Title | Identification of a 3-Gene Model as Prognostic Biomarker in Patients With Gastric Cancer |
Author | |
Corresponding Author | Zhang, Xiaoyin; Li, Guibo |
Publication Years | 2022-07-14
|
DOI | |
Source Title | |
ISSN | 2234-943X
|
Volume | 12 |
Abstract | ObjectiveAlthough the incidence of gastric cancer (GC) is decreasing, GC remains one of the leading cancers in the world. Surgical resection, radiotherapy, chemotherapy, and neoadjuvant therapy have advanced, but patients still face the risk of recurrence and poor prognosis. This study provides new insights for assessment of prognosis and postoperative recurrence of GC patients. MethodsWe collected paired cancer and adjacent tissues of 17 patients with early primary GC for bulk transcriptome sequencing. By comparing the transcriptome information of cancer and adjacent cancer, 321 differentially expressed genes (DEGs) were identified. These DEGs were further screened and analyzed with the GC cohort of TCGA to establish a 3-gene prognostic model (PLCL1, PLOD2 and ABCA6). At the same time, the predictive ability of this risk model is validated in multiple public data sets. Besides, the differences in immune cells proportion between the high- and low-risk groups were analyzed by the CIBERSORT algorithm with the Leukocyte signature matrix (LM22) gene signature to reveal the role of the immune microenvironment in the occurrence and development of GC. ResultsThe model could divide GC samples from TCGA cohorts into two groups with significant differences in overall and disease-free survival. The excellent predictive ability of this model was also validated in multiple other public data sets. The proportion of these immune cells such as resting mast cells, T cells CD4+ memory activated and Macrophages M2 are significantly different between high and low risk group. ConclusionThese three genes used to build the models were validated as biomarkers for predicting tumor recurrence and survival. They may have potential significance for the treatment and diagnosis of patients in the future, and may also promote the development of targeted drugs. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Corresponding
|
Funding Project | Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170412153155228]
|
WOS Research Area | Oncology
|
WOS Subject | Oncology
|
WOS Accession No | WOS:000886970300001
|
Publisher | |
Data Source | Web of Science
|
Citation statistics |
Cited Times [WOS]:2
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/412180 |
Department | The Third People's Hospital of Shenzhen |
Affiliation | 1.Beijing Genom Inst BGI Shenzhen, Shenzhen, Peoples R China 2.BGI Shenzhen, Beijing Genom Inst BGI Henan, Xinxiang, Henan, Peoples R China 3.Zhengzhou Univ, Beijing Genom Inst BGl Coll, Henan Inst Med & Pharmaceut Sci, Zhengzhou, Peoples R China 4.Southern Univ Sci & Technol, Peoples Hosp Shenzhen 3, Natl Clin Res Ctr Infect Dis, Affiliated Hosp 2,Dept Gastroenterol, Shenzhen, Peoples R China |
Corresponding Author Affilication | The Third People's Hospital of Shenzhen |
Recommended Citation GB/T 7714 |
Xue, Siming,Zheng, Tianjiao,Yan, Juan,et al. Identification of a 3-Gene Model as Prognostic Biomarker in Patients With Gastric Cancer[J]. Frontiers in Oncology,2022,12.
|
APA |
Xue, Siming.,Zheng, Tianjiao.,Yan, Juan.,Ma, Jinmin.,Lin, Cong.,...&Li, Guibo.(2022).Identification of a 3-Gene Model as Prognostic Biomarker in Patients With Gastric Cancer.Frontiers in Oncology,12.
|
MLA |
Xue, Siming,et al."Identification of a 3-Gene Model as Prognostic Biomarker in Patients With Gastric Cancer".Frontiers in Oncology 12(2022).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment