中文版 | English
Title

Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations

Author
Corresponding AuthorLiu,Yongle
Publication Years
2023-02-01
DOI
Source Title
ISSN
0021-9991
EISSN
1090-2716
Volume474
Abstract
We develop a flux globalization based well-balanced path-conservative central-upwind scheme for the two-layer thermal rotating shallow water (TRSW) equations, which arise in both oceanography and atmospheric sciences. As it occurs in all of the two-layer shallow water models, the studied two-layer TRSW system loses hyperbolicity due to the well-known Kelvin-Helmholtz type instabilities arising when the vertical velocity shear between the layers becomes sufficiently large. Therefore, prior to developing the numerical method, we discuss the hyperbolicity criterion. Besides the hyperbolicity loss, there are additional challenges in the development of numerical methods for the studied system. They are related to the presence of nonconservative terms modeling layer interaction and also to a quite complicated structure of steady-states solutions a good well-balanced numerical method should be able to exactly preserve. In order to treat the nonconservative product terms, we use the path-conservative technique, which is implemented within the flux globalization framework: the source and nonconservative terms are incorporated into the fluxes, which results in a quasi-conservative system, which is then numerically solved using the Riemann-problem-solver-free central-upwind scheme. A well-balanced property of the resulting scheme is ensured by performing piecewise linear reconstruction for the equilibrium rather than the conservative variables, by development of special quadratures required for the flux globalization procedure, and by switching off a part of the numerical diffusion when the computed solution is near or at thermo-geostrophic equilibria. The advantages and excellent performance of the proposed scheme are demonstrated on a number of numerical examples.
Keywords
URL[Source Record]
Language
English
SUSTech Authorship
First ; Corresponding
Funding Project
National Natural Science Foundation of China[12111530004];National Natural Science Foundation of China[12171226];Guangdong Provincial Key Laboratory Of Computational Science And Material Design[2019B030301001];
ESI Research Field
PHYSICS
Scopus EID
2-s2.0-85142678329
Data Source
Scopus
Citation statistics
Cited Times [WOS]:0
Document TypeJournal Article
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/416450
DepartmentDepartment of Mathematics
深圳国际数学中心(杰曼诺夫数学中心)(筹)
Affiliation
1.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Mathematics,SUSTech International Center for Mathematics and Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China
3.Institute of Mathematics,University of Zürich,Zürich,8057,Switzerland
4.Laboratory of Dynamical Meteorology,Sorbonne University,Ecole Normale Supérieure,CNRS,Paris,24 rue Lhomond,75005,France
First Author AffilicationDepartment of Mathematics
Corresponding Author AffilicationDepartment of Mathematics
First Author's First AffilicationDepartment of Mathematics
Recommended Citation
GB/T 7714
Cao,Yangyang,Kurganov,Alexander,Liu,Yongle,et al. Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2023,474.
APA
Cao,Yangyang,Kurganov,Alexander,Liu,Yongle,&Zeitlin,Vladimir.(2023).Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations.JOURNAL OF COMPUTATIONAL PHYSICS,474.
MLA
Cao,Yangyang,et al."Flux globalization based well-balanced path-conservative central-upwind scheme for two-layer thermal rotating shallow water equations".JOURNAL OF COMPUTATIONAL PHYSICS 474(2023).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[Cao,Yangyang]'s Articles
[Kurganov,Alexander]'s Articles
[Liu,Yongle]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[Cao,Yangyang]'s Articles
[Kurganov,Alexander]'s Articles
[Liu,Yongle]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Cao,Yangyang]'s Articles
[Kurganov,Alexander]'s Articles
[Liu,Yongle]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.