中文版 | English

The study on magnetic order in 2D vdW antiferromagnet CoPS3

Alternative Title
Name pinyin
LIU Qiye
School number
Mentor unit
Tutor of External Organizations
Xiaodong Cui
Tutor units of foreign institutions
Publication Years
Submission date
Place of Publication

The study on two-dimensional (2D) magnets coupled by van der Waals (vdW) force can be traced back to 50 years ago, however, interest has renewed recently due to the discovery of magnetism in vdW magnets down to the 2D limit, which does not only provide an ideal platform to study the basic magnetic model but also has potential applications in ultra-high density data storage and information processing. Among them, 2D antiferromagnets have attracted much attention due to zero net magnetic moments and are insensitive to external disturbances, making them ideal candidates for the building blocks in information storage. In this thesis, we focus on 2D transition metal phosphorus trisulfides (TMPS3, TM = Mn, Fe, Co, Ni), which are a class of vdW antiferromagnetic (AF) materials. Our target material is CoPS3, which is a representative of 2D planar antiferromagnet. Its single-layer carries the promise of monolayer AF platforms for the ultimately thin spintronics. This thesis reports our experimental study on the magnetic properties of CoPS3 down to the monolayer limit with optical spectroscopy.


This thesis can be divided into two parts. In the first part, we focus on the study of the long-range magnetic order and magnetostrictive effects in CoPS3 with polarization-resolved Raman spectroscopy. We have successfully observed the paramagnetic-AF phase transition in monolayer CoPS3. Phenomenally, the splitting of the double-degenerate Eg phonon mode of the Co-atom correlation vibration and the appearance of a new peak (P2') in the LL configuration indicates the presence of quasi-long-range ordering below TKT in 2D XY-type antiferromagnet. In the second part, we investigate the magnetic anisotropy of monolayer CoPS3 using polarization-resolved broadband pump-probe reflectance spectroscopy. We experimentally demonstrated the correlation between the zigzag AF order and observed linear dichroism effects. This correlation not only provides an effective method for probing the magnetic order in few-layer antiferromagnets but also offers the possibility of ultrafast optical measurements of AF dynamics and their critical behavior.


Our findings provide evidence towards the understanding of the fundamental mechanism of magnetostrictive effects and magnetic linear dichroism (MLD) in 2D AF materials, and demonstrate that circular polarization-resolved Raman spectroscopy and broadband pump-probe reflectance spectroscopy are effective tools for the indirect detection of 2D antiferromagnetism down to the monolayer limit. In addition, we believe that our results will help clear some obstacles to the future fabrication of AF storage and spintronic devices.

Other Abstract

对范德华(vdW)力耦合的二维(2D)磁体的研究可以追溯到50年前,最近,由于在二维极限(单层)的vdW材料中发现了磁性,重新引起了人们的兴趣。二维磁性不仅为研究基本磁模型提供了理想的平台,而且在超高密度数据存储和信息处理方面也有潜在的应用。其中,二维反铁磁体由于零净磁矩而备受关注,其对外界干扰不敏感,是信息存储中构建模块的理想选择。在本论文中,我们关注二维过渡金属磷三硫化物(TMPS3,TM = Mn,Fe,Co,Ni),它们是一类vdW反铁磁性(AF)材料。我们的目标材料是CoPS3,它是二维平面反铁磁体的代表。单层CoPS3有望成为研究单层自旋电子学的平台。本论文报告了我们使用光谱学的手段对块体以及薄层的CoPS3磁性的实验研究。



Other Keyword
Training classes
Enrollment Year
Year of Degree Awarded
References List

1. B. D. Cullity, C. D. G., Introduction to magnetic materials. Wiley-IEEE Press 2008.2. Heisenberg, W., Zur Theorie des Ferromagnetismus. Zeitschrift für Physik 1928, 49 (9), 619-636.3. Slater, J. C., Atomic Shielding Constants. Physical Review 1930, 36 (1), 57-64.4. Slater, J. C., Cohesion in Monovalent Metals. Physical Review 1930, 35 (5), 509-529.5. Blundell, S., Magnetism in condensed matter. Oxford University Press Inc., New York 2001.6. Bagga, V.; Kaur, D., Synthesis, magnetic ordering, transport studies on spintronic device heterostructures of 2D magnetic materials: A review. Materials Today: Proceedings 2020, 28, 1938-1942.7. Mermin, N. D.; Wagner, H., Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Physical Review Letters 1966, 17 (22), 1133-1136.8. Gelfert, A.; Nolting, W., The absence of finite-temperature phase transitions in low-dimensional many-body models: a survey and new results. Journal of Physics: Condensed Matter 2001, 13 (27), R505-R524.9. Gong, C.; Zhang, X., Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363 (6428).10. Thouless, J. M. K. a. D. J., Ordering, metastability and phase transitions in two dimensional systems. J. Phys. C: Solid State Phys., Vol. 6, 1973. .11. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H.; Yao, W.; Xiao, D.; Jarillo-Herrero, P.; Xu, X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546 (7657), 270-273.12. Lee, J. U.; Lee, S.; Ryoo, J. H.; Kang, S.; Kim, T. Y.; Kim, P.; Park, C. H.; Park, J. G.; Cheong, H., Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Lett 2016, 16 (12), 7433-7438.13. Zheng, X.; Wei, Y.; Zhang, X.; Wei, Z.; Luo, W.; Guo, X.; Liu, J.; Peng, G.; Cai, W.; Huang, H.; Lv, T.; Deng, C.; Zhang, X., Symmetry Engineering Induced In‐Plane Polarization in MoS2 through Van der Waals Interlayer Coupling. Advanced Functional Materials 2022.14. Zhang, Z.; Shang, J.; Jiang, C.; Rasmita, A.; Gao, W.; Yu, T., Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3. Nano Lett 2019, 19 (5), 3138-3142.15. Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; Qiu, Z. Q.; Cava, R. J.; Louie, S. G.; Xia, J.; Zhang, X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546 (7657), 265-269.16. Zhang, Y.; Lu, H.; Zhu, X.; Tan, S.; Feng, W.; Liu, Q.; Zhang, W.; Chen, Q.; Liu, Y.; Luo, X.; Xie, D.; Luo, L.; Zhang, Z.; Lai, X., Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2. Sci Adv 2018, 4 (1), eaao6791.17. Yi, J.; Zhuang, H.; Zou, Q.; Wu, Z.; Cao, G.; Tang, S.; Calder, S. A.; Kent, P. R. C.; Mandrus, D.; Gai, Z., Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Materials 2016, 4 (1).18. Liu, H.; Wang, X.; Wu, J.; Chen, Y.; Wan, J.; Wen, R.; Yang, J.; Liu, Y.; Song, Z.; Xie, L., Vapor Deposition of Magnetic Van der Waals NiI2 Crystals. ACS Nano 2020, 14 (8), 10544-10551.19. Liu, P.; Xu, Z.; Huang, H.; Li, J.; Feng, C.; Huang, M.; Zhu, M.; Wang, Z.; Zhang, Z.; Hou, D.; Lu, Y.; Xiang, B., Exploring the magnetic ordering in atomically thin antiferromagnetic MnPSe3 by Raman spectroscopy. Journal of Alloys and Compounds 2020, 828.20. Otrokov, M. M.; Menshchikova, T. V.; Vergniory, M. G.; Rusinov, I. P.; Yu Vyazovskaya, A.; Koroteev, Y. M.; Bihlmayer, G.; Ernst, A.; Echenique, P. M.; Arnau, A.; Chulkov, E. V., Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Materials 2017, 4 (2).21. Mak, K. F.; Shan, J.; Ralph, D. C., Probing and controlling magnetic states in 2D layered magnetic materials. Nature Reviews Physics 2019, 1 (11), 646-661.22. Zhang, Y.; Wu, X.; Lyu, B.; Wu, M.; Zhao, S.; Chen, J.; Jia, M.; Zhang, C.; Wang, L.; Wang, X.; Chen, Y.; Mei, J.; Taniguchi, T.; Watanabe, K.; Yan, H.; Liu, Q.; Huang, L.; Zhao, Y.; Huang, M., Magnetic Order-Induced Polarization Anomaly of Raman Scattering in 2D Magnet CrI3. Nano Lett 2020, 20 (1), 729-734.23. Serri, M.; Cucinotta, G.; Poggini, L.; Serrano, G.; Sainctavit, P.; Strychalska-Nowak, J.; Politano, A.; Bonaccorso, F.; Caneschi, A.; Cava, R. J.; Sessoli, R.; Ottaviano, L.; Klimczuk, T.; Pellegrini, V.; Mannini, M., Enhancement of the Magnetic Coupling in Exfoliated CrCl3 Crystals Observed by Low-Temperature Magnetic Force Microscopy and X-ray Magnetic Circular Dichroism. Adv Mater 2020, 32 (24), e2000566.24. Li, T.; Jiang, S.; Sivadas, N.; Wang, Z.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J.; Fai Mak, K.; Shan, J., Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat Mater 2019, 18 (12), 1303-1308.25. Wildes, A. R.; Lançon, D.; Chan, M. K.; Weickert, F.; Harrison, N.; Simonet, V.; Zhitomirsky, M. E.; Gvozdikova, M. V.; Ziman, T.; Rønnow, H. M., High field magnetization ofFePS3. Physical Review B 2020, 101 (2).26. Ou, Z.; Wang, T.; Tang, J.; Zong, X.; Wang, W.; Guo, Q.; Xu, Y.; Zhu, C.; Wang, L.; Huang, W.; Xu, H., Enabling and Controlling Negative Photoconductance of FePS3 Nanosheets by Hot Carrier Trapping. Advanced Optical Materials 2020, 8 (10).27. Kargar, F.; Coleman, E. A.; Ghosh, S.; Lee, J.; Gomez, M. J.; Liu, Y.; Magana, A. S.; Barani, Z.; Mohammadzadeh, A.; Debnath, B.; Wilson, R. B.; Lake, R. K.; Balandin, A. A., Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductors. ACS Nano 2020, 14 (2), 2424-2435.28. Koo, H. J.; Kremer, R.; Whangbo, M. H., Unusual Spin Exchanges Mediated by the Molecular Anion P2S6(4-): Theoretical Analyses of the Magnetic Ground States, Magnetic Anisotropy and Spin Exchanges of MPS3 (M = Mn, Fe, Co, Ni). Molecules 2021, 26 (5).29. Ito, N.; Kikkawa, T.; Barker, J.; Hirobe, D.; Shiomi, Y.; Saitoh, E., Spin Seebeck effect in the layered ferromagnetic insulators CrSiTe3 and CrGeTe3. Physical Review B 2019, 100 (6).30. Zhang, C.; Gu, Y.; Wang, L.; Huang, L. L.; Fu, Y.; Liu, C.; Wang, S.; Su, H.; Mei, J. W.; Zou, X.; Dai, J. F., Pressure-Enhanced Ferromagnetism in Layered CrSiTe3 Flakes. Nano Lett 2021, 21 (19), 7946-7952.31. Xu, C.; Feng, J.; Xiang, H.; Bellaiche, L., Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Computational Materials 2018, 4 (1).32. Zheng, G.; Xie, W. Q.; Albarakati, S.; Algarni, M.; Tan, C.; Wang, Y.; Peng, J.; Partridge, J.; Farrar, L.; Yi, J.; Xiong, Y.; Tian, M.; Zhao, Y. J.; Wang, L., Gate-Tuned Interlayer Coupling in van der Waals Ferromagnet Fe3GeTe2 Nanoflakes. Phys Rev Lett 2020, 125 (4), 047202.33. Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N. Z.; Sun, Z.; Yi, Y.; Wu, Y. Z.; Wu, S.; Zhu, J.; Wang, J.; Chen, X. H.; Zhang, Y., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563 (7729), 94-99.34. Li, Q.; Yang, M.; Gong, C.; Chopdekar, R. V.; N'Diaye, A. T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E.; Schmid, A. K.; Wang, S.; Liu, K.; Gao, N.; Admasu, A. S.; Cheong, S. W.; Hwang, C.; Li, J.; Wang, F.; Zhang, X.; Qiu, Z., Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature. Nano Lett 2018, 18 (9), 5974-5980.35. Deng, Y.; Yu, Y.; Shi, M. Z.; Guo, Z.; Xu, Z.; Wang, J.; Chen, X. H.; Zhang, Y., Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367 (6480), 895-900.36. Lançon, D.; Walker, H. C.; Ressouche, E.; Ouladdiaf, B.; Rule, K. C.; McIntyre, G. J.; Hicks, T. J.; Rønnow, H. M.; Wildes, A. R., Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3. Physical Review B 2016, 94 (21).37. Kim, K.; Lim, S. Y.; Kim, J.; Lee, J.-U.; Lee, S.; Kim, P.; Park, K.; Son, S.; Park, C.-H.; Park, J.-G.; Cheong, H., Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy. 2D Materials 2019, 6 (4).38. Gu, Y.; Zhang, S.; Zou, X., Tunable magnetism in layered CoPS3 by pressure and carrier doping. Science China Materials 2020, 64 (3), 673-682.39. Harms, N. C.; Kim, H.-S.; Clune, A. J.; Smith, K. A.; O’Neal, K. R.; Haglund, A. V.; Mandrus, D. G.; Liu, Z.; Haule, K.; Vanderbilt, D.; Musfeldt, J. L., Piezochromism in the magnetic chalcogenide MnPS3. npj Quantum Materials 2020, 5 (1).40. Kang, S.; Kim, K.; Kim, B. H.; Kim, J.; Sim, K. I.; Lee, J. U.; Lee, S.; Park, K.; Yun, S.; Kim, T.; Nag, A.; Walters, A.; Garcia-Fernandez, M.; Li, J.; Chapon, L.; Zhou, K. J.; Son, Y. W.; Kim, J. H.; Cheong, H.; Park, J. G., Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 2020, 583 (7818), 785-789.41. Joy, P. A.; Vasudevan, S., Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys Rev B Condens Matter 1992, 46 (9), 5425-5433.42. Wildes, A. R.; Simonet, V.; Ressouche, E.; Ballou, R.; McIntyre, G. J., The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J Phys Condens Matter 2017, 29 (45), 455801.43. Wildes, A. R.; Simonet, V.; Ressouche, E.; McIntyre, G. J.; Avdeev, M.; Suard, E.; Kimber, S. A. J.; Lançon, D.; Pepe, G.; Moubaraki, B.; Hicks, T. J., Magnetic structure of the quasi-two-dimensional antiferromagnetNiPS3. Physical Review B 2015, 92 (22).44. Wildes, A. R.; Rule, K. C.; Bewley, R. I.; Enderle, M.; Hicks, T. J., The magnon dynamics and spin exchange parameters of FePS3. J Phys Condens Matter 2012, 24 (41), 416004.45. Du, K. Z.; Wang, X. Z.; Liu, Y.; Hu, P.; Utama, M. I.; Gan, C. K.; Xiong, Q.; Kloc, C., Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. ACS Nano 2016, 10 (2), 1738-43.46. Brec, R., Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ionics 1986, 22 (1), 3-30.47. Kim, K.; Lim, S. Y.; Lee, J. U.; Lee, S.; Kim, T. Y.; Park, K.; Jeon, G. S.; Park, C. H.; Park, J. G.; Cheong, H., Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun 2019, 10 (1), 345.48. Chu, H.; Roh, C. J.; Island, J. O.; Li, C.; Lee, S.; Chen, J.; Park, J. G.; Young, A. F.; Lee, J. S.; Hsieh, D., Linear Magnetoelectric Phase in Ultrathin MnPS3 Probed by Optical Second Harmonic Generation. Phys Rev Lett 2020, 124 (2), 027601.49. Coak, M. J.; Jarvis, D. M.; Hamidov, H.; Haines, C. R. S.; Alireza, P. L.; Liu, C.; Son, S.; Hwang, I.; Lampronti, G. I.; Daisenberger, D.; Nahai-Williamson, P.; Wildes, A. R.; Saxena, S. S.; Park, J. G., Tuning dimensionality in van-der-Waals antiferromagnetic Mott insulators TMPS3. J Phys Condens Matter 2020, 32 (12), 124003.50. Ferrari, A. C.; Basko, D. M., Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 2013, 8 (4), 235-46.51. Zeng, H.; Cui, X., An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev 2015, 44 (9), 2629-42.52. Wang, L.; Hu, P.; Long, Y.; Liu, Z.; He, X., Recent advances in ternary two-dimensional materials: synthesis, properties and applications. Journal of Materials Chemistry A 2017, 5 (44), 22855-22876.53. Chittari, B. L.; Park, Y.; Lee, D.; Han, M.; MacDonald, A. H.; Hwang, E.; Jung, J., Electronic and magnetic properties of single-layerMPX3metal phosphorous trichalcogenides. Physical Review B 2016, 94 (18).54. Sun, Y. J.; Tan, Q. H.; Liu, X. L.; Gao, Y. F.; Zhang, J., Probing the Magnetic Ordering of Antiferromagnetic MnPS3 by Raman Spectroscopy. J Phys Chem Lett 2019, 10 (11), 3087-3093.55. Ressouche, E.; Loire, M.; Simonet, V.; Ballou, R.; Stunault, A.; Wildes, A., MagnetoelectricMnPS3as a candidate for ferrotoroidicity. Physical Review B 2010, 82 (10).56. Vaclavkova, D.; Delhomme, A.; Faugeras, C.; Potemski, M.; Bogucki, A.; Suffczyński, J.; Kossacki, P.; Wildes, A. R.; Grémaud, B.; Saúl, A., Magnetoelastic interaction in the two-dimensional magnetic material MnPS3 studied by first principles calculations and Raman experiments. 2D Materials 2020, 7 (3).57. Liu, Q.; Wang, L.; Fu, Y.; Zhang, X.; Huang, L.; Su, H.; Lin, J.; Chen, X.; Yu, D.; Cui, X.; Mei, J.-W.; Dai, J.-F., Magnetic order in XY-type antiferromagnetic monolayer CoPS3 revealed by Raman spectroscopy. Physical Review B 2021, 103 (23).58. Ni, Z.; Haglund, A. V.; Wang, H.; Xu, B.; Bernhard, C.; Mandrus, D. G.; Qian, X.; Mele, E. J.; Kane, C. L.; Wu, L., Imaging the Neel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat Nanotechnol 2021, 16 (7), 782-787.59. Zheng, Y.; Jiang, X.-x.; Xue, X.-x.; Dai, J.; Feng, Y., Ab initio study of pressure-driven phase transition in FePS3 and FePSe3. Physical Review B 2019, 100 (17).60. Scagliotti, M.; Jouanne, M.; Balkanski, M.; Ouvrard, G.; Benedek, G., Raman scattering in antiferromagnetic FePS3 and FePSe3 crystals. Phys Rev B Condens Matter 1987, 35 (13), 7097-7104.61. Joe, M.; Lee, H.; Alyoruk, M. M.; Lee, J.; Kim, S. Y.; Lee, C.; Lee, J. H., A comprehensive study of piezomagnetic response in CrPS4 monolayer: mechanical, electronic properties and magnetic ordering under strains. J Phys Condens Matter 2017, 29 (40), 405801.62. Lee, J.; Ko, T. Y.; Kim, J. H.; Bark, H.; Kang, B.; Jung, S. G.; Park, T.; Lee, Z.; Ryu, S.; Lee, C., Structural and Optical Properties of Single- and Few-Layer Magnetic Semiconductor CrPS4. ACS Nano 2017, 11 (11), 10935-10944.63. Peng, Y.; Ding, S.; Cheng, M.; Hu, Q.; Yang, J.; Wang, F.; Xue, M.; Liu, Z.; Lin, Z.; Avdeev, M.; Hou, Y.; Yang, W.; Zheng, Y.; Yang, J., Magnetic Structure and Metamagnetic Transitions in the van der Waals Antiferromagnet CrPS4. Adv Mater 2020, 32 (28), e2001200.64. Susilo, R. A.; Jang, B. G.; Feng, J.; Du, Q.; Yan, Z.; Dong, H.; Yuan, M.; Petrovic, C.; Shim, J. H.; Kim, D. Y.; Chen, B., Band gap crossover and insulator–metal transition in the compressed layered CrPS4. npj Quantum Materials 2020, 5 (1).65. Son, J.; Son, S.; Park, P.; Kim, M.; Tao, Z.; Oh, J.; Lee, T.; Lee, S.; Kim, J.; Zhang, K.; Cho, K.; Kamiyama, T.; Lee, J. H.; Mak, K. F.; Shan, J.; Kim, M.; Park, J. G.; Lee, J., Air-Stable and Layer-Dependent Ferromagnetism in Atomically Thin van der Waals CrPS4. ACS Nano 2021, 15 (10), 16904-16912.66. McCreary, A.; Simpson, J. R.; Mai, T. T.; McMichael, R. D.; Douglas, J. E.; Butch, N.; Dennis, C.; Valdés Aguilar, R.; Hight Walker, A. R., Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy. Physical Review B 2020, 101 (6).67. Ho, C.-H.; Hsu, T.-Y.; Muhimmah, L. C., The band-edge excitons observed in few-layer NiPS3. npj 2D Materials and Applications 2021, 5 (1).68. Gu, P.; Tan, Q.; Wan, Y.; Li, Z.; Peng, Y.; Lai, J.; Ma, J.; Yao, X.; Yang, S.; Yuan, K.; Sun, D.; Peng, B.; Zhang, J.; Ye, Y., Photoluminescent Quantum Interference in a van der Waals Magnet Preserved by Symmetry Breaking. ACS Nano 2020, 14 (1), 1003-1010.69. Wang, X.; Cao, J.; Lu, Z.; Cohen, A.; Kitadai, H.; Li, T.; Tan, Q.; Wilson, M.; Lui, C. H.; Smirnov, D.; Sharifzadeh, S.; Ling, X., Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat Mater 2021, 20 (7), 964-970.70. Ni, Z.; Zhang, H.; Hopper, D. A.; Haglund, A. V.; Huang, N.; Jariwala, D.; Bassett, L. C.; Mandrus, D. G.; Mele, E. J.; Kane, C. L.; Wu, L., Direct Imaging of Antiferromagnetic Domains and Anomalous Layer-Dependent Mirror Symmetry Breaking in Atomically Thin MnPS3. Phys Rev Lett 2021, 127 (18), 187201.71. Saidl, V.; Němec, P.; Wadley, P.; Hills, V.; Campion, R. P.; Novák, V.; Edmonds, K. W.; Maccherozzi, F.; Dhesi, S. S.; Gallagher, B. L.; Trojánek, F.; Kuneš, J.; Železný, J.; Malý, P.; Jungwirth, T., Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nature Photonics 2017, 11 (2), 91-96.72. Zhang, X. X.; Jiang, S.; Lee, J.; Lee, C.; Mak, K. F.; Shan, J., Spin Dynamics Slowdown near the Antiferromagnetic Critical Point in Atomically Thin FePS3. Nano Lett 2021, 21 (12), 5045-5052.73. Kim, S. Y.; Kim, T. Y.; Sandilands, L. J.; Sinn, S.; Lee, M. C.; Son, J.; Lee, S.; Choi, K. Y.; Kim, W.; Park, B. G.; Jeon, C.; Kim, H. D.; Park, C. H.; Park, J. G.; Moon, S. J.; Noh, T. W., Charge-Spin Correlation in van der Waals Antiferromagnet NiPS3. Phys Rev Lett 2018, 120 (13), 136402.74. van Veenendaal, M. A.; Sawatzky, G. A., Nonlocal screening effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds. Phys Rev Lett 1993, 70 (16), 2459-2462.75. Zhang, J.; Cui, R.; Li, X. a.; Liu, X.; Huang, W., A nanohybrid consisting of NiPS3 nanoparticles coupled with defective graphene as a pH-universal electrocatalyst for efficient hydrogen evolution. Journal of Materials Chemistry A 2017, 5 (45), 23536-23542.76. Danielle Gonbeau, T. C. a. R. C., XPS Study of Stilbazolium Chromophores and Their Intercalation Compounds in the MnPS3 Layered Phase. J. Phys. Chem. B 1999, 103, 3545-3551 1999.77. Latiff, N. M.; Mayorga-Martinez, C. C.; Khezri, B.; Szokolova, K.; Sofer, Z.; Fisher, A. C.; Pumera, M., Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem 2018, 12, 1-9.78. Kimchi, I.; Nahum, A.; Senthil, T., Valence Bonds in Random Quantum Magnets: Theory and Application to YbMgGaO4. Physical Review X 2018, 8 (3).79. Lee, R. N. B. a. P. A., Scaling Studies of Highly Disordered Spin-½ Antiferromagnetic Systems. PHYSICAL REVIEW LETTERS 1982, 48.80. Yi, M.; Shen, Z., A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 2015, 3 (22), 11700-11715.81. Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A. F.; Wu, W.; Cobden, D. H.; Chu, J. H.; Xu, X., Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater 2018, 17 (9), 778-782.82. Su, H.; Deng, A.; Zhen, Z.; Dai, J.-F., Γ-valley assisted intervalley scattering in monolayer and bilayer WS2 revealed by time-resolved Kerr rotation spectroscopy. Physical Review B 2018, 97 (11).83. P. JERNBERG, S. B. a. R. W., FePS3: A first-order phase transition in a “2D” Ising antiferromagnet. Journal of Magnetism and Magnetic Materials 46 (1984) 178 190 1984.84. Murayama, C.; Okabe, M.; Urushihara, D.; Asaka, T.; Fukuda, K.; Isobe, M.; Yamamoto, K.; Matsushita, Y., Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS3. Journal of Applied Physics 2016, 120 (14).85. Sano, R.; Kato, Y.; Motome, Y., Kitaev-Heisenberg Hamiltonian for high-spin d7 Mott insulators. Physical Review B 2018, 97 (1).86. Liu, H.; Khaliullin, G., Pseudospin exchange interactions ind7cobalt compounds: Possible realization of the Kitaev model. Physical Review B 2018, 97 (1).87. Kim, C.; Jeong, J.; Park, P.; Masuda, T.; Asai, S.; Itoh, S.; Kim, H.-S.; Wildes, A.; Park, J.-G., Spin waves in the two-dimensional honeycomb lattice XXZ-type van der Waals antiferromagnet CoPS3. Physical Review B 2020, 102 (18).88. Mayorga-Martinez, C. C.; Sofer, Z.; Sedmidubsky, D.; Huber, S.; Eng, A. Y.; Pumera, M., Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties. ACS Appl Mater Interfaces 2017, 9 (14), 12563-12573.89. Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C., Uniaxial strain in graphene by Raman spectroscopy:Gpeak splitting, Grüneisen parameters, and sample orientation. Physical Review B 2009, 79 (20).90. Zeng, H.; Liu, G. B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; Cui, X., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 2013, 3, 1608.91. Nguyen, T. M. H.; Sandilands, L. J.; Sohn, C. H.; Kim, C. H.; Wysocki, A. L.; Yang, I. S.; Moon, S. J.; Ko, J. H.; Yamaura, J.; Hiroi, Z.; Noh, T. W., Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd2Os2O7. Nat Commun 2017, 8 (1), 251.92. Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N.; Savini, G.; Lombardo, A.; Ferrari, A. C., The shear mode of multilayer graphene. Nat Mater 2012, 11 (4), 294-300.93. Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M., Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol 2018, 13 (4), 289-293.94. Jiang, S.; Li, L.; Wang, Z.; Mak, K. F.; Shan, J., Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol 2018, 13 (7), 549-553.95. Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D.; Yao, W.; Jarillo-Herrero, P.; Xu, X., Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol 2018, 13 (7), 544-548.96. Siddiqui, S. A.; Sklenar, J.; Kang, K.; Gilbert, M. J.; Schleife, A.; Mason, N.; Hoffmann, A., Metallic antiferromagnets. Journal of Applied Physics 2020, 128 (4).97. Onsager, L., Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Physical Review 1944, 65 (3-4), 117-149.98. Coleman, S., There are no Goldstone bosons in two dimensions. Commun. math. Phys. 31, 259--264 (1973) 1973.99. Jiang, S.; Xie, H.; Shan, J.; Mak, K. F., Exchange magnetostriction in two-dimensional antiferromagnets. Nat Mater 2020, 19 (12), 1295-1299.100. Sivadas, N.; Daniels, M. W.; Swendsen, R. H.; Okamoto, S.; Xiao, D., Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Physical Review B 2015, 91 (23).101. Lançon, D.; Ewings, R. A.; Guidi, T.; Formisano, F.; Wildes, A. R., Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Physical Review B 2018, 98 (13).102. Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X., Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 2012, 7 (8), 490-3.103. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4 (5), 2695-2700.104. TSUNETO, S. H. a. T., Phase Transition of Quasi-Two Dimensional Planar System. Progress of Theoretical Physics, Vol. 63, No. 2, February 1980 1980, 63.105. Ermolaev, G. A.; Grudinin, D. V.; Stebunov, Y. V.; Voronin, K. V.; Kravets, V. G.; Duan, J.; Mazitov, A. B.; Tselikov, G. I.; Bylinkin, A.; Yakubovsky, D. I.; Novikov, S. M.; Baranov, D. G.; Nikitin, A. Y.; Kruglov, I. A.; Shegai, T.; Alonso-Gonzalez, P.; Grigorenko, A. N.; Arsenin, A. V.; Novoselov, K. S.; Volkov, V. S., Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat Commun 2021, 12 (1), 854.106. Zhang, H.; Ni, Z.; Stevens, C. E.; Bai, A.; Peiris, F.; Hendrickson, J. R.; Wu, L.; Jariwala, D., Cavity-enhanced linear dichroism in a van der Waals antiferromagnet. Nature Photonics 2022, 16 (4), 311-317.107. Mertins, H. C.; Oppeneer, P. M.; Kunes, J.; Gaupp, A.; Abramsohn, D.; Schafers, F., Observation of the x-ray magneto-optical Voigt effect. Phys Rev Lett 2001, 87 (4), 047401.108. Mao, N.; Tang, J.; Xie, L.; Wu, J.; Han, B.; Lin, J.; Deng, S.; Ji, W.; Xu, H.; Liu, K.; Tong, L.; Zhang, J., Optical Anisotropy of Black Phosphorus in the Visible Regime. J Am Chem Soc 2016, 138 (1), 300-5.109. Wang, Y. Y.; Zhou, J. D.; Jiang, J.; Yin, T. T.; Yin, Z. X.; Liu, Z.; Shen, Z. X., In-plane optical anisotropy in ReS2 flakes determined by angle-resolved polarized optical contrast spectroscopy. Nanoscale 2019, 11 (42), 20199-20205.110. Gehring, J. F. a. G. A., Linear optical birefringence of magnetic crystals. Rep. Prog. Phys., Vol 47, pp 513-611, 1984. Printed in Great Britain 1984.111. Sun, Z.; Yi, Y.; Song, T.; Clark, G.; Huang, B.; Shan, Y.; Wu, S.; Huang, D.; Gao, C.; Chen, Z.; McGuire, M.; Cao, T.; Xiao, D.; Liu, W. T.; Yao, W.; Xu, X.; Wu, S., Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572 (7770), 497-501.112. Zhang, Q.; Hwangbo, K.; Wang, C.; Jiang, Q.; Chu, J. H.; Wen, H.; Xiao, D.; Xu, X., Observation of Giant Optical Linear Dichroism in a Zigzag Antiferromagnet FePS3. Nano Lett 2021, 21 (16), 6938-6945.113. Banda, Optical absorption of CoPs3 in the energy range 0 73 to 5 40 eV. hysica Status Solidi b 1986114. Banda, E. J. K. B., Optical absorption of NiPS3 in the near-infrared, visible and near-ultraviolet regions. J. Phys. C: Solid State Phys. 19 (1986) 7329-7335. 1986.115. Kirilyuk, A.; Kimel, A. V.; Rasing, T., Ultrafast optical manipulation of magnetic order. Reviews of Modern Physics 2010, 82 (3), 2731-2784.116. Tesařová, N.; Ostatnický, T.; Novák, V.; Olejník, K.; Šubrt, J.; Reichlová, H.; Ellis, C. T.; Mukherjee, A.; Lee, J.; Sipahi, G. M.; Sinova, J.; Hamrle, J.; Jungwirth, T.; Němec, P.; Černe, J.; Výborný, K., Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As. Physical Review B 2014, 89 (8).117. Beaurepaire, E.; Merle, J.; Daunois, A.; Bigot, J., Ultrafast spin dynamics in ferromagnetic nickel. Phys Rev Lett 1996, 76 (22), 4250-4253.118. Bigot, J.-Y.; Vomir, M.; Beaurepaire, E., Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Physics 2009, 5 (7), 515-520.119. Fred H. Pollak, H. S., Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices. Materials Science and Engineerin~ RIO (1993) 275-374 1993.120. Joy, P. A.; Vasudevan, S., Optical-absorption spectra of the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys Rev B Condens Matter 1992, 46 (9), 5134-5141.121. Haines, C. R. S.; Coak, M. J.; Wildes, A. R.; Lampronti, G. I.; Liu, C.; Nahai-Williamson, P.; Hamidov, H.; Daisenberger, D.; Saxena, S. S., Pressure-Induced Electronic and Structural Phase Evolution in the van der Waals Compound FePS3. Phys Rev Lett 2018, 121 (26), 266801.122. Coak, M. J.; Jarvis, D. M.; Hamidov, H.; Wildes, A. R.; Paddison, J. A. M.; Liu, C.; Haines, C. R. S.; Dang, N. T.; Kichanov, S. E.; Savenko, B. N.; Lee, S.; Kratochvílová, M.; Klotz, S.; Hansen, T. C.; Kozlenko, D. P.; Park, J.-G.; Saxena, S. S., Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3. Physical Review X 2021, 11 (1).123. Das, S.; Chaturvedi, S.; Tripathy, D.; Grover, S.; Singh, R.; Muthu, D. V. S.; Sampath, S.; Waghmare, U. V.; Sood, A. K., Raman and first-principles study of the pressure-induced Mott-insulator to metal transition in bulk FePS3. Journal of Physics and Chemistry of Solids 2022, 164.124. Purdie, D. G.; Pugno, N. M.; Taniguchi, T.; Watanabe, K.; Ferrari, A. C.; Lombardo, A., Cleaning interfaces in layered materials heterostructures. Nat Commun 2018, 9 (1), 5387.125. Zomer, P. J.; Guimarães, M. H. D.; Brant, J. C.; Tombros, N.; van Wees, B. J., Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Applied Physics Letters 2014, 105 (1).126. Wilson, N. P.; Yao, W.; Shan, J.; Xu, X., Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 2021, 599 (7885), 383-392.127. Zhang, L.; Huang, X.; Dai, H.; Wang, M.; Cheng, H.; Tong, L.; Li, Z.; Han, X.; Wang, X.; Ye, L.; Han, J., Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures. Adv Mater 2020, 32 (38), e2002032.128. Seyler, K. L.; Zhong, D.; Huang, B.; Linpeng, X.; Wilson, N. P.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xiao, D.; McGuire, M. A.; Fu, K. C.; Xu, X., Valley Manipulation by Optically Tuning the Magnetic Proximity Effect in WSe2/CrI3 Heterostructures. Nano Lett 2018, 18 (6), 3823-3828.129. Zhong, D.; Seyler, K. L.; Linpeng, X.; Cheng, R.; Sivadas, N.; Huang, B.; Schmidgall, E.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Yao, W.; Xiao, D.; Fu, K. C.; Xu, X., Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv 2017, 3 (5), e1603113.130. Onga, M.; Sugita, Y.; Ideue, T.; Nakagawa, Y.; Suzuki, R.; Motome, Y.; Iwasa, Y., Antiferromagnet-Semiconductor Van Der Waals Heterostructures: Interlayer Interplay of Exciton with Magnetic Ordering. Nano Lett 2020, 20 (6), 4625-4630.

Data Source
Document TypeThesis
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
Liu QY. The study on magnetic order in 2D vdW antiferromagnet CoPS3[D]. 香港. 香港大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11850039-刘启晔-物理系.pdf(6993KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘启晔]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[刘启晔]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘启晔]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.