[1] Monteghetti, F., Analysis and discretization of time-domain impedance boundary conditions in aeroacoustics, Ph.D. thesis, Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), (2018).
[2] Guo, J., Zhang, X., Fang, Y. and Fattah, R. Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners, J. Appl. Phys., 123 (17), 174902, (2018).
[3] Lee, T., Nomura, T. and Iizuka, H. Damped resonance for broadband acoustic absorption in one-port and two-port systems, Sci. Rep., 9 (1), 1–11, (2019).
[4] Long, H., Liu, C., Shao, C., Cheng, Y., Tao, J., Qiu, X. and Liu, X. Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes, J. Sound Vib., 479, 115371, (2020).
[5] Boulvert, J., Humbert, T., Romero-García, V., Gabard, G., Fotsing, E. R., Ross, A., Mardjono, J. and Groby, J.-P. Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: Realization for duct acoustics with 3d printed porous resonators, J. Sound Vib., 523, 116687, (2022).
[6] Champoux, Y. and Allard, J.-F. Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys., 70 (4), 1975–1979, (1991).
[7] Cai, X., Guo, Q., Hu, G. and Yang, J. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl. Phys. Lett., 105 (12), 121901, (2014).
[8] Long, H., Gao, S., Cheng, Y. and Liu, X. Multiband quasi-perfect lowfrequency sound absorber based on double-channel mie resonator, Appl. Phys. Lett., 112 (3), 033507, (2018).
[9] Yang, M., Li, Y., Meng, C., Fu, C., Mei, J., Yang, Z. and Sheng, P. Sound absorption by subwavelength membrane structures: A geometric perspective, C. R. Mecanique, 343 (12), 635–644, (2015).
[10] Langfeldt, F. and Gleine, W. Membrane-and plate-type acoustic metamaterials with elastic unit cell edges, J. Sound Vib., 453, 65–86, (2019).
[11] Hashimoto, N., Katsura, M., Yasuoka, M. and Fujii, H. Sound insulation of a rectangular thin membrane with additional weights, Appl. Acoust., 33 (1), 21–43, (1991).
[12] Frommhold, W., Fuchs, H. and Sheng, S. Acoustic performance of membrane absorbers, J. Sound Vib., 170 (5), 621–636, (1994).
[13] Kim, S., Kim, Y.-H. and Jang, J.-H. A theoretical model to predict the low-frequency sound absorption of a helmholtz resonator array, J. Acoust. Soc. Am., 119 (4), 1933–1936, (2006).
[14] Fang, Y., Zhang, X., Zhou, J., Guo, J. and Huang, X. Acoustic metaporous layer with compos. struct. for perfect and quasi-omnidirectional sound absorption, Compos. Struct., 223, 110948, (2019).
[15] Sugimoto, N. and Horioka, T. Dispersion characteristics of sound waves in a tunnel with an array of helmholtz resonators, J. Acoust. Soc. Am., 97 (3), 1446–1459, (1995).
[16] Ammari, H. and Imeri, K. A mathematical and numerical framework for gradient meta-surfaces built upon periodically repeating arrays of helmholtz resonators, Wave Motion, 97, 102614, (2020).
[17] Ammari, H., Imeri, K. and Wu, W. A mathematical framework for tunable metasurfaces. part i, Asymptot. Anal., 114 (3-4), 129–179, (2019).
[18] Aurégan, Y. Ultra-thin low frequency perfect sound absorber with high ratio of active area, Appl. Phys. Lett., 113 (20), 201904, (2018).
[19] Groby, J.-P., Huang, W., Lardeau, A. and Aurégan, Y. The use of slow waves to design simple sound absorbing materials, J. Appl. Phys., 117 (12), 124903, (2015).
[20] Romero-García, V., Theocharis, G., Richoux, O. and Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers, J. Acoust. Soc. Am., 139 (6), 3395–3403, (2016).
[21] Groby, J.-P., Duclos, A., Dazel, O., Boeckx, L. and Lauriks, W. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating, J. Acoust. Soc. Am., 129 (5), 3035–3046, (2011).
[22] Yang, M. and Sheng, P. Sound absorption structures: from porous media to acoustic metamaterials, Annu. Rev. Mater. Res., 47, 83–114, (2017).
[23] Cui, H., Hu, Z. and Hu, H. Research on the low-frequency sound absorption haracteristics of coiled helmholtz cavity acoustic metamaterials, Advances in Mechanical Engineering, 14 (8), 16878132221119996, (2022).
[24] Wu, T., Cox, T. and Lam, Y. From a profiled diffuser to an optimized absorber, J. Acoust. Soc. Am., 108 (2), 643–650, (2000).
[25] Groby, J.-P., Lauriks, W. and Vigran, T. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating, J. Acoust. Soc. Am., 127 (5), 2865–2874, (2010).
[26] Jiang, C., Wang, C. and Huang, L. Acoustic characterization of ducts lined with poroelastic materials based on wave finite element method, Appl. Acoust., 145, 362–373, (2019).
[27] Deckers, E., Vandepitte, D. and Desmet, W. A wave based method for the axisymmetric dynamic analysis of acoustic and poroelastic problems, Comput. Methods Appl. Mech. Eng., 257, 1–16, (2013).
[28] Ingard, U. On the theory and design of acoustic resonators, J. Acoust. Soc. Am., 25 (6), 1037–1061, (1953).
[29] Ingard, U. and Ising, H. Acoustic nonlinearity of an orifice, J. Acoust. Soc. Am., 42 (1), 6–17, (1967).
[30] Wu, T., Cox, T. J. and Lam, Y. A profiled structure with improved low frequency absorption, J. Acoust. Soc. Am., 110 (6), 3064–3070, (2001).
[31] Jaouen, L., Gourdon, E. and Glé, P. Estimation of all six parameters of johnson-champoux-allard-lafarge model for acoustical porous materials from impedance tube measurements, J. Acoust. Soc. Am., 148 (4), 1998–2005, (2020).
[32] Johnson, D. L., Koplik, J. and Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 379–402, (1987).
[33] Fang, Y., Zhang, X. and Zhou, J. Sound transmission through an acoustic porous metasurface with periodic structures, Appl. Phys. Lett., 110 (17), 171904, (2017).
[34] Maa, D.-Y. Potential of microperforated panel absorber, J. Acoust. Soc. Am., 104 (5), 2861–2866, (1998).
[35] Tang, S. K. On helmholtz resonators with tapered necks, J. Sound Vib., 279 (3-5), 1085–1096, (2005).
[36] Bykov, A. and Komkin, A. Design of helmholtz resonator with required characteristics, MATEC Web of Conferences, vol. 320, p. 00012, EDP Sciences, (2020).
[37] Maurel, A., Mercier, J.-F., Pham, K., Marigo, J.-J. and Ourir, A. Enhanced resonance of sparse arrays of helmholtz resonators—application to perfect absorption, J. Acoust. Soc. Am., 145 (4), 2552–2560, (2019).
[38] Mercier, J.-F. and Lombard, B. A two-way model for nonlinear acoustic waves in a non-uniform lattice of helmholtz resonators, Wave Motion, 72, 260–275, (2017).
[39] Wang, Z. and Choy, Y. Tunable parallel barriers using helmholtz resonator, J. Sound Vib., 443, 109–123, (2019).
[40] Selamet, A. and Lee, I. Helmholtz resonator with extended neck, J. Acoust. Soc. Am., 113 (4), 1975–1985, (2003).
[41] Johansson, T. A. and Kleiner, M. Theory and experiments on the coupling of two helmholtz resonators, J. Acoust. Soc. Am., 110 (3), 1315–1328, (2001).
[42] Langfeldt, F., Hoppen, H. and Gleine, W. Resonance frequencies and sound absorption of helmholtz resonators with multiple necks, Appl. Acoust., 145, 314–319, (2019).
[43] Rajendran, V., Piacsek, A. and Méndez Echenagucia, T. Design of broadband helmholtz resonator arrays using the radiation impedance method, J. Acoust. Soc. Am., 151 (1), 457–466, (2022).
[44] Morin, D., Introduction to classical mechanics: with problems and solutions, Cambridge University Press (2008).
[45] Komkin, A., Mironov, M. and Bykov, A. Sound absorption by a Helmholtz resonator, Acoust. Phys., 63 (4), 385–392, (2017).
[46] Kinsler, L. E., Frey, A. R., Coppens, A. B. and Sanders, J. V., Fundamentals of acoustics, John wiley & sons (2000).
[47] Li, Y. and Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett., 108 (6), 063502, (2016).
[48] Huang, L. Acoustic impedance and the control of sound waves, Symposium on Fluid-Structure-Sound Interactions and Control, pp. 315–324, Springer, (2017).
[49] Wang, C., Huang, L. and Zhang, Y. Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern, J. Sound Vib., 333 (25), 6828–6842, (2014).
[50] Donda, K., Zhu, Y., Fan, S.-W., Cao, L., Li, Y. and Assouar, B. Extreme low-frequency ultrathin acoustic absorbing metasurface, Appl. Phys. Lett., 115 (17), 173506, (2019).
[51] Zhang, C. and Hu, X. Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability, Phys. Rev. Appl, 6 (6), 064025, (2016).
[52] Jiménez, N., Cox, T. J., Romero-García, V. and Groby, J.-P. Metadiffusers: deep-subwavelength sound diffusers, Sci. Rep., 7 (1), 1–12, (2017).
[53] Lalanne, P. and Morris, G. M. Highly improved convergence of the coupled-wave method for tm polarization, J. Opt. Soc. Am. A., 13 (4), 779–784, (1996).
[54] Sherman, C. H. Analysis of acoustic interactions in transducer arrays, IEEE Trans. Sonics Ultrason., 13 (1), 9–15, (1966).
[55] Pritchard, R. Mutual acoustic impedance between radiators in an infinite rigid plane, J. Acoust. Soc. Am., 32 (6), 730–737, (1960).
[56] Arase, E. M. Mutual radiation impedance of square and rectangular pistons in a rigid infinite baffle, J. Acoust. Soc. Am., 36 (8), 1521–1525, (1964).
[57] Porter, D. T. Self-and mutual-radiation impedance and beam patterns for flexural disks in a rigid plane, J. Acoust. Soc. Am., 36 (6), 1154–1161, (1964).
[58] Mellow, T. On the mutual radiation characteristics of two rigid discs in open or closed finite circular baffles, Joint Baltic-Nordic Acoustics Meeting, (2004).
[59] Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V. and Pagneux, V. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators, Sci. Rep., 6, 19519, (2016).
[60] Zhou, Y., Li, D., Li, Y. and Hao, T. Perfect acoustic absorption by subwavelength metaporous composite, Appl. Phys. Lett., 115 (9), 093503, (2019).
[61] Huang, S., Zhou, Z., Li, D., Liu, T., Wang, X., Zhu, J. and Li, Y. Compact broadband acoustic sink with coherently coupled weak resonances, Sci. Bull., 65 (5), 373–379, (2020).
[62] Yang, M., Chen, S., Fu, C. and Sheng, P. Optimal sound-absorbing structures, Mater. Horiz., 4 (4), 673–680, (2017).
[63] Qi, L., Yu, G., Wang, X., Wang, G. and Wang, N. Interference-induced angle-independent acoustical transparency, J. Appl. Phys., 116 (23), 234506, (2014).
[64] Feng, Q., Huang, Z., Yu, G. and Meng, X. Acoustic attenuation performance through a constricted duct improved by an annular resonator, J. Acoust. Soc. Am., 134 (4), EL345–EL351, (2013).
[65] Doak, P. Excitation, transmission and radiation of sound from source distributions in hard-walled ducts of finite length (i): the effects of duct cross-section geometry and source distribution space-time pattern, J. Sound Vib., 31 (1), 1–72, (1973).
[66] Fahy, F. J., Foundations of engineering acoustics, Elsevier (2000).
[67] Morse, P. M. and Ingard, K. U., Theoretical acoustics, McGraw-Hill, New York (1968).
[68] Cox, T. J. and D’antonio, P., Acoustic absorbers and diffusers: theory, design and application, Crc Press (2009).
[69] Mechel, F. Sound fields at periodic absorbers, J. Sound Vib., 136 (3), 379–412, (1990).
[70] Nori, M. and Venegas, R. Sound propagation in porous materials with annular pores, J. Acoust. Soc. Am., 141 (6), 4642–4651, (2017).
[71] Aurégan, Y. and Farooqui, M. In-parallel resonators to increase the absorption of subwavelength acoustic absorbers in the mid-frequency range, Sci. Rep., 9 (1), 1–6, (2019).
[72] Tong, Y., Kou, Y. and Pan, J. Forced acoustical response of a cavitycoupled with a semi-infinite space using coupled mode theory, Wave Motion, 73, 11–23, (2017).
[73] Nennig, B., Renou, Y., Groby, J.-P. and Aurégan, Y. A mode matching approach for modeling two dimensional porous grating with infinitely rigid or soft inclusions, J. Acoust. Soc. Am., 131 (5), 3841–3852, (2012).
[74] Hwang, R.-B., Periodic structures: mode-matching approach and applications in electromagnetic engineering, John Wiley & Sons (2012).
[75] Romero-García, V., Jimenez, N., Theocharis, G., Achilleos, V., Merkel, A., Richoux, O., Tournat, V., Groby, J.-P. and Pagneux, V. Design of acoustic metamaterials made of helmholtz resonators for perfect absorption byusing the complex frequency plane, C. R. Phys., 21 (7-8), 713–749, (2020).
[76] Romero-García, V., Jimenez, N., Groby, J.-P., Merkel, A., Tournat, V., Theocharis, G., Richoux, O. and Pagneux, V. Perfect absorption in mirror-symmetric acoustic metascreens, Phys. Rev. Appl, 14 (5), 054055, (2020).
[77] Orfanidis, S. J. Electromagnetic waves and antennas, 2019, Unpublished, available: http://www.ece.rutgers.edu/ orfanidi/ewa, (2019).
[78] Yang, Y., Jia, H., Bi, Y., Zhao, H. and Yang, J. Experimental demonstration of an acoustic asymmetric diffraction grating based on passive parity-time-symmetric medium, Phys. Rev. Appl., 12 (3), 034040, (2019).
[79] Yang, W., Choy, Y., Wang, Z. and Li, Y. Sound radiation and suppression of an unbaffled long enclosure using helmholtz resonators, Mech. Syst. Signal Process, 165, 108408, (2022).
[80] Lu, Z. and Norris, A. N. Passive nonreciprocity-induced directional wave scattering, Extreme Mech. Lett., p. 101600, (2021).
[81] Li, L., Diao, Y., Wu, H. and Jiang, W. Complementary acoustic metamaterial for penetrating aberration layers, ACS Appl. Mater. Interfaces, (2022).
[82] Packo, P., Norris, A. N. and Torrent, D. Metaclusters for the full control of mechanical waves, Phys. Rev. Appl., 15 (1), 014051, (2021).
[83] Gao, N. and Hou, H. Low frequency acoustic properties of a honeycombsilicone rubber acoustic metamaterial, Mod. Phys. Lett. B, 31 (11), 1750118, (2017).
[84] Wei, S., Li, L., Zhigang, C., Linyong, L. and Xiaopeng, F. A parameter design method for multifrequency perfect sound-absorbing metasurface with critical coupled helmholtz resonator, J. Low Freq. Noise Vib. Act.Control., p. 14613484211019610, (2021).
[85] Monteghetti, F., Matignon, D., Piot, E. and Pascal, L. Design of broadband time-domain impedance boundary conditions using the oscillatorydiffusive representation of acoustical models, J. Acoust. Soc. Am., 140 (3), 1663–1674, (2016).
[86] Guo, J. and Zhou, J. An ultrathin acoustic carpet cloak based on resonators with extended necks, J. Phys. D, 53 (50), 505501, (2020).
[87] Fang, Y., Zhang, X. and Zhou, J. Acoustic porous metasurface for excellent sound absorption based on wave manipulation, J. Sound Vib., 434, 273–283, (2018).
[88] Ji, G., Fang, Y., Zhou, J. and Huang, X. Porous labyrinthine acoustic metamaterials with high transmission loss property, J. Appl. Phys., 125 (21), 215110, (2019).
[89] Shaltout, A., Kildishev, A. and Shalaev, V. Time-varying metasurfaces and lorentz non-reciprocity, Opt. Mater. Expresss, 5 (11), 2459–2467, (2015).
[90] Fedoseyev, V. Conservation laws and transverse motion of energy on reflection and transmission of electromagnetic waves, J. Phys. A Math. Theor., 21 (9), 2045, (1988).
[91] Tang, T., Dong, B. and Huang, L. Agglomeration of particles by a converging ultrasound field and their quantitative assessments, Ultrason. Sonochem., 75, 105590, (2021).
[92] Shelby, R. A., Smith, D. R. and Schultz, S. Experimental verification of a negative index of refraction, J. Low Freq. Noise Vib. Act. Control., 292 (5514), 77–79, (2001).
[93] Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S. and Soukoulis, C. M. Negative refraction by photonic crystals, Nature, 423 (6940), 604–605, (2003).
[94] Li, Y., Shen, C., Xie, Y., Li, J., Wang, W., Cummer, S. A. and Jing, Y. Tunable asymmetric transmission via lossy acoustic metasurfaces, Phys. Rev. Lett, 119 (3), 035501, (2017).
[95] Liang, Q., Wu, Y., Lv, P., He, J., Ma, F. and Chen, T. Highly efficient low-frequency broadband sound absorption with a composite hybrid metasurface, Adv. Eng. Mater., 23 (10), 2100791, (2021).
[96] Park, S., Lee, J. and Jeon, W. Vibration damping of plates using waveguide absorbers based on spiral acoustic black holes, J. Sound Vib., 521, (2022).
[97] Jiang, X., Shi, C., Wang, Y., Smalley, J., Cheng, J. and Zhang, X. Nonresonant metasurface for fast decoding in acoustic communications, Phys. Rev. Appl., 13 (1), 014014, (2020).
[98] Hadad, Y., Sounas, D. L. and Alu, A. Space-time gradient metasurfaces, Phys. Rev. B, 92 (10), 100304, (2015).
[99] Asadchy, V. S., Wickberg, A., Diaz-Rubio, A. and Wegener, M. Eliminating scattering loss in anomalously reflecting optical metasurfaces, ACS Photonics, 4 (5), 1264–1270, (2017).
[100] Epstein, A. and Eleftheriades, G. V. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection, Phys. Rev. Lett, 117 (25), 256103, (2016).
[101] Díaz-Rubio, A., Asadchy, V. S., Elsakka, A. and Tretyakov, S. A. From the generalized reflection law to the realization of perfect anomalous reflectors, Sci. Adv., 3 (8), e1602714, (2017).
[102] Díaz-Rubio, A., Li, J., Shen, C., Cummer, S. A. and Tretyakov, S. A. Power flow–conformal metamirrors for engineering wave reflections, Sci. Adv., 5 (2), eaau7288, (2019).
[103] Díaz-Rubio, A. and Tretyakov, S. A. Macroscopic modeling of anomalously reflecting metasurfaces: Angular response and far-field scattering, IEEE Trans. Antennas Propag., 69 (10), 6560–6571, (2021).
[104] Li, J., Song, A. and Cummer, S. A. Bianisotropic acoustic metasurface for surface-wave-enhanced wavefront transformation, Phys. Rev. Appl., 14 (4), 044012, (2020).
[105] Song, A., Li, J., Peng, X., Shen, C., Zhu, X., Chen, T. and Cummer, S. A. Asymmetric absorption in acoustic metamirror based on surface impedance engineering, Phys. Rev. Appl., 12 (5), 054048, (2019).
[106] Wang, X., Díaz-Rubio, A., Asadchy, V. S., Ptitcyn, G., Generalov, A. A., Ala-Laurinaho, J. and Tretyakov, S. A. Extreme asymmetry in metasurfaces via evanescent fields engineering: Angular-asymmetric absorption, Phys. Rev. Lett, 121 (25), 256802, (2018).
[107] Asadchy, V., Díaz-Rubio, A., Tcvetkova, S., Kwon, D.-H., Elsakka, A., Albooyeh, M. and Tretyakov, S. Flat engineered multichannel reflectors, Phys. Rev. X., 7 (3), 031046, (2017).
[108] Farooqui, M., Aurégan, Y. and Pagneux, V. Explicit approximation of the wavenumber for lined ducts, J. Acoust. Soc. Am., 144 (3), EL191–EL195, (2018).
[109] Piana, E. A., Carlsson, U. E., Lezzi, A. M., Paderno, D. and Boij, S. Silencer design for the control of low frequency noise in ventilation ducts, Designs, 6 (2), 37, (2022).
[110] Åbom, M., Sack, S. and Kabral, R. Optimum duct liners and modal filters, J. Acoust. Soc. Am., 140 (4), 2992–2992, (2016).
[111] Graf, T. and Pan, J. Determination of the complex acoustic scattering matrix of a right-angled duct, J. Acoust. Soc. Am., 134 (1), 292–299, (2013).
[112] Rienstra, S. W. Fundamentals of duct acoustics, Von Karman Institute Lecture Notes, (2015).
[113] Yang, D., Laera, D. and Morgans, A. S. A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors, J. Sound Vib., 456, 137–161, (2019).
[114] Chen, L., Du, L., Wang, X. and Sun, X. An extended transfer matrix method for measuring acoustical properties of porous materials beyond the cut-off frequency, J. Acoust. Soc. Am., 148 (6), 3772–3783, (2020).
[115] Lawrie, J. B. and Afzal, M. Acoustic scattering in a waveguide with a height discontinuity bridged by a membrane: a tailored galerkin approach, J. Eng. Math., 105 (1), 99–115, (2017).
[116] Xiong, L., Bi, W. and Aurégan, Y. Fano resonance scatterings in waveguides with impedance boundary conditions, J. Acoust. Soc. Am., 139 (2), 764–772, (2016).
[117] Palma, G. and Burghignoli, L. On the integration of acoustic phasegradient metasurfaces in aeronautics, Int. J. Aeroacoustics, 19 (6-8), 294–309, (2020).
[118] Achilleos, V., Richoux, O. and Theocharis, G. Coherent perfect absorption induced by the nonlinearity of a helmholtz resonator, J. Acoust. Soc. Am., 140 (1), EL94–EL100, (2016).
[119] Coutant, A., Achilleos, V., Richoux, O., Theocharis, G. and Pagneux, V. Subwavelength su-schrieffer-heeger topological modes in acoustic waveguides, J. Acoust. Soc. Am., 151 (6), 3626–3632, (2022).
[120] Du, J., Luo, Y., Zhao, X., Sun, X., Song, Y. and Hu, X. Bilayer ventilated labyrinthine metasurfaces with high sound absorption and tunable bandwidth, Sci. Rep., 11 (1), 1–8, (2021).
[121] Tang, S. K. On sound transmission loss across a helmholtz resonator in a low mach number flow duct, J. Acoust. Soc. Am., 127 (6), 3519–3525, (2010).
[122] Guo, J., Cao, J., Xiao, Y., Shen, H. and Wen, J. Interplay of local resonances and bragg band gaps in acoustic waveguides with periodic detuned resonators, Phys. Lett. A, 384 (13), 126253, (2020).
[123] Xu, Y., Li, Y., Lee, R. K. and Yariv, A. Scattering-theory analysis of waveguide-resonator coupling, Phys. Rev. E, 62 (5), 7389, (2000).
[124] Vignola, J., Glean, A., Judge, J. and Ryan, T. Optimal apparent damping as a function of the bandwidth of an array of vibration absorbers, J. Acoust. Soc. Am., 134 (2), 1067–1070, (2013).
[125] Panneton, R. and Olny, X. Acoustical determination of the parameters governing viscous dissipation in porous media, J. Acoust. Soc. Am., 119 (4), 2027–2040, (2006).
[126] Venegas, R. and Boutin, C. Acoustics of permeo-elastic materials, Journal of Fluid Mechanics, 828, 135–174, (2017).
[127] Merkel, A., Theocharis, G., Richoux, O., Romero-García, V. and Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers, Appl. Phys. Lett., 107 (24), 244102, (2015).
[128] Groby, J.-P., Jiménez, N. and Romero-García, V., (2021), Acoustic metamaterial absorbers. Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media, pp. 167–204, Springer.
[129] Barron, R. F., Industrial noise control and acoustics, CRC Press (2002).
[130] Xiang, X., Wu, X., Li, X., Wu, P., He, H., Mu, Q., Wang, S., Huang, Y. and Wen, W. Ultra-open ventilated metamaterial absorbers for soundsilencing applications in environment with free air flows, Extreme Mech. Lett., 39, 100786, (2020).
Edit Comment