中文版 | English
Title

Absorption and scattering of sound wave by resonator arrays and impedance distributions

Author
Name pinyin
SHEN Chao
School number
11850012
Degree
博士
Discipline
机械工程
Supervisor
刘宇
Mentor unit
力学与航空航天工程系
Publication Years
2022-10-31
Submission date
2022-12-12
University
The University of Hong Kong
Place of Publication
Hong Kong
Abstract

Resonator arrays have been used a lot for sound manipulation and absorption. Their sound absorption enhancement mechanism and subwavelength evaluation index are sometimes used excessively or inappropriately. The main objective of this thesis is to explore the physical and analytical model of the resonator array, starting from the physical concept.

Firstly, a mass-spring-damping system is introduced to characterize a single resonator, i.e., the Helmholtz resonator, which is regarded as a representative sound absorption component. It shows that linear vibration models yield an oscillatory-diffusive representation in the frequency domain. This kind of analysis method gives physical interpretation compared with complex and unintuitive characterization methods of model size parameters. Results reveal that the sound absorption performance of a resonator is mainly determined by its volume.

Acoustic structures consisting of inter-resonator arrays are widely analyzed theoretically and numerically. When two single resonators are connected in parallel, one needs to consider the coupling between them. A cylindrical structure consisting of two quarter-wavelength resonators is covered with a porous material. An analytical expression of mutual interaction is derived to clarify its influence on a resonance shift phenomenon and sound absorption performance. Finally, the equivalent mass-spring-damping oscillatory system is introduced to interpret the physical mechanism of inter-resonator coupling. When a parallel array of resonators are used, inter-resonator coupling gives rise to negative stiffness in the frequency range between two resonating peaks and benefits broadband absorption.

After analyzing the performance of a single resonator and resonator arrays, this thesis also explores the sound absorption of a periodical resonator array. It imposes the mode-matching method to discuss the sound properties of scattering and transmission involved in a typical inter-resonator array structure with a non-uniform distribution of surface impedance. The theoretical analysis was validated with commercial software simulation and experiments. Results can reveal information about mode shapes and amplitudes compared with numerical simulation. This allows a clear and detailed understanding of sound fields rather than just final results, such as absorption coefficients.

Then the sound wave manipulation of a periodical resonator array is fulfilled by a surface impedance approach. The analyzed geometrical model with discrete resonator arrays are simple while typical. One may replace them equivalently due to their locally-reacting nature with structures composed of a periodical pattern. The properties hold with individual special geometries as long as the same distribution of surface impedance, or more-physically mass-spring-damping equivalent, is guaranteed.

Finally, resonator arrays are used as liners in duct noise attenuation. It is shown that porous materials with a suitable flow-resistivity are more effective than resonators assembled asymmetrically in maximizing sound energy absorption. Specifically, when the sound absorption coefficients approach one, a tiny increase of absorption coefficient value may contribute to an overall improvement of several dBs in accumulative sound energy loss. Thus, it is necessary to select appropriate optimization objectives in engineering projects.

Keywords
Language
English
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2023-07
References List

[1] Monteghetti, F., Analysis and discretization of time-domain impedance boundary conditions in aeroacoustics, Ph.D. thesis, Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), (2018).
[2] Guo, J., Zhang, X., Fang, Y. and Fattah, R. Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners, J. Appl. Phys., 123 (17), 174902, (2018).
[3] Lee, T., Nomura, T. and Iizuka, H. Damped resonance for broadband acoustic absorption in one-port and two-port systems, Sci. Rep., 9 (1), 1–11, (2019).
[4] Long, H., Liu, C., Shao, C., Cheng, Y., Tao, J., Qiu, X. and Liu, X. Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes, J. Sound Vib., 479, 115371, (2020).
[5] Boulvert, J., Humbert, T., Romero-García, V., Gabard, G., Fotsing, E. R., Ross, A., Mardjono, J. and Groby, J.-P. Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: Realization for duct acoustics with 3d printed porous resonators, J. Sound Vib., 523, 116687, (2022).
[6] Champoux, Y. and Allard, J.-F. Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys., 70 (4), 1975–1979, (1991).
[7] Cai, X., Guo, Q., Hu, G. and Yang, J. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl. Phys. Lett., 105 (12), 121901, (2014).
[8] Long, H., Gao, S., Cheng, Y. and Liu, X. Multiband quasi-perfect lowfrequency sound absorber based on double-channel mie resonator, Appl. Phys. Lett., 112 (3), 033507, (2018).
[9] Yang, M., Li, Y., Meng, C., Fu, C., Mei, J., Yang, Z. and Sheng, P. Sound absorption by subwavelength membrane structures: A geometric perspective, C. R. Mecanique, 343 (12), 635–644, (2015).
[10] Langfeldt, F. and Gleine, W. Membrane-and plate-type acoustic metamaterials with elastic unit cell edges, J. Sound Vib., 453, 65–86, (2019).
[11] Hashimoto, N., Katsura, M., Yasuoka, M. and Fujii, H. Sound insulation of a rectangular thin membrane with additional weights, Appl. Acoust., 33 (1), 21–43, (1991).
[12] Frommhold, W., Fuchs, H. and Sheng, S. Acoustic performance of membrane absorbers, J. Sound Vib., 170 (5), 621–636, (1994).
[13] Kim, S., Kim, Y.-H. and Jang, J.-H. A theoretical model to predict the low-frequency sound absorption of a helmholtz resonator array, J. Acoust. Soc. Am., 119 (4), 1933–1936, (2006).
[14] Fang, Y., Zhang, X., Zhou, J., Guo, J. and Huang, X. Acoustic metaporous layer with compos. struct. for perfect and quasi-omnidirectional sound absorption, Compos. Struct., 223, 110948, (2019).
[15] Sugimoto, N. and Horioka, T. Dispersion characteristics of sound waves in a tunnel with an array of helmholtz resonators, J. Acoust. Soc. Am., 97 (3), 1446–1459, (1995).
[16] Ammari, H. and Imeri, K. A mathematical and numerical framework for gradient meta-surfaces built upon periodically repeating arrays of helmholtz resonators, Wave Motion, 97, 102614, (2020).
[17] Ammari, H., Imeri, K. and Wu, W. A mathematical framework for tunable metasurfaces. part i, Asymptot. Anal., 114 (3-4), 129–179, (2019).
[18] Aurégan, Y. Ultra-thin low frequency perfect sound absorber with high ratio of active area, Appl. Phys. Lett., 113 (20), 201904, (2018).
[19] Groby, J.-P., Huang, W., Lardeau, A. and Aurégan, Y. The use of slow waves to design simple sound absorbing materials, J. Appl. Phys., 117 (12), 124903, (2015).
[20] Romero-García, V., Theocharis, G., Richoux, O. and Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers, J. Acoust. Soc. Am., 139 (6), 3395–3403, (2016).
[21] Groby, J.-P., Duclos, A., Dazel, O., Boeckx, L. and Lauriks, W. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating, J. Acoust. Soc. Am., 129 (5), 3035–3046, (2011).
[22] Yang, M. and Sheng, P. Sound absorption structures: from porous media to acoustic metamaterials, Annu. Rev. Mater. Res., 47, 83–114, (2017).
[23] Cui, H., Hu, Z. and Hu, H. Research on the low-frequency sound absorption haracteristics of coiled helmholtz cavity acoustic metamaterials, Advances in Mechanical Engineering, 14 (8), 16878132221119996, (2022).
[24] Wu, T., Cox, T. and Lam, Y. From a profiled diffuser to an optimized absorber, J. Acoust. Soc. Am., 108 (2), 643–650, (2000).
[25] Groby, J.-P., Lauriks, W. and Vigran, T. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating, J. Acoust. Soc. Am., 127 (5), 2865–2874, (2010).
[26] Jiang, C., Wang, C. and Huang, L. Acoustic characterization of ducts lined with poroelastic materials based on wave finite element method, Appl. Acoust., 145, 362–373, (2019).
[27] Deckers, E., Vandepitte, D. and Desmet, W. A wave based method for the axisymmetric dynamic analysis of acoustic and poroelastic problems, Comput. Methods Appl. Mech. Eng., 257, 1–16, (2013).
[28] Ingard, U. On the theory and design of acoustic resonators, J. Acoust. Soc. Am., 25 (6), 1037–1061, (1953).
[29] Ingard, U. and Ising, H. Acoustic nonlinearity of an orifice, J. Acoust. Soc. Am., 42 (1), 6–17, (1967).
[30] Wu, T., Cox, T. J. and Lam, Y. A profiled structure with improved low frequency absorption, J. Acoust. Soc. Am., 110 (6), 3064–3070, (2001).
[31] Jaouen, L., Gourdon, E. and Glé, P. Estimation of all six parameters of johnson-champoux-allard-lafarge model for acoustical porous materials from impedance tube measurements, J. Acoust. Soc. Am., 148 (4), 1998–2005, (2020).
[32] Johnson, D. L., Koplik, J. and Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 379–402, (1987).
[33] Fang, Y., Zhang, X. and Zhou, J. Sound transmission through an acoustic porous metasurface with periodic structures, Appl. Phys. Lett., 110 (17), 171904, (2017).
[34] Maa, D.-Y. Potential of microperforated panel absorber, J. Acoust. Soc. Am., 104 (5), 2861–2866, (1998).
[35] Tang, S. K. On helmholtz resonators with tapered necks, J. Sound Vib., 279 (3-5), 1085–1096, (2005).
[36] Bykov, A. and Komkin, A. Design of helmholtz resonator with required characteristics, MATEC Web of Conferences, vol. 320, p. 00012, EDP Sciences, (2020).
[37] Maurel, A., Mercier, J.-F., Pham, K., Marigo, J.-J. and Ourir, A. Enhanced resonance of sparse arrays of helmholtz resonators—application to perfect absorption, J. Acoust. Soc. Am., 145 (4), 2552–2560, (2019).
[38] Mercier, J.-F. and Lombard, B. A two-way model for nonlinear acoustic waves in a non-uniform lattice of helmholtz resonators, Wave Motion, 72, 260–275, (2017).
[39] Wang, Z. and Choy, Y. Tunable parallel barriers using helmholtz resonator, J. Sound Vib., 443, 109–123, (2019).
[40] Selamet, A. and Lee, I. Helmholtz resonator with extended neck, J. Acoust. Soc. Am., 113 (4), 1975–1985, (2003).
[41] Johansson, T. A. and Kleiner, M. Theory and experiments on the coupling of two helmholtz resonators, J. Acoust. Soc. Am., 110 (3), 1315–1328, (2001).
[42] Langfeldt, F., Hoppen, H. and Gleine, W. Resonance frequencies and sound absorption of helmholtz resonators with multiple necks, Appl. Acoust., 145, 314–319, (2019).
[43] Rajendran, V., Piacsek, A. and Méndez Echenagucia, T. Design of broadband helmholtz resonator arrays using the radiation impedance method, J. Acoust. Soc. Am., 151 (1), 457–466, (2022).
[44] Morin, D., Introduction to classical mechanics: with problems and solutions, Cambridge University Press (2008).
[45] Komkin, A., Mironov, M. and Bykov, A. Sound absorption by a Helmholtz resonator, Acoust. Phys., 63 (4), 385–392, (2017).
[46] Kinsler, L. E., Frey, A. R., Coppens, A. B. and Sanders, J. V., Fundamentals of acoustics, John wiley & sons (2000).
[47] Li, Y. and Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett., 108 (6), 063502, (2016).
[48] Huang, L. Acoustic impedance and the control of sound waves, Symposium on Fluid-Structure-Sound Interactions and Control, pp. 315–324, Springer, (2017).
[49] Wang, C., Huang, L. and Zhang, Y. Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern, J. Sound Vib., 333 (25), 6828–6842, (2014).
[50] Donda, K., Zhu, Y., Fan, S.-W., Cao, L., Li, Y. and Assouar, B. Extreme low-frequency ultrathin acoustic absorbing metasurface, Appl. Phys. Lett., 115 (17), 173506, (2019).
[51] Zhang, C. and Hu, X. Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability, Phys. Rev. Appl, 6 (6), 064025, (2016).
[52] Jiménez, N., Cox, T. J., Romero-García, V. and Groby, J.-P. Metadiffusers: deep-subwavelength sound diffusers, Sci. Rep., 7 (1), 1–12, (2017).
[53] Lalanne, P. and Morris, G. M. Highly improved convergence of the coupled-wave method for tm polarization, J. Opt. Soc. Am. A., 13 (4), 779–784, (1996).
[54] Sherman, C. H. Analysis of acoustic interactions in transducer arrays, IEEE Trans. Sonics Ultrason., 13 (1), 9–15, (1966).
[55] Pritchard, R. Mutual acoustic impedance between radiators in an infinite rigid plane, J. Acoust. Soc. Am., 32 (6), 730–737, (1960).
[56] Arase, E. M. Mutual radiation impedance of square and rectangular pistons in a rigid infinite baffle, J. Acoust. Soc. Am., 36 (8), 1521–1525, (1964).
[57] Porter, D. T. Self-and mutual-radiation impedance and beam patterns for flexural disks in a rigid plane, J. Acoust. Soc. Am., 36 (6), 1154–1161, (1964).
[58] Mellow, T. On the mutual radiation characteristics of two rigid discs in open or closed finite circular baffles, Joint Baltic-Nordic Acoustics Meeting, (2004).
[59] Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V. and Pagneux, V. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators, Sci. Rep., 6, 19519, (2016).
[60] Zhou, Y., Li, D., Li, Y. and Hao, T. Perfect acoustic absorption by subwavelength metaporous composite, Appl. Phys. Lett., 115 (9), 093503, (2019).
[61] Huang, S., Zhou, Z., Li, D., Liu, T., Wang, X., Zhu, J. and Li, Y. Compact broadband acoustic sink with coherently coupled weak resonances, Sci. Bull., 65 (5), 373–379, (2020).
[62] Yang, M., Chen, S., Fu, C. and Sheng, P. Optimal sound-absorbing structures, Mater. Horiz., 4 (4), 673–680, (2017).
[63] Qi, L., Yu, G., Wang, X., Wang, G. and Wang, N. Interference-induced angle-independent acoustical transparency, J. Appl. Phys., 116 (23), 234506, (2014).
[64] Feng, Q., Huang, Z., Yu, G. and Meng, X. Acoustic attenuation performance through a constricted duct improved by an annular resonator, J. Acoust. Soc. Am., 134 (4), EL345–EL351, (2013).
[65] Doak, P. Excitation, transmission and radiation of sound from source distributions in hard-walled ducts of finite length (i): the effects of duct cross-section geometry and source distribution space-time pattern, J. Sound Vib., 31 (1), 1–72, (1973).
[66] Fahy, F. J., Foundations of engineering acoustics, Elsevier (2000).
[67] Morse, P. M. and Ingard, K. U., Theoretical acoustics, McGraw-Hill, New York (1968).
[68] Cox, T. J. and D’antonio, P., Acoustic absorbers and diffusers: theory, design and application, Crc Press (2009).
[69] Mechel, F. Sound fields at periodic absorbers, J. Sound Vib., 136 (3), 379–412, (1990).
[70] Nori, M. and Venegas, R. Sound propagation in porous materials with annular pores, J. Acoust. Soc. Am., 141 (6), 4642–4651, (2017).
[71] Aurégan, Y. and Farooqui, M. In-parallel resonators to increase the absorption of subwavelength acoustic absorbers in the mid-frequency range, Sci. Rep., 9 (1), 1–6, (2019).
[72] Tong, Y., Kou, Y. and Pan, J. Forced acoustical response of a cavitycoupled with a semi-infinite space using coupled mode theory, Wave Motion, 73, 11–23, (2017).
[73] Nennig, B., Renou, Y., Groby, J.-P. and Aurégan, Y. A mode matching approach for modeling two dimensional porous grating with infinitely rigid or soft inclusions, J. Acoust. Soc. Am., 131 (5), 3841–3852, (2012).
[74] Hwang, R.-B., Periodic structures: mode-matching approach and applications in electromagnetic engineering, John Wiley & Sons (2012).
[75] Romero-García, V., Jimenez, N., Theocharis, G., Achilleos, V., Merkel, A., Richoux, O., Tournat, V., Groby, J.-P. and Pagneux, V. Design of acoustic metamaterials made of helmholtz resonators for perfect absorption byusing the complex frequency plane, C. R. Phys., 21 (7-8), 713–749, (2020).
[76] Romero-García, V., Jimenez, N., Groby, J.-P., Merkel, A., Tournat, V., Theocharis, G., Richoux, O. and Pagneux, V. Perfect absorption in mirror-symmetric acoustic metascreens, Phys. Rev. Appl, 14 (5), 054055, (2020).
[77] Orfanidis, S. J. Electromagnetic waves and antennas, 2019, Unpublished, available: http://www.ece.rutgers.edu/ orfanidi/ewa, (2019).
[78] Yang, Y., Jia, H., Bi, Y., Zhao, H. and Yang, J. Experimental demonstration of an acoustic asymmetric diffraction grating based on passive parity-time-symmetric medium, Phys. Rev. Appl., 12 (3), 034040, (2019).
[79] Yang, W., Choy, Y., Wang, Z. and Li, Y. Sound radiation and suppression of an unbaffled long enclosure using helmholtz resonators, Mech. Syst. Signal Process, 165, 108408, (2022).
[80] Lu, Z. and Norris, A. N. Passive nonreciprocity-induced directional wave scattering, Extreme Mech. Lett., p. 101600, (2021).
[81] Li, L., Diao, Y., Wu, H. and Jiang, W. Complementary acoustic metamaterial for penetrating aberration layers, ACS Appl. Mater. Interfaces, (2022).
[82] Packo, P., Norris, A. N. and Torrent, D. Metaclusters for the full control of mechanical waves, Phys. Rev. Appl., 15 (1), 014051, (2021).
[83] Gao, N. and Hou, H. Low frequency acoustic properties of a honeycombsilicone rubber acoustic metamaterial, Mod. Phys. Lett. B, 31 (11), 1750118, (2017).
[84] Wei, S., Li, L., Zhigang, C., Linyong, L. and Xiaopeng, F. A parameter design method for multifrequency perfect sound-absorbing metasurface with critical coupled helmholtz resonator, J. Low Freq. Noise Vib. Act.Control., p. 14613484211019610, (2021).
[85] Monteghetti, F., Matignon, D., Piot, E. and Pascal, L. Design of broadband time-domain impedance boundary conditions using the oscillatorydiffusive representation of acoustical models, J. Acoust. Soc. Am., 140 (3), 1663–1674, (2016).
[86] Guo, J. and Zhou, J. An ultrathin acoustic carpet cloak based on resonators with extended necks, J. Phys. D, 53 (50), 505501, (2020).
[87] Fang, Y., Zhang, X. and Zhou, J. Acoustic porous metasurface for excellent sound absorption based on wave manipulation, J. Sound Vib., 434, 273–283, (2018).
[88] Ji, G., Fang, Y., Zhou, J. and Huang, X. Porous labyrinthine acoustic metamaterials with high transmission loss property, J. Appl. Phys., 125 (21), 215110, (2019).
[89] Shaltout, A., Kildishev, A. and Shalaev, V. Time-varying metasurfaces and lorentz non-reciprocity, Opt. Mater. Expresss, 5 (11), 2459–2467, (2015).
[90] Fedoseyev, V. Conservation laws and transverse motion of energy on reflection and transmission of electromagnetic waves, J. Phys. A Math. Theor., 21 (9), 2045, (1988).
[91] Tang, T., Dong, B. and Huang, L. Agglomeration of particles by a converging ultrasound field and their quantitative assessments, Ultrason. Sonochem., 75, 105590, (2021).
[92] Shelby, R. A., Smith, D. R. and Schultz, S. Experimental verification of a negative index of refraction, J. Low Freq. Noise Vib. Act. Control., 292 (5514), 77–79, (2001).
[93] Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S. and Soukoulis, C. M. Negative refraction by photonic crystals, Nature, 423 (6940), 604–605, (2003).
[94] Li, Y., Shen, C., Xie, Y., Li, J., Wang, W., Cummer, S. A. and Jing, Y. Tunable asymmetric transmission via lossy acoustic metasurfaces, Phys. Rev. Lett, 119 (3), 035501, (2017).
[95] Liang, Q., Wu, Y., Lv, P., He, J., Ma, F. and Chen, T. Highly efficient low-frequency broadband sound absorption with a composite hybrid metasurface, Adv. Eng. Mater., 23 (10), 2100791, (2021).
[96] Park, S., Lee, J. and Jeon, W. Vibration damping of plates using waveguide absorbers based on spiral acoustic black holes, J. Sound Vib., 521, (2022).
[97] Jiang, X., Shi, C., Wang, Y., Smalley, J., Cheng, J. and Zhang, X. Nonresonant metasurface for fast decoding in acoustic communications, Phys. Rev. Appl., 13 (1), 014014, (2020).
[98] Hadad, Y., Sounas, D. L. and Alu, A. Space-time gradient metasurfaces, Phys. Rev. B, 92 (10), 100304, (2015).
[99] Asadchy, V. S., Wickberg, A., Diaz-Rubio, A. and Wegener, M. Eliminating scattering loss in anomalously reflecting optical metasurfaces, ACS Photonics, 4 (5), 1264–1270, (2017).
[100] Epstein, A. and Eleftheriades, G. V. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection, Phys. Rev. Lett, 117 (25), 256103, (2016).
[101] Díaz-Rubio, A., Asadchy, V. S., Elsakka, A. and Tretyakov, S. A. From the generalized reflection law to the realization of perfect anomalous reflectors, Sci. Adv., 3 (8), e1602714, (2017).
[102] Díaz-Rubio, A., Li, J., Shen, C., Cummer, S. A. and Tretyakov, S. A. Power flow–conformal metamirrors for engineering wave reflections, Sci. Adv., 5 (2), eaau7288, (2019).
[103] Díaz-Rubio, A. and Tretyakov, S. A. Macroscopic modeling of anomalously reflecting metasurfaces: Angular response and far-field scattering, IEEE Trans. Antennas Propag., 69 (10), 6560–6571, (2021).
[104] Li, J., Song, A. and Cummer, S. A. Bianisotropic acoustic metasurface for surface-wave-enhanced wavefront transformation, Phys. Rev. Appl., 14 (4), 044012, (2020).
[105] Song, A., Li, J., Peng, X., Shen, C., Zhu, X., Chen, T. and Cummer, S. A. Asymmetric absorption in acoustic metamirror based on surface impedance engineering, Phys. Rev. Appl., 12 (5), 054048, (2019).
[106] Wang, X., Díaz-Rubio, A., Asadchy, V. S., Ptitcyn, G., Generalov, A. A., Ala-Laurinaho, J. and Tretyakov, S. A. Extreme asymmetry in metasurfaces via evanescent fields engineering: Angular-asymmetric absorption, Phys. Rev. Lett, 121 (25), 256802, (2018).
[107] Asadchy, V., Díaz-Rubio, A., Tcvetkova, S., Kwon, D.-H., Elsakka, A., Albooyeh, M. and Tretyakov, S. Flat engineered multichannel reflectors, Phys. Rev. X., 7 (3), 031046, (2017).
[108] Farooqui, M., Aurégan, Y. and Pagneux, V. Explicit approximation of the wavenumber for lined ducts, J. Acoust. Soc. Am., 144 (3), EL191–EL195, (2018).
[109] Piana, E. A., Carlsson, U. E., Lezzi, A. M., Paderno, D. and Boij, S. Silencer design for the control of low frequency noise in ventilation ducts, Designs, 6 (2), 37, (2022).
[110] Åbom, M., Sack, S. and Kabral, R. Optimum duct liners and modal filters, J. Acoust. Soc. Am., 140 (4), 2992–2992, (2016).
[111] Graf, T. and Pan, J. Determination of the complex acoustic scattering matrix of a right-angled duct, J. Acoust. Soc. Am., 134 (1), 292–299, (2013).
[112] Rienstra, S. W. Fundamentals of duct acoustics, Von Karman Institute Lecture Notes, (2015).
[113] Yang, D., Laera, D. and Morgans, A. S. A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors, J. Sound Vib., 456, 137–161, (2019).
[114] Chen, L., Du, L., Wang, X. and Sun, X. An extended transfer matrix method for measuring acoustical properties of porous materials beyond the cut-off frequency, J. Acoust. Soc. Am., 148 (6), 3772–3783, (2020).
[115] Lawrie, J. B. and Afzal, M. Acoustic scattering in a waveguide with a height discontinuity bridged by a membrane: a tailored galerkin approach, J. Eng. Math., 105 (1), 99–115, (2017).
[116] Xiong, L., Bi, W. and Aurégan, Y. Fano resonance scatterings in waveguides with impedance boundary conditions, J. Acoust. Soc. Am., 139 (2), 764–772, (2016).
[117] Palma, G. and Burghignoli, L. On the integration of acoustic phasegradient metasurfaces in aeronautics, Int. J. Aeroacoustics, 19 (6-8), 294–309, (2020).
[118] Achilleos, V., Richoux, O. and Theocharis, G. Coherent perfect absorption induced by the nonlinearity of a helmholtz resonator, J. Acoust. Soc. Am., 140 (1), EL94–EL100, (2016).
[119] Coutant, A., Achilleos, V., Richoux, O., Theocharis, G. and Pagneux, V. Subwavelength su-schrieffer-heeger topological modes in acoustic waveguides, J. Acoust. Soc. Am., 151 (6), 3626–3632, (2022).
[120] Du, J., Luo, Y., Zhao, X., Sun, X., Song, Y. and Hu, X. Bilayer ventilated labyrinthine metasurfaces with high sound absorption and tunable bandwidth, Sci. Rep., 11 (1), 1–8, (2021).
[121] Tang, S. K. On sound transmission loss across a helmholtz resonator in a low mach number flow duct, J. Acoust. Soc. Am., 127 (6), 3519–3525, (2010).
[122] Guo, J., Cao, J., Xiao, Y., Shen, H. and Wen, J. Interplay of local resonances and bragg band gaps in acoustic waveguides with periodic detuned resonators, Phys. Lett. A, 384 (13), 126253, (2020).
[123] Xu, Y., Li, Y., Lee, R. K. and Yariv, A. Scattering-theory analysis of waveguide-resonator coupling, Phys. Rev. E, 62 (5), 7389, (2000).
[124] Vignola, J., Glean, A., Judge, J. and Ryan, T. Optimal apparent damping as a function of the bandwidth of an array of vibration absorbers, J. Acoust. Soc. Am., 134 (2), 1067–1070, (2013).
[125] Panneton, R. and Olny, X. Acoustical determination of the parameters governing viscous dissipation in porous media, J. Acoust. Soc. Am., 119 (4), 2027–2040, (2006).
[126] Venegas, R. and Boutin, C. Acoustics of permeo-elastic materials, Journal of Fluid Mechanics, 828, 135–174, (2017).
[127] Merkel, A., Theocharis, G., Richoux, O., Romero-García, V. and Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers, Appl. Phys. Lett., 107 (24), 244102, (2015).
[128] Groby, J.-P., Jiménez, N. and Romero-García, V., (2021), Acoustic metamaterial absorbers. Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media, pp. 167–204, Springer.
[129] Barron, R. F., Industrial noise control and acoustics, CRC Press (2002).
[130] Xiang, X., Wu, X., Li, X., Wu, P., He, H., Mu, Q., Wang, S., Huang, Y. and Wen, W. Ultra-open ventilated metamaterial absorbers for soundsilencing applications in environment with free air flows, Extreme Mech. Lett., 39, 100786, (2020).

Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/416436
DepartmentDepartment of Mechanics and Aerospace Engineering
Recommended Citation
GB/T 7714
Shen C. Absorption and scattering of sound wave by resonator arrays and impedance distributions[D]. Hong Kong. The University of Hong Kong,2022.
Files in This Item:
File Name/Size DocType Version Access License
11850012-沈超-力学与航空航天工(53106KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[沈超]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[沈超]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[沈超]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.