中文版 | English
Title

[ONX]钛配合物的设计、合成及其催化丙烯立构选择性(共)聚合研究

Alternative Title
DESIGN AND SYNTHESIS OF [ONX] TITANIUM COMPLEXES AND THEIR APPLICATION IN CATALYTIC STEREOSELECTIVE PROPYLENE (CO)POLYMERIZATION
Author
Name pinyin
SONG Ping
School number
12032101
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
唐勇
Mentor unit
化学系
Tutor of External Organizations
周姣龙
Tutor units of foreign institutions
中国科学院上海有机化学研究所
Publication Years
2022-11-18
Submission date
2022-12-14
University
南方科技大学
Place of Publication
深圳
Abstract

聚丙烯作为一种半结晶热塑性塑料,具有良好的耐受化学品和极端条件的性能,广泛应用于日常生活和工业生产。高立构规整度的聚丙烯具有高熔点、低密度、高弹性模量、优异的化学耐受性等突出性能,成为商业化生产和应用的主导材料。具有不同微观结构的聚丙烯通常表现出不同的性能,从而满足不同领域日益多样化的需求。此外,官能化聚丙烯赋予材料更多优异性能,如粘附性、韧性、导电性、可染性、相容性和流变性等。因此,开发新型催化剂和高效的催化工艺,以实现丙烯与极性单体的立构选择性共聚,一直是学术界和工业界共同致力的目标。相比于后过渡金属,前过渡金属催化剂更利于合成iPP,但由于其较强的亲氧性,通常对极性单体杂原子的耐受性差。在此,我们设计并合成了一系列水杨醛类三齿[ONX]型Ti配合物,并探讨了它们在催化丙烯均聚和共聚中的反应性能,其中边臂基团有助于调整聚合物规整度并提高对极性单体的容忍度。

  本论文内容主要包括三部分:1)利用边臂策略设计合成了一系列水杨醛亚胺/饱和胺类ONX型三齿配体及相应的钛配合物。这些配体具有不同的桥联方式、边臂基团和骨架修饰。通过核磁共振、高分辨质谱或X-Ray单晶衍射等分析方法对化合物进行了表征和分析。2)在优化的聚合条件(MMAO作为助催化剂,3 atm的丙烯压力)下,将此类配合物用于丙烯均聚研究。研究结果表明,经过对配体骨架的调整,实现了丙烯的高立构选择性均聚,获得了等规度([mmmm])高达80% 的聚丙烯。通过催化剂结构催化性能关系研究,初步总结了催化剂结构对催化活性、聚合物分子量及立构规整度的调控规律。3)研究了[O-NXR]TiBn2配合物催化丙烯与烯醇单体(经Al(iBu)3预处理)的共聚合。除了关注规整度和催化活性外,我们发现极性单体的插入率与其链长相关,链长越长,其插入率越高。此外,我们还确定了催化剂结构中调控烯醇单体插入的潜在位点,获得了单体插入率高达9.45 mol% 的官能化聚丙烯。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-12
References List

[1] PRIVATE P, STRATEGIC I. Polypropylene market research report: By type, application, end use - global industry analysis and demand forecast to 2030 [Z]. 2021
[2] NATTA G, PINO P, CORRADINI P, et al. CRYSTALLINE HIGH POLYMERS OF α-OLEFINS [J]. Journal of the American Chemical Society, 1955, 77(6): 1708-10.
[3] TANASE S, KATAYAMA K, YABUNOUCHI N, et al. Design of novel malonates as internal donors for MgCl2-supported TiCl4 type polypropylene catalysts and their mechanistic aspects, Part 1 [J]. Journal of Molecular Catalysis A: Chemical, 2007, 273(1): 211-7.
[4] RATANASAK M, PARASUK V. Roles of malonate donor on activity and stereoselectivity of Ziegler–Natta catalyzed propylene polymerization [J]. Journal of Organometallic Chemistry, 2015, 775: 6-11.
[5] BAHRI-LALEH N, HANIFPOUR A, MIRMOHAMMADI S A, et al. Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization [J]. Progress in Polymer Science, 2018, 84: 89-114.
[6] KISSIN Y. Isospecific polymerization of olefins [M]. Springer New York, 1985.
[7] COATES G W. Precise control of polyolefin stereochemistry using single-site metal catalysts [J]. Chemical Reviews, 2000, 100(4): 1223-52.
[8] RESCONI L, CAVALLO L, FAIT A, et al. Selectivity in propene polymerization with metallocene catalysts [J]. Chemical Reviews, 2000, 100(4): 1253-346.
[9] EWEN J A. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts [J]. Journal of the American Chemical Society, 1984, 106(21): 6355-64.
[10] WILD F, ZSOLNAI L, HUTTNER G, et al. ansa-Metallocene derivatives. IV. synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands [J]. Journal of Organometallic Chemistry, 1982, 232: 233–47.
[11] KAMINSKY W, BRINTZINGER H, WILD F. Polymerization of propene and butene with a chiral zirconocene and methylalumoxane as cocatalyst [J]. Angewandte Chemie International Edition, 1985, 24: 507-8.
[12] SPALECK W, ANTBERG M, ROHRMANN J, et al. High molecular weight polypropylene through specifically designed zirconocene catalysts [J]. Angewandte Chemie International Edition, 2010, 31(10): 1347-50.
[13] KAWAHARA N, KOJOH S-I, TODA Y, et al. The detailed analysis of the vinylidene structure of metallocene-catalyzed polypropylene [J]. Polymer, 2004, 45(2): 355-7.
[14] HARNEY M B, ZHANG Y, SITA L R. Discrete, multiblock isotactic–atactic stereoblock polypropene microstructures of differing block architectures through programmable stereomodulated living Ziegler–Natta polymerization [J]. Angewandte Chemie International Edition, 2006, 45(15): 2400-4.
[15] ZHANG W, SITA L R. Highly efficient, living coordinative chain-transfer polymerization of propene with ZnEt2:  practical production of ultrahigh to very low molecular weight amorphous atactic polypropenes of extremely narrow polydispersity [J]. Journal of the American Chemical Society, 2008, 130(2): 442-3.
[16] CHERIAN A E, ROSE J M, LOBKOVSKY E B, et al. A C2-Symmetric, Living α-Diimine Ni(II) Catalyst:  Regioblock Copolymers from Propylene [J]. Journal of the American Chemical Society, 2005, 127(40): 13770-1.
[17] OTA Y, ITO S, KOBAYASHI M, et al. Crystalline isotactic polar polypropylene from the palladium‐catalyzed copolymerization of propylene and polar monomers [J]. Angew Chem Int Ed 2016, 55(26): 7505-9.
[18] KONISHI Y, TAO W-J, YASUDA H, et al. Nickel-catalyzed propylene/polar monomer copolymerization [J]. ACS Macro Letters, 2018, 7(2): 213-7.
[19] MAKIO H, KASHIWA N, FUJITA T. FI catalysts: A new family of high performance catalysts for olefin polymerization [J]. Cheminform, 2002, 33(5): 477-93.
[20] FURUYAMA R, SAITO J, ISHII S-I, et al. Ethylene and propylene polymerization behavior of a series of bis(phenoxy–imine)titanium complexes [J]. Journal of Molecular Catalysis A: Chemical, 2003, 200(1): 31-42.
[21] MITANI M, FURUYAMA R, MOHRI J-I, et al. Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy−imine chelate ligands [J]. Journal of the American Chemical Society, 2003, 125(14): 4293-305.
[22] MAKIO H, TOHI Y, SAITO J, et al. Regio- and stereochemistry in propylene polymerization catalyzed with bis(phenoxy-imine) Zr and Hf complexes/MAO systems [J]. Macromolecular Rapid Communications, 2003, 24(15): 894-9.
[23] SAITO J, ONDA M, MATSUI S, et al. Propylene polymerization with bis(phenoxy-imine) Group-4 catalysts using iBu3Al/Ph3CB(C6F5)4 as a cocatalyst [J]. Macromolecular Rapid Communications, 2002, 23(18): 1118-23.
[24] PRASAD A V, MAKIO H, SAITO J, et al. Highly isospecific polymerization of propylene with bis(phenoxy-imine) Zr and Hf complexes using iBu3Al/Ph3CB(C6F5)4 as a cocatalyst [J]. Chemistry Letters, 2004, 33(3): 250-1.
[25] HUSTAD P D, TIAN J, COATES G W. Mechanism of propylene insertion using bis(phenoxyimine)-based Titanium catalysts:  an unusual secondary insertion of propylene in a Group IV catalyst system [J]. Journal of the American Chemical Society, 2002, 124(14): 3614-21.
[26] EDSON J B, WANG Z, KRAMER E J, et al. Fluorinated bis(phenoxyketimine)titanium complexes for the Living, isoselective polymerization of propylene: multiblock isotactic polypropylene copolymers via sequential monomer addition [J]. Journal of the American Chemical Society, 2008, 130(14): 4968-77.
[27] BOUSSIE T R, DIAMOND G M, GOH C, et al. Nonconventional catalysts for isotactic propene polymerization in solution developed by using high-throughput-screening technologies [J]. Angewandte Chemie International Edition, 2006, 45(20): 3278-83.
[28] CHEN E Y X, CAMPBELL R E, DEVORE D D, et al. Divalent ansa-zirconocenes:  stereoselective synthesis and high activity for propylene polymerization [J]. Journal of the American Chemical Society, 2004, 126(1): 42-3.
[29] MCINNIS J P, DELFERRO M, MARKS T J. Multinuclear Group 4 catalysis: Olefin polymerization pathways modified by strong metal–metal cooperative effects [J]. Accounts of Chemical Research, 2014, 47(8): 2545-57.
[30] GAO Y, CHEN X, ZHANG J, et al. Catalyst nuclearity effects on stereo- and regioinduction in pyridylamidohafnium-catalyzed propylene and 1-octene polymerizations [J]. Macromolecules, 2018, 51(6): 2401-10.
[31] D·D·范德莱德, J·C·史蒂文斯. 聚丙烯溶液聚合法: 中国, CN101490096B [P/OL]. 2012-.
[32] KIESEWETTER E T, RANDOLL S, RADLAUER M, et al. Stereospecific octahedral Group 4 bis(phenolate) ether complexes for olefin polymerization [J]. Journal of the American Chemical Society, 2010, 132(16): 5566-7.
[33] CUTHBERT E N T, VITTORIA A, CIPULLO R, et al. Structure-Activity Relationships for Bis(phenolate-ether) Zr/Hf Propene Polymerization Catalysts [J]. European Journal of Inorganic Chemistry, 2020, 2020(6): 541-50.
[34] LONG Y Y, WANG Y X, LI B X, et al. Living syndiospecific polymerization of propylene with sterically encumbered titanium complexes activated by MMAO [J]. Polymer Chemistry, 2014, 5(22): 6510-22.
[35] ZHAO X, CHEN Z, LI H, et al. Stereoselectivity inversion: Isospecific propylene polymerization catalyzed by rigid cyclic bis(phenoxyaldimine) titanium Complexes [J]. Macromolecules, 2020, 53(10): 3806-13.
[36] ZHAO X, LI H, LIU Y, et al. Substituent effects on propylene polymerization in cyclic bis(phenoxyaldimine) titanium catalysts [J]. Macromolecules, 2020, 53(24): 10803-12.
[37] BOAEN N K, HILLMYER M A. Post-polymerization functionalization of polyolefins [J]. Chemical Society Reviews, 2005, 34(3): 267-75.
[38] CHUNG T C M. Functionalization of Polypropylene by the Combination of Metallocene Catalysts and Reactive Comonomers [J]. Macromolecular Reaction Engineering, 2014, 8(2): 69-80.
[39] WALSH D J, HYATT M G, MILLER S A, et al. Recent Trends in Catalytic Polymerizations [J]. ACS Catalysis, 2019, 9(12): 11153-88.
[40] JOHNSON L K, MECKING S, BROOKHART M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts [J]. Journal of the American Chemical Society, 1996, 118(1): 267-8.
[41] NAKANO R, NOZAKI K. Copolymerization of propylene and polar monomers using Pd/IzQO catalysts [J]. Journal of the American Chemical Society, 2015, 137(34): 10934-7.
[42] HAKALA K, LöFGREN B, HELAJA T. Copolymerizations of oxygen-functionalized olefins with propylene using metallocene/methylaluminoxane catalyst [J]. European Polymer Journal, 1998, 34(8): 1093-7.
[43] KAYA A, JAKISCH L, KOMBER H, et al. Synthesis of Various Functional Propylene Copolymers Using rac-Et
[1-Ind]2ZrCl2/MAO as the Catalyst System [J]. Macromolecular Rapid Communications, 2001, 22(12): 972-7.
[44] HAGIHARA H, ISHIHARA T, THE BAN H, et al. Precise control of microstructure of functionalized polypropylene synthesized by the ansa-zirconocene/ MAO catalysts [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(5): 1738-48.
[45] SHANG R, GAO H, LUO F, et al. Functional isotactic polypropylenes via efficient direct copolymerizations of propylene with Various amino-functionalized α-olefins [J]. Macromolecules, 2019, 52(23): 9280-90.
[46] ARRIOLA D J, CARNAHAN E M, HUSTAD P D, et al. Catalytic production of olefin block copolymers via chain shuttling polymerization [J]. Science, 2006, 312(5774): 714.
[47] BOUYAHYI M, TURKI Y, TANWAR A, et al. Randomly functionalized polyethylenes: in quest of avoiding catalyst deactivation [J]. ACS Catalysis, 2019, 9(9): 7779-90.
[48] HUANG M, CHEN J, WANG B, et al. Polar isotactic and syndiotactic polypropylenes by organozirconium-catalyzed masking-reagent-free propylene and amino–olefin copolymerization [J]. Angewandte Chemie International Edition, 2020, 59(46): 20522-8.
[49] GAO M L, GU Y F, WANG C, et al. Ethylene homopolymerization and copolymerization with α-olefins catalyzed by titanium complexes bearing [O−NSR] tridentate ligands [J]. Journal of Molecular Catalysis A: Chemical, 2008, 292(1): 62-6.
[50] GAO M L, SUN X L, GU Y F, et al. Copolymerization of ethylene with cycloolefins by titanium complexes containing tridentate [O−NSR] ligands [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(8): 2807-19.
[51] YANG X-H, WANG Z, SUN X-L, et al. Synthesis, characterization, and catalytic behaviours of β-carbonylenamine-derived [O−NS]TiCl3 complexes in ethylene homo- and copolymerization [J]. Dalton Transactions, 2009, (41): 8945-54.
[52] YANG X H, SUN X L, HAN F B, et al. One-Pot Screening of Titanium Catalysts for Ethylene Polymerization [J]. Organometallics, 2008, 27(18): 4618-24.
[53] YANG X H, LIU C R, WANG C, et al. [O−NSR]TiCl3-Catalyzed Copolymerization of Ethylene with Functionalized Olefins [J]. Angewandte Chemie International Edition, 2009, 48(43): 8099-102.
[54] TERAO H, ISHII S, MITANI M, et al. Ethylene/polar monomer copolymerization behavior of bis(phenoxy–imine)Ti complexes: formation of polar monomer copolymers [J]. Journal of the American Chemical Society, 2008, 130(52): 17636-7.
[55] HU W-Q, SUN X-L, WANG C, et al. Synthesis and characterization of novel tridentate [NOP] titanium complexes and their application to copolymerization and polymerization of ethylene [J]. Organometallics, 2004, 23(8): 1684-8.
[56] 王新科 S M-M, 孙杰, 唐勇, 谢作伟. 边臂修饰的水杨醛亚胺第四族金属配合物的合成、结构及其乙烯聚合行为研究 [J]. 化学学报, 2012, 70(18): 1909-16.
[57] WAN D-W, CHEN Z, GAO Y-S, et al. Synthesis and characterization of tridentate [O−N(H)X] titanium complexes and their applications in olefin polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(11): 2495-503.
[58] WANG Z, PENG A Q, SUN X L, et al. Synthesis and characterization of titanium complexes bearing sulfoxide groups and their catalytic behaviors in ethylene homo- and copolymerization [J]. Science China Chemistry, 2014, 57(8): 1144-9.
[59] MILLER S A, BERCAW J E. Mechanism of isotactic polypropylene formation with C1-symmetric metallocene catalysts [J]. Organometallics, 2006, 25(15): 3576-92.
[60] LU L P, SUO F Z, FENG Y L, et al. Synthesis and biological evaluation of vanadium complexes as novel anti-tumor agents [J]. European Journal of Medicinal Chemistry, 2019, 176: 1-10.
[61] BOCHMANN M. The chemistry of catalyst activation: the case of Group 4 polymerization catalysts [J]. Organometallics, 2010, 29(21): 4711-40.
[62] MATSUI S, MITANI M, SAITO J, et al. A family of zirconium complexes having two phenoxy-imine chelate ligands for olefin polymerization [J]. Journal of the American Chemical Society, 2001, 123(28): 6847-56.
[63] MAKIO H, PRASAD A V, TERAO H, et al. Isospecific propylene polymerization with in situ generated bis(phenoxy-amine)zirconium and hafnium single site catalysts [J]. Dalton Transactions, 2013, 42(25): 9112-9.
[64] GAO Y, CHRISTIANSON M D, WANG Y, et al. Unexpected precatalyst σ-ligand effects in phenoxyimine Zr-catalyzed ethylene/1-octene copolymerizations [J]. Journal of the American Chemical Society, 2019, 141(19): 7822-30.
[65] CHEN J, GAO Y, MARKS T J. Early transition metal catalysis for olefin–polar monomer copolymerization [J]. Angewandte Chemie International Edition, 2020, 59(35): 14726-35.
[66] LUCKHAM S L J, NOZAKI K. Toward the copolymerization of propylene with polar comonomers [J]. Accounts of Chemical Research, 2021, 54(2): 344-55.
[67] TAN C, ZOU C, CHEN C. Material properties of functional polyethylenes from transition-metal-catalyzed ethylene–polar monomer copolymerization [J]. Macromolecules, 2022, 55(6): 1910-22.
[68] ZHOU G, CUI L, MU H, et al. Custom-made polar monomers utilized in nickel and palladium promoted olefin copolymerization [J]. Polymer Chemistry, 2021, 12(27): 3878-92.
[69] FRANSSEN N M G, REEK J N H, DE BRUIN B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges [J]. Chemical Society Reviews, 2013, 42(13): 5809-32.
[70] TARDY A, NICOLAS J, GIGMES D, et al. Radical ring-opening polymerization: Scope, limitations, and application to (bio)degradable materials [J]. Chemical Reviews, 2017, 117(3): 1319-406.
[71] JIMéNEZ C A, BELMAR J B. Convenient and efficient method for the obtainment of ketones from highly hindered aromatic N,N‐dimethyl‐amides [J]. Synthetic Communications, 2007, 37(14): 2391-7.
[72] AUDOUIN H, BELLINI R, MAGNA L, et al. Tridentate aryloxy-based titanium catalysts towards ethylene oligomerization and polymerization [J]. European Journal of Inorganic Chemistry, 2015, 2015(31): 5272-80.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O63
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/416603
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
宋平. [ONX]钛配合物的设计、合成及其催化丙烯立构选择性(共)聚合研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032101-宋平-化学系.pdf(5998KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[宋平]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[宋平]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[宋平]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.