Title | Tailoring Poly(Styrene-co-maleic anhydride) Networks for All-Polymer Dielectrics Exhibiting Ultrahigh Energy Density and Charge–Discharge Efficiency at Elevated Temperatures |
Author | |
Corresponding Author | Wang,Qing; Wang,Hong |
Joint first author | Pan,Zizhao; Li,Li |
Publication Years | 2022
|
DOI | |
Source Title | |
ISSN | 0935-9648
|
EISSN | 1521-4095
|
Abstract | Polymer film capacitors have been widely used in electronics and electrical power systems due to their advantages of high power densities, fast charge–discharge speed, and great stability. However, the exponential increase of electrical conduction with temperature and applied electric field substantially degrades the capacitive performance of dielectric polymers at elevated temperatures. Here, the first example of controlling the energy level of charge traps in all-organic crosslinked polymers by tailoring molecular structures that significantly inhibit high-field high-temperature conduction loss, which largely differs from current approaches based on the introduction of inorganic fillers, is reported. The polymer network with optimized crosslinking structures exhibits an ultrahigh discharged energy density of 7.02 J cm with charge/discharge efficiencies of >90% at 150 °C, far outperforming current dielectric polymers and composites. The charge-trapping effects in different crosslinked structures, as the origins of the marked improvements in the high-temperature capacitive performance, are comprehensively investigated experimentally and confirmed computationally. Moreover, excellent cyclability and self-healing features are demonstrated in the polymer film capacitors. This work offers a promising pathway of molecular structure design to scalable high-energy-density polymer dielectrics capable of operating under harsh environments. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
Important Publications | NI Journal Papers
|
SUSTech Authorship | First
; 共同第一
; Corresponding
|
Funding Project | [92066208]
; [2021YFB3800603]
; [KQTD20180411143514543]
; [JCYJ20180504165831308]
|
WOS Research Area | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS Subject | Chemistry, Multidisciplinary
; Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS Accession No | WOS:000888390200001
|
Publisher | |
ESI Research Field | MATERIALS SCIENCE
|
Scopus EID | 2-s2.0-85142253234
|
Data Source | Scopus
|
Citation statistics |
Cited Times [WOS]:3
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/412581 |
Department | Department of Materials Science and Engineering |
Affiliation | 1.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China 2.Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China 3.Department of Materials Science and Engineering,The Pennsylvania State University,University Park,16802,United States |
First Author Affilication | Department of Materials Science and Engineering |
Corresponding Author Affilication | Department of Materials Science and Engineering; Southern University of Science and Technology |
First Author's First Affilication | Department of Materials Science and Engineering |
Recommended Citation GB/T 7714 |
Pan,Zizhao,Li,Li,Wang,Lina,等. Tailoring Poly(Styrene-co-maleic anhydride) Networks for All-Polymer Dielectrics Exhibiting Ultrahigh Energy Density and Charge–Discharge Efficiency at Elevated Temperatures[J]. ADVANCED MATERIALS,2022.
|
APA |
Pan,Zizhao.,Li,Li.,Wang,Lina.,Luo,Guangfu.,Xu,Xinwei.,...&Wang,Hong.(2022).Tailoring Poly(Styrene-co-maleic anhydride) Networks for All-Polymer Dielectrics Exhibiting Ultrahigh Energy Density and Charge–Discharge Efficiency at Elevated Temperatures.ADVANCED MATERIALS.
|
MLA |
Pan,Zizhao,et al."Tailoring Poly(Styrene-co-maleic anhydride) Networks for All-Polymer Dielectrics Exhibiting Ultrahigh Energy Density and Charge–Discharge Efficiency at Elevated Temperatures".ADVANCED MATERIALS (2022).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment