[1] PRIVATE P, STRATEGIC I. Polypropylene market research report: By type, application, end use - global industry analysis and demand forecast to 2030 [Z]. 2021
[2] NATTA G, PINO P, CORRADINI P, et al. CRYSTALLINE HIGH POLYMERS OF α-OLEFINS [J]. Journal of the American Chemical Society, 1955, 77(6): 1708-10.
[3] TANASE S, KATAYAMA K, YABUNOUCHI N, et al. Design of novel malonates as internal donors for MgCl2-supported TiCl4 type polypropylene catalysts and their mechanistic aspects, Part 1 [J]. Journal of Molecular Catalysis A: Chemical, 2007, 273(1): 211-7.
[4] RATANASAK M, PARASUK V. Roles of malonate donor on activity and stereoselectivity of Ziegler–Natta catalyzed propylene polymerization [J]. Journal of Organometallic Chemistry, 2015, 775: 6-11.
[5] BAHRI-LALEH N, HANIFPOUR A, MIRMOHAMMADI S A, et al. Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization [J]. Progress in Polymer Science, 2018, 84: 89-114.
[6] KISSIN Y. Isospecific polymerization of olefins [M]. Springer New York, 1985.
[7] COATES G W. Precise control of polyolefin stereochemistry using single-site metal catalysts [J]. Chemical Reviews, 2000, 100(4): 1223-52.
[8] RESCONI L, CAVALLO L, FAIT A, et al. Selectivity in propene polymerization with metallocene catalysts [J]. Chemical Reviews, 2000, 100(4): 1253-346.
[9] EWEN J A. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts [J]. Journal of the American Chemical Society, 1984, 106(21): 6355-64.
[10] WILD F, ZSOLNAI L, HUTTNER G, et al. ansa-Metallocene derivatives. IV. synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands [J]. Journal of Organometallic Chemistry, 1982, 232: 233–47.
[11] KAMINSKY W, BRINTZINGER H, WILD F. Polymerization of propene and butene with a chiral zirconocene and methylalumoxane as cocatalyst [J]. Angewandte Chemie International Edition, 1985, 24: 507-8.
[12] SPALECK W, ANTBERG M, ROHRMANN J, et al. High molecular weight polypropylene through specifically designed zirconocene catalysts [J]. Angewandte Chemie International Edition, 2010, 31(10): 1347-50.
[13] KAWAHARA N, KOJOH S-I, TODA Y, et al. The detailed analysis of the vinylidene structure of metallocene-catalyzed polypropylene [J]. Polymer, 2004, 45(2): 355-7.
[14] HARNEY M B, ZHANG Y, SITA L R. Discrete, multiblock isotactic–atactic stereoblock polypropene microstructures of differing block architectures through programmable stereomodulated living Ziegler–Natta polymerization [J]. Angewandte Chemie International Edition, 2006, 45(15): 2400-4.
[15] ZHANG W, SITA L R. Highly efficient, living coordinative chain-transfer polymerization of propene with ZnEt2: practical production of ultrahigh to very low molecular weight amorphous atactic polypropenes of extremely narrow polydispersity [J]. Journal of the American Chemical Society, 2008, 130(2): 442-3.
[16] CHERIAN A E, ROSE J M, LOBKOVSKY E B, et al. A C2-Symmetric, Living α-Diimine Ni(II) Catalyst: Regioblock Copolymers from Propylene [J]. Journal of the American Chemical Society, 2005, 127(40): 13770-1.
[17] OTA Y, ITO S, KOBAYASHI M, et al. Crystalline isotactic polar polypropylene from the palladium‐catalyzed copolymerization of propylene and polar monomers [J]. Angew Chem Int Ed 2016, 55(26): 7505-9.
[18] KONISHI Y, TAO W-J, YASUDA H, et al. Nickel-catalyzed propylene/polar monomer copolymerization [J]. ACS Macro Letters, 2018, 7(2): 213-7.
[19] MAKIO H, KASHIWA N, FUJITA T. FI catalysts: A new family of high performance catalysts for olefin polymerization [J]. Cheminform, 2002, 33(5): 477-93.
[20] FURUYAMA R, SAITO J, ISHII S-I, et al. Ethylene and propylene polymerization behavior of a series of bis(phenoxy–imine)titanium complexes [J]. Journal of Molecular Catalysis A: Chemical, 2003, 200(1): 31-42.
[21] MITANI M, FURUYAMA R, MOHRI J-I, et al. Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy−imine chelate ligands [J]. Journal of the American Chemical Society, 2003, 125(14): 4293-305.
[22] MAKIO H, TOHI Y, SAITO J, et al. Regio- and stereochemistry in propylene polymerization catalyzed with bis(phenoxy-imine) Zr and Hf complexes/MAO systems [J]. Macromolecular Rapid Communications, 2003, 24(15): 894-9.
[23] SAITO J, ONDA M, MATSUI S, et al. Propylene polymerization with bis(phenoxy-imine) Group-4 catalysts using iBu3Al/Ph3CB(C6F5)4 as a cocatalyst [J]. Macromolecular Rapid Communications, 2002, 23(18): 1118-23.
[24] PRASAD A V, MAKIO H, SAITO J, et al. Highly isospecific polymerization of propylene with bis(phenoxy-imine) Zr and Hf complexes using iBu3Al/Ph3CB(C6F5)4 as a cocatalyst [J]. Chemistry Letters, 2004, 33(3): 250-1.
[25] HUSTAD P D, TIAN J, COATES G W. Mechanism of propylene insertion using bis(phenoxyimine)-based Titanium catalysts: an unusual secondary insertion of propylene in a Group IV catalyst system [J]. Journal of the American Chemical Society, 2002, 124(14): 3614-21.
[26] EDSON J B, WANG Z, KRAMER E J, et al. Fluorinated bis(phenoxyketimine)titanium complexes for the Living, isoselective polymerization of propylene: multiblock isotactic polypropylene copolymers via sequential monomer addition [J]. Journal of the American Chemical Society, 2008, 130(14): 4968-77.
[27] BOUSSIE T R, DIAMOND G M, GOH C, et al. Nonconventional catalysts for isotactic propene polymerization in solution developed by using high-throughput-screening technologies [J]. Angewandte Chemie International Edition, 2006, 45(20): 3278-83.
[28] CHEN E Y X, CAMPBELL R E, DEVORE D D, et al. Divalent ansa-zirconocenes: stereoselective synthesis and high activity for propylene polymerization [J]. Journal of the American Chemical Society, 2004, 126(1): 42-3.
[29] MCINNIS J P, DELFERRO M, MARKS T J. Multinuclear Group 4 catalysis: Olefin polymerization pathways modified by strong metal–metal cooperative effects [J]. Accounts of Chemical Research, 2014, 47(8): 2545-57.
[30] GAO Y, CHEN X, ZHANG J, et al. Catalyst nuclearity effects on stereo- and regioinduction in pyridylamidohafnium-catalyzed propylene and 1-octene polymerizations [J]. Macromolecules, 2018, 51(6): 2401-10.
[31] D·D·范德莱德, J·C·史蒂文斯. 聚丙烯溶液聚合法: 中国, CN101490096B [P/OL]. 2012-.
[32] KIESEWETTER E T, RANDOLL S, RADLAUER M, et al. Stereospecific octahedral Group 4 bis(phenolate) ether complexes for olefin polymerization [J]. Journal of the American Chemical Society, 2010, 132(16): 5566-7.
[33] CUTHBERT E N T, VITTORIA A, CIPULLO R, et al. Structure-Activity Relationships for Bis(phenolate-ether) Zr/Hf Propene Polymerization Catalysts [J]. European Journal of Inorganic Chemistry, 2020, 2020(6): 541-50.
[34] LONG Y Y, WANG Y X, LI B X, et al. Living syndiospecific polymerization of propylene with sterically encumbered titanium complexes activated by MMAO [J]. Polymer Chemistry, 2014, 5(22): 6510-22.
[35] ZHAO X, CHEN Z, LI H, et al. Stereoselectivity inversion: Isospecific propylene polymerization catalyzed by rigid cyclic bis(phenoxyaldimine) titanium Complexes [J]. Macromolecules, 2020, 53(10): 3806-13.
[36] ZHAO X, LI H, LIU Y, et al. Substituent effects on propylene polymerization in cyclic bis(phenoxyaldimine) titanium catalysts [J]. Macromolecules, 2020, 53(24): 10803-12.
[37] BOAEN N K, HILLMYER M A. Post-polymerization functionalization of polyolefins [J]. Chemical Society Reviews, 2005, 34(3): 267-75.
[38] CHUNG T C M. Functionalization of Polypropylene by the Combination of Metallocene Catalysts and Reactive Comonomers [J]. Macromolecular Reaction Engineering, 2014, 8(2): 69-80.
[39] WALSH D J, HYATT M G, MILLER S A, et al. Recent Trends in Catalytic Polymerizations [J]. ACS Catalysis, 2019, 9(12): 11153-88.
[40] JOHNSON L K, MECKING S, BROOKHART M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts [J]. Journal of the American Chemical Society, 1996, 118(1): 267-8.
[41] NAKANO R, NOZAKI K. Copolymerization of propylene and polar monomers using Pd/IzQO catalysts [J]. Journal of the American Chemical Society, 2015, 137(34): 10934-7.
[42] HAKALA K, LöFGREN B, HELAJA T. Copolymerizations of oxygen-functionalized olefins with propylene using metallocene/methylaluminoxane catalyst [J]. European Polymer Journal, 1998, 34(8): 1093-7.
[43] KAYA A, JAKISCH L, KOMBER H, et al. Synthesis of Various Functional Propylene Copolymers Using rac-Et
[1-Ind]2ZrCl2/MAO as the Catalyst System [J]. Macromolecular Rapid Communications, 2001, 22(12): 972-7.
[44] HAGIHARA H, ISHIHARA T, THE BAN H, et al. Precise control of microstructure of functionalized polypropylene synthesized by the ansa-zirconocene/ MAO catalysts [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(5): 1738-48.
[45] SHANG R, GAO H, LUO F, et al. Functional isotactic polypropylenes via efficient direct copolymerizations of propylene with Various amino-functionalized α-olefins [J]. Macromolecules, 2019, 52(23): 9280-90.
[46] ARRIOLA D J, CARNAHAN E M, HUSTAD P D, et al. Catalytic production of olefin block copolymers via chain shuttling polymerization [J]. Science, 2006, 312(5774): 714.
[47] BOUYAHYI M, TURKI Y, TANWAR A, et al. Randomly functionalized polyethylenes: in quest of avoiding catalyst deactivation [J]. ACS Catalysis, 2019, 9(9): 7779-90.
[48] HUANG M, CHEN J, WANG B, et al. Polar isotactic and syndiotactic polypropylenes by organozirconium-catalyzed masking-reagent-free propylene and amino–olefin copolymerization [J]. Angewandte Chemie International Edition, 2020, 59(46): 20522-8.
[49] GAO M L, GU Y F, WANG C, et al. Ethylene homopolymerization and copolymerization with α-olefins catalyzed by titanium complexes bearing [O−NSR] tridentate ligands [J]. Journal of Molecular Catalysis A: Chemical, 2008, 292(1): 62-6.
[50] GAO M L, SUN X L, GU Y F, et al. Copolymerization of ethylene with cycloolefins by titanium complexes containing tridentate [O−NSR] ligands [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(8): 2807-19.
[51] YANG X-H, WANG Z, SUN X-L, et al. Synthesis, characterization, and catalytic behaviours of β-carbonylenamine-derived [O−NS]TiCl3 complexes in ethylene homo- and copolymerization [J]. Dalton Transactions, 2009, (41): 8945-54.
[52] YANG X H, SUN X L, HAN F B, et al. One-Pot Screening of Titanium Catalysts for Ethylene Polymerization [J]. Organometallics, 2008, 27(18): 4618-24.
[53] YANG X H, LIU C R, WANG C, et al. [O−NSR]TiCl3-Catalyzed Copolymerization of Ethylene with Functionalized Olefins [J]. Angewandte Chemie International Edition, 2009, 48(43): 8099-102.
[54] TERAO H, ISHII S, MITANI M, et al. Ethylene/polar monomer copolymerization behavior of bis(phenoxy–imine)Ti complexes: formation of polar monomer copolymers [J]. Journal of the American Chemical Society, 2008, 130(52): 17636-7.
[55] HU W-Q, SUN X-L, WANG C, et al. Synthesis and characterization of novel tridentate [NOP] titanium complexes and their application to copolymerization and polymerization of ethylene [J]. Organometallics, 2004, 23(8): 1684-8.
[56] 王新科 S M-M, 孙杰, 唐勇, 谢作伟. 边臂修饰的水杨醛亚胺第四族金属配合物的合成、结构及其乙烯聚合行为研究 [J]. 化学学报, 2012, 70(18): 1909-16.
[57] WAN D-W, CHEN Z, GAO Y-S, et al. Synthesis and characterization of tridentate [O−N(H)X] titanium complexes and their applications in olefin polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(11): 2495-503.
[58] WANG Z, PENG A Q, SUN X L, et al. Synthesis and characterization of titanium complexes bearing sulfoxide groups and their catalytic behaviors in ethylene homo- and copolymerization [J]. Science China Chemistry, 2014, 57(8): 1144-9.
[59] MILLER S A, BERCAW J E. Mechanism of isotactic polypropylene formation with C1-symmetric metallocene catalysts [J]. Organometallics, 2006, 25(15): 3576-92.
[60] LU L P, SUO F Z, FENG Y L, et al. Synthesis and biological evaluation of vanadium complexes as novel anti-tumor agents [J]. European Journal of Medicinal Chemistry, 2019, 176: 1-10.
[61] BOCHMANN M. The chemistry of catalyst activation: the case of Group 4 polymerization catalysts [J]. Organometallics, 2010, 29(21): 4711-40.
[62] MATSUI S, MITANI M, SAITO J, et al. A family of zirconium complexes having two phenoxy-imine chelate ligands for olefin polymerization [J]. Journal of the American Chemical Society, 2001, 123(28): 6847-56.
[63] MAKIO H, PRASAD A V, TERAO H, et al. Isospecific propylene polymerization with in situ generated bis(phenoxy-amine)zirconium and hafnium single site catalysts [J]. Dalton Transactions, 2013, 42(25): 9112-9.
[64] GAO Y, CHRISTIANSON M D, WANG Y, et al. Unexpected precatalyst σ-ligand effects in phenoxyimine Zr-catalyzed ethylene/1-octene copolymerizations [J]. Journal of the American Chemical Society, 2019, 141(19): 7822-30.
[65] CHEN J, GAO Y, MARKS T J. Early transition metal catalysis for olefin–polar monomer copolymerization [J]. Angewandte Chemie International Edition, 2020, 59(35): 14726-35.
[66] LUCKHAM S L J, NOZAKI K. Toward the copolymerization of propylene with polar comonomers [J]. Accounts of Chemical Research, 2021, 54(2): 344-55.
[67] TAN C, ZOU C, CHEN C. Material properties of functional polyethylenes from transition-metal-catalyzed ethylene–polar monomer copolymerization [J]. Macromolecules, 2022, 55(6): 1910-22.
[68] ZHOU G, CUI L, MU H, et al. Custom-made polar monomers utilized in nickel and palladium promoted olefin copolymerization [J]. Polymer Chemistry, 2021, 12(27): 3878-92.
[69] FRANSSEN N M G, REEK J N H, DE BRUIN B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges [J]. Chemical Society Reviews, 2013, 42(13): 5809-32.
[70] TARDY A, NICOLAS J, GIGMES D, et al. Radical ring-opening polymerization: Scope, limitations, and application to (bio)degradable materials [J]. Chemical Reviews, 2017, 117(3): 1319-406.
[71] JIMéNEZ C A, BELMAR J B. Convenient and efficient method for the obtainment of ketones from highly hindered aromatic N,N‐dimethyl‐amides [J]. Synthetic Communications, 2007, 37(14): 2391-7.
[72] AUDOUIN H, BELLINI R, MAGNA L, et al. Tridentate aryloxy-based titanium catalysts towards ethylene oligomerization and polymerization [J]. European Journal of Inorganic Chemistry, 2015, 2015(31): 5272-80.
Edit Comment