springer, 1981.
[361] K. T. Talluri and G. J. Van Ryzin. The theory and practice of revenue management,volume 68. Springer Science & Business Media, 2006.
[362] G. Tanaka, T. Yamane, J. B. H´eroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and A. Hirose. Recent advances in physical reservoir computing:A review. Neural Networks, 115:100 – 123, 2019. ISSN 0893-6080.
[363] Y. Tang, J. Kurths, W. Lin, E. Ott, and L. Kocarev. Introduction to focus issue:When machine learning meets complex systems: Networks, chaos, and nonlineardynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(6):063151, 2020.
[364] N. Tereyagoglu, P. S. Fader, and S. Veeraraghavan. Multiattribute loss aversionand reference dependence: Evidence from the performing arts industry. ManagementScience, 64(1):421–436, 2018.
[365] The Prize in Economic Sciences 2010. Nobelprize.org. nobel prize outreach ab 2021.https://www.nobelprize.org/prizes/economic-sciences/2010/summary/, 2010. Accessed: 2021-12-01.
[366] The Prize in Economic Sciences 2010. Markets with search frictions. https://www.nobelprize.org/uploads/2018/06/advanced-economicsciences2010.pdf, 2010. Accessed: 2021-12-01.
[367] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing fornonlinearity in time series: the method of surrogate data. Physica D: NonlinearPhenomena, 58(1-4):77–94, 1992.
[368] J. D. Thompson. Organizations in Action: Social Science Bases of AdministrativeTheory. McGraw-Hill, 1st edition, 1967.
[369] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of theRoyal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.
[370] TimeseriesSurrogates.jl. Timeseriessurrogates, 2022. URL https://github.com/JuliaDynamics/TimeseriesSurrogates.jl.git. Accessed: 2022-05-01.
[371] J. Timmer and M. Koenig. On generating power law noise. Astronomy and Astrophysics, 300:707, 1995.
[372] F. Tramontana and L. Gardini. Border collision bifurcations in discontinuous one dimensional linear-hyperbolic maps. Communications in Nonlinear Science and Numerical Simulation, 16(3):1414–1423, 2011.
[373] T. D. Tsankov and R. Gilmore. Strange attractors are classified by bounding tori.Physical Review Letters, 91(13):134104, 2003.
[374] T. Tsuchiya and D. Yamagishi. The complete bifurcation diagram for the logisticmap. Zeitschrift für Naturforschung A, 52(6-7):513–516, 1997.
[375] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. Ondynamic mode decomposition: Theory and applications. Journal of ComputationalDynamics, 1(2158-2491 2014 2 391):391, 2014. ISSN 2158-2491.
[376] N. B. Tufillaro, H. G. Solari, and R. Gilmore. Relative rotation rates: fingerprintsfor strange attractors. Physical Review A, 41(10):5717, 1990.
[377] A. Tversky and D. Kahneman. Loss aversion in riskless choice: A referencedependentmodel. The quarterly journal of economics, 106(4):1039–1061, 1991.
[378] S.-M. Udrescu and M. Tegmark. AI feynman: A physics-inspired method forsymbolic regression. Science Advances, 6(16):eaay2631, 2020.
[379] K. Valogianni, W. Ketter, J. Collins, and D. Zhdanov. Sustainable electric vehiclecharging using adaptive pricing. Production and Operations Management, 29(6):1550–1572, 2020.
[380] G. J. van Ryzin. Models of demand. The Oxford Handbook of Pricing Management,2012.
[381] R. Vasconcellos and A. Abdelkefi. Nonlinear dynamical analysis of an aeroelasticsystem with multi-segmented moment in the pitch degree-of-freedom. Communicationsin Nonlinear Science and Numerical Simulation, 20(1):324–334, 2015.
[382] R. Vasconcellos, A. Abdelkefi, M. Hajj, and F. Marques. Grazing bifurcationin aeroelastic systems with freeplay nonlinearity. Communications in NonlinearScience and Numerical Simulation, 19(5):1611–1625, 2014.
[383] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos. Datadrivenforecasting of high-dimensional chaotic systems with long short-term memorynetworks. Proceedings of the Royal Society A: Mathematical, Physical andEngineering Sciences, 474(2213):20170844, 2018.
[384] M. Vogl and P. G Rötzel Chaoticity versus stochasticity in financial markets: Aredaily s&p 500 return dynamics chaotic? Communications in Nonlinear Scienceand Numerical Simulation, 108:106218, 2022. ISSN 1007-5704.
[385] R. Wang. Capacitated assortment and price optimization under the multinomiallogit model. Operations Research Letters, 40(6):492–497, 2012.
[386] R. Wang and Z. Wang. Consumer choice models with endogenous network effects.Management Science, 2016.
[387] W.-X. Wang, Y.-C. Lai, and C. Grebogi. Data based identification and predictionof nonlinear and complex dynamical systems. Physics Reports, 644:1 – 76, 2016.ISSN 0370-1573.
[388] Z. Wang. Intertemporal price discrimination via reference price effects. Operationsresearch, 64(2):290–296, 2016.
[389] Z. Wang, S. Deng, and Y. Ye. Close the gaps: A learning-while-doing algorithmfor single-product revenue management problems. Operations Research, 62(2):318–331, 2014.
[390] G. Wanner and E. Hairer. Solving ordinary differential equations I. Nonstiff Problems.Springer Series in Computational Mathematics, Springer-Verlag, 1993.
[391] E. W. Weisstein. Farey sequence. From MathWorld–A Wolfram Web Resource.https://mathworld.wolfram.com/FareySequence.html, 2021. Accessed: 2021-12-07.
[392] E. W. Weisstein. Logistic map. From MathWorld–A Wolfram Web Resource.https://mathworld.wolfram.com/LogisticMap.html, 2022. Accessed: 2022-04-25.
[393] T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small. Synchronization of chaoticsystems and their machine-learning models. Phys. Rev. E, 99:042203, Apr 2019.
[394] T. Wenzel, C. Rames, E. Kontou, and A. Henao. Travel and energy implications ofridesourcing service in austin, texas. Transportation Research Part D: Transportand Environment, 70:18–34, 2019.
[395] B. Wernitz and N. Hoffmann. Recurrence analysis and phase space reconstructionof irregular vibration in friction brakes: Signatures of chaos in steady sliding.Journal of Sound and Vibration, 331(16):3887–3896, 2012.
[396] B. J. West. Fractal physiology and chaos in medicine, volume 16. World Scientific,2012.
[397] T. Westerhold, N. Marwan, A. J. Drury, D. Liebrand, C. Agnini, E. Anagnostou,J. S. Barnet, S. M. Bohaty, D. De Vleeschouwer, F. Florindo, et al. An astronomicallydated record of earth’s climate and its predictability over the last 66 millionyears. Science, 369(6509):1383–1387, 2020.
[398] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos, volume2. Springer Science & Business Media, 2003.
[399] S. Wu, Q. Liu, and R. Q. Zhang. The reference effects on a retailer’s dynamicpricing and inventory strategies with strategic consumers. Operations Research,63(6):1320–1335, 2015.
[400] J. J. Xu, S. P. Fader, and S. Veeraraghavan. Designing and evaluating dynamicpricing policies for major league baseball tickets. Manufacturing & Service OperationsManagement, 21(1):121–138, 2019.
[401] Y. Xu, M. Armony, and A. Ghose. The interplay between online reviews andphysician demand: An empirical investigation. Management Science, 67(12):7344–7361, 2021.
[402] C. Yan, H. Zhu, N. Korolko, and D. Woodard. Dynamic pricing and matching inride-hailing platforms. Naval Research Logistics (NRL), 67(8):705–724, 2020.
[403] I. B. Yildiz, H. Jaeger, and S. J. Kiebel. Re-visiting the echo state property. NeuralNetworks, 35:1–9, 2012.
[404] S. Yin, J. Ji, G. Wen, and X. Wu. Use of degeneration to stabilize near grazingperiodic motion in impact oscillators. Commun. Nonlinear Sci. Numer. Simul.,66:20–30, 2019.
[405] Y. Yin and P. Shang. Multiscale recurrence plot and recurrence quantificationanalysis for financial time series. Nonlinear Dynamics, 85(4):2309–2352, 2016.
[406] Z. You, E. J. Kostelich, and J. A. Yorke. Calculating stable and unstable manifolds.International Journal of Bifurcation and Chaos, 1(03):605–623, 1991.
[407] X. Yuan and H. B. Hwarng. Stability and chaos in demand-based pricing undersocial interactions. European Journal of Operational Research, 253(2):472 – 488,2016. ISSN 0377-2217.
[408] M. Zanin. Forbidden patterns in financial time series. Chaos, 18(1):013119, 2008.
[409] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo. Permutation entropy and itsmain biomedical and econophysics applications: a review. Entropy, 14(8):1553–1577, 2012.
[410] L. Zdeborov´a. Machine learning: New tool in the box. Nature Physics, 13(5):420, 2017.
[411] J. Zhang, W.-y. K. Chiang, and L. Liang. Strategic pricing with reference effectsin a competitive supply chain. Omega, 44:126–135, 2014.
[412] J. Zhang, J. Zhou, M. Tang, H. Guo, M. Small, and Y. Zou. Constructing ordinalpartition transition networks from multivariate time series. Scientific reports, 7(1):7795, 2017.
[413] Y. Zhang and S. H. Strogatz. Basins with tentacles. Phys. Rev. Lett., 127:194101,Nov 2021.
[414] Z. Zhang, S. Oberst, and J. Lai. A non-linear friction work formulation for theanalysis of self-excited vibrations. Journal of Sound and Vibration, 2018. ISSN: 0022-460X.
[415] Z. Zhang, S. Oberst, and J. Lai. A non-linear friction work formulation for theanalysis of self-excited vibrations. Journal of Sound and Vibration, 443:328 – 340,2019. ISSN 0022-460X.
[416] W. Zhao and Y.-S. Zheng. Optimal dynamic pricing for perishable assets withnonhomogeneous demand. Management science, 46(3):375–388, 2000.
[417] Y. Zhao, J. Li, and L. Yu. A deep learning ensemble approach for crude oil priceforecasting. Energy Economics, 66:9–16, 2017.
[418] N. Zheng and N. Geroliminis. Modeling and optimization of multimodal urbannetworks with limited parking and dynamic pricing. Transportation Research PartB: Methodological, 83:36–58, 2016.
[419] Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, and H. Wu. Dynamic memristorbasedreservoir computing for high-efficiency temporal signal processing. NatureCommunications, 12(1):1–9, 2021.
[420] C. Zhou, L. Zemanov´a, G. Zamora, C. C. Hilgetag, and J. Kurths. Hierarchical organization unveiled by functional connectivity in complex brain networks. Physicalreview letters, 97(23):238103, 2006.
[421] Q. Zhu, H. Ma, and W. Lin. Detecting unstable periodic orbits based only ontime series: When adaptive delayed feedback control meets reservoir computing.Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(9):093125, 2019.
[422] Z. T. Zhusubaliyev and E. Mosekilde. Bifurcations and chaos in piecewise-smoothdynamical systems, volume 44. World Scientific, 2003.
[423] R. S. Zimmermann and U. Parlitz. Observing spatio-temporal dynamics of excitablemedia using reservoir computing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(4):043118, 2018.
[424] L. Zunino, M. Zanin, B. M. Tabak, D. G. P´erez, and O. A. Rosso. Forbiddenpatterns, permutation entropy and stock market inefficiency. Physica A: StatisticalMechanics and its Applications, 388(14):2854–2864, 2009.
Edit Comment