[1] 王轶辰. 我国氢能产业初具雏形成为世界第一产氢大国[J]. 能源研究与利用, 2019, 188(4): 8-9.
[2] 郭伟, 唐人虎. 2060碳中和目标下的电力行业[J]. 能源, 2020, 142(11): 19-26.
[3] PROFATILOVA I, JACQUES P-A, ESCRIBANO S. Evaluation of parameters accelerating the aging of pemfcs operating under reformate containing carbon monoxide[J]. Journal of the Electrochemical Society, 2018, 165(6): F3251-F3260.
[4] 李佩佩, 翟燕萍, 王先鹏, 等. 浅谈氢气提纯方法的选取[J]. 天然气化工—C1化学与化工, 2020, 45(3): 115-119.
[5] DALLA FONTANA A, SIRINI N, CORNAGLIA L M, et al. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S[J]. Journal of Membrane Science, 2018, 563: 351-359.
[6] YURANOV I, AUTISSIER N, SORDAKIS K, et al. Heterogeneous catalytic reactor for hydrogen production from formic acid and its use in polymer electrolyte fuel cells[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6635-6643.
[7] ZHANG L, GAO Z M, BAO L X, et al. Influence of the supports ZrO2 on selective methanation of CO over the nickel supported catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9287-9295.
[8] SEO J G, KWON J T, KIM J, et al. Impurity effect on proton exchange membrane fuel cell[C]. Ifost: 2007 International Forum on Strategic Technology, 2007: 484-487.
[9] SABATIER P, SENDERENS J B. New synthesis of methane[J]. Comptes Rendus Hebdomadaires des Seances del Academic des Scrences, 1902. 134: 514-516.
[10] RöNSCH S, SCHNEIDER J, MATTHISCHKE S, et al. Review on methanation – From fundamentals to current projects[J]. Fuel, 2016, 166: 276-296.
[11] FISCHER F, TROPSCH H, DILTHEY P. Reduction of carbon monoxide to methane in the presence of various metals[J]. Brennstoff-Chemie, 1925, 6: 265-271.
[12] VANNICE M A. The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen[J]. Catalysis Reviews, 1976, 14(1): 153-191.
[13] MILLS G A, STEFFGEN F W. Catalytic methanation[J]. Catalysis Reviews, 1974, 8(1): 159-210.
[14] SAITO M, ANDERSON R B. The activity of several molybdenum compounds for the methanation of CO[J]. Journal of Catalysis, 1980, 63(2): 438-446.
[15] BLIGAARD T, NøRSKOV J K, DAHL S, et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis, 2004, 224(1): 206-217.
[16] TAKENAKA S, SHIMIZU T, OTSUKA K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. International Journal of Hydrogen Energy, 2004, 29(10): 1065-1073.
[17] CHOUDHURY M B I, AHMED S, SHALABI M A, et al. Preferential methanation of CO in a syngas involving CO2 at lower temperature range[J]. Applied Catalysis A: General, 2006, 314(1): 47-53.
[18] TADA S, KIKUCHI R, TAKAGAKI A, et al. Study of Ru-Ni/TiO2 catalysts for selective CO methanation[J]. Applied Catalysis B: Environmental, 2013, 140-141: 258-264.
[19] TADA S, KIKUCHI R, TAKAGAKI A, et al. Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation[J]. Catalysis Today, 2014, 232: 16-21.
[20] DAGLE R A, WANG Y, XIA G-G, et al. Selective CO methanation catalysts for fuel processing applications[J]. Applied Catalysis A: General, 2007, 326(2): 213-218.
[21] LIU Q H, DONG X F, MO X M, et al. Selective catalytic methanation of CO in hydrogen-rich gases over Ni/ZrO2 catalyst[J]. Journal of Natural Gas Chemistry, 2008, 17(3): 268-272.
[22] URASAKI K, TANPO Y, NAGASHIMA Y, et al. Effects of preparation conditions of Ni/TiO2 catalysts for selective CO methanation in the reformate gas[J]. Applied Catalysis A: General, 2013, 452: 174-178.
[23] HU S L, LI W X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science, 2021, 374(6573): 1360-1365.
[24] LE T A, KIM M S, LEE S H, et al. CO and CO2 methanation over supported Ni catalysts[J]. Catalysis Today, 2017, 293-294: 89-96.
[25] KOKKA A, RAMANTANI T, PETALA A, et al. Effect of the nature of the support, operating and pretreatment conditions on the catalytic performance of supported Ni catalysts for the selective methanation of CO[J]. Catalysis Today, 2020, 355: 832-843.
[26] 熊军. 富氢气体中CO选择性甲烷化新型催化剂研究[D]. 华南理工大学, 2012.
[27] TRUSZKIEWICZ E, KOWALCZYK K, DĘBSKA A, et al. Methanation of CO on Ru/graphitized-carbon catalysts: Effects of the preparation method and the carbon support structure[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31985-31999.
[28] 郑传月. 高岭土改性及其负载型Ni基催化剂合成气甲烷化性能研究[D]. 中国矿业大学, 2016.
[29] 唐洪贵. 以水滑石为前躯体制备双金属Ni-Fe合金催化剂用于CO甲烷化反应的研究[D]. 天津大学, 2017.
[30] DEREKAYA F B, ERMERGEN D M. Selective CO methanation over CeO2-ZrO2-composed NiO and Co3O4 catalysts[J]. Turkish Journal of Chemistry, 2014, 38: 568-580.
[31] DEREKAYA F B, YAŞAR G. The CO methanation over NaY-zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ZrO2 and Ni/Co3O4/ZrO2 catalysts[J]. Catalysis Communications, 2011, 13(1): 73-77.
[32] 温都日玛. 蒙脱土组份与孔结构的可控改性及其负载的Ni基催化剂CO甲烷化反应性能研究[D]. 内蒙古大学, 2013.
[33] YOSHIDA H, WATANABE K, IWASA N, et al. Selective methanation of CO in H2 -rich gas stream by synthetic nickel-containing smectite based catalysts[J]. Applied Catalysis B: Environmental, 2015, 162: 93-97.
[34] SONG Q, ZHAI X W, YU F, et al. Defect-rich nickel nanoparticles supported on SiC derived from silica fume with enhanced catalytic performance for CO methanation[J]. Catalysts, 2019, 9(3): 295.
[35] ZHANG M J, LI P P, ZHU M Y, et al. Ultralow-weight loading Ni catalyst supported on two-dimensional vermiculite for carbon monoxide methanation[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1873-1878.
[36] ECKLE S, AUGUSTIN M, ANFANG H-G, et al. Influence of the catalyst loading on the activity and the CO selectivity of supported Ru catalysts in the selective methanation of CO in CO2 containing feed gases[J]. Catalysis Today, 2012, 181(1): 40-51.
[37] ABDEL-MAGEED A M, ECKLE S, ANFANG H G, et al. Selective CO methanation in CO2-rich H2 atmospheres over a Ru/zeolite catalyst: The influence of catalyst calcination[J]. Journal of Catalysis, 2013, 298: 148-160.
[38] JWA E, LEE S B, LEE H W, et al. Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts[J]. Fuel Processing Technology, 2013, 108: 89-93.
[39] 封啸. 镍基锆掺杂SBA分子筛催化剂及其CO选择性甲烷化性能[D]. 华南理工大学, 2018.
[40] 赵华. 钛改性SBA分子筛镍基催化剂及其CO选择性甲烷化性能[D]. 华南理工大学, 2020.
[41] PING D, DONG X F, ZANG Y H, et al. Highly efficient MOF-templated Ni catalyst towards CO selective methanation in hydrogen-rich reformate gases[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15551-15556.
[42] PANAGIOTOPOULOU P, KONDARIDES D I, VERYKIOS X E. Selective methanation of CO over supported Ru catalysts[J]. Applied Catalysis B: Environmental, 2009, 88(3-4): 470-478.
[43] TADA S, SHOJI D, URASAKI K, et al. Physical mixing of TiO2 with sponge nickel creates new active sites for selective CO methanation[J]. Catalysis Science & Technology, 2016, 6(11): 3713-3717.
[44] KONISHCHEVA M V, POTEMKIN D I, SNYTNIKOV P V, et al. The insights into chlorine doping effect on performance of ceria supported nickel catalysts for selective CO methanation[J]. Applied Catalysis B: Environmental, 2018, 221: 413-421.
[45] TADA S, NAGASE H, FUJIWARA N, et al. What are the best active sites for CO2 methanation over Ni/CeO2?[J]. Energy & Fuels, 2021, 35(6): 5241-5251.
[46] GAO Z M, DAI Q Z, MA H W, et al. Ceria supported nickel catalysts for CO removal from H2-rich gas[J]. Journal of Rare Earths, 2016, 34(12): 1213-1220.
[47] GAO Z M, WANG L L, MA H W, et al. Durability of catalytic performance of the chlorine-doped catalyst Ni(Clx)/ZrO2 for selective methanation of CO in H2-rich gas[J]. Applied Catalysis A: General, 2017, 534: 78-84.
[48] GUO Q, LI S Z, LI J, et al. Effect of SiO2 on the CO selective methanation over SiO2/Ni-ZrO2 catalysts[J]. ChemCatChem, 2022, 14(1): e202101281.
[49] CISNEROS S, CHEN S, DIEMANT T, et al. Effects of SiO2-doping on high-surface-area Ru/TiO2 catalysts for the selective CO methanation[J]. Applied Catalysis B: Environmental, 2021, 282: 119483.
[50] LI X Y, HAN Y J, HUANG Y K, et al. Hydrogenated TiO2 supported Ru for selective methanation of CO in practical conditions[J]. Applied Catalysis B: Environmental, 2021, 298: 120597.
[51] LI D Y, XU R D, WONG R J, et al. Suppressing byproduct formation for high selective CO2 reduction over optimized Ni/TiO2 based catalysts[J]. Journal of Energy Chemistry, 2022, 72: 465-478.
[52] XU M, HE S, CHEN H, et al. TiO2−x-modified Ni nanocatalyst with tunable metal-support interaction for water-gas shift reaction[J]. ACS Catalysis, 2017, 7(11): 7600-7609.
[53] MIAO B, MA S S K, WANG X, et al. Catalysis mechanisms of CO2 and CO methanation[J]. Catalysis Science & Technology, 2016, 6(12): 4048-4058.
[54] ECKLE S, ANFANG H-G, BEHM R J. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases[J]. The Journal of Physical Chemistry C, 2010, 115(4): 1361-1367.
[55] WANG F, HE S, CHEN H, et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation[J]. Journal of The American Chemical Society, 2016, 138(19): 6298-6305.
[56] ANDERSSON M P, ABILD-PEDERSEN F, REMEDIAKIS I N, et al. Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces[J]. Journal of Catalysis, 2008, 255(1): 6-19.
[57] WANG J B, KAWAZOE Y, SUN Q, et al. The selectivity and activity of catalyst for CO hydrogenation to methanol and hydrocarbon: A comparative study on Cu, Co and Ni surfaces[J]. Surface Science, 2016, 645: 30-40.
[58] ALDANA P A U, OCAMPO F, KOBL K, et al. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy[J]. Catalysis Today, 2013, 215: 201-207.
[59] PAN Y X, LIU C J, GE Q F. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/γ-Al2O3: A density functional theory study[J]. Journal of Catalysis, 2010, 272(2): 227-234.
[60] TADA S, KIKUCHI R. Mechanistic study and catalyst development for selective carbon monoxide methanation[J]. Catalysis Science & Technology, 2015, 5(6): 3061-3070.
[61] ZHANG M J, LI P P, TIAN Z Q, et al. Clarification of active sites at interfaces between silica support and nickel active components for carbon monoxide methanation[J]. Catalysts, 2018, 8(7): 293.
[62] ZHI C M, WANG Q, WANG B J, et al. Insight into the mechanism of methane synthesis from syngas on a Ni(111) surface: a theoretical study[J]. RSC Advances, 2015, 5(82): 66742-66756.
[63] MCCARTY J G, WISE H. Hydrogenation of surface carbon on alumina-supported nickel[J]. Journal of Catalysis, 1979, 57(3): 406-416.
[64] HELVEG S, LOPEZ-CARTES C, SEHESTED J, et al. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427(6973): 426-429.
[65] CZEKAJ I, LOVIAT F, RAIMONDI F, et al. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS)[J]. Applied Catalysis A: General, 2007, 329: 68-78.
[66] 何珍珍, 韩文锋, 刘化章. 载体粒径对合成气甲烷化镍基催化剂性能的影响[J]. 现代化工, 2017, 37(08): 140-144.
[67] ABDEL-MAGEED A M, WIDMANN D, OLESEN S E, et al. Selective CO methanation on highly active Ru/TiO2 catalysts: identifying the physical origin of the observed activation/deactivation and loss in selectivity[J]. ACS Catalysis, 2018, 8(6): 5399-5414.
[68] CHEN S L, ABDEL-MAGEED A M, LI D, et al. Morphology-engineered highly active and stable Ru/TiO2 catalysts for selective CO methanation[J]. Angewandte Chemie International Edtion, 2019, 58(31): 10732-10736.
[69] AGNELLI M, SWAAN H M, MARQUEZ-ALVAREZ C, et al. CO hydrogenation on a nickel catalyst: II. A mechanistic study by transient kinetics and infrared spectroscopy[J]. Journal of Catalysis, 1998, 175(1): 117-128.
[70] SHEN W M, DUMESIC J A, HILL C G. Criteria for stable Ni particle-size under methanation reaction conditistroons: nickel transport and particle-size growth via nickel carbonyl[J]. Journal of Catalysis, 1981, 68(1): 152-165.
[71] 李霞, 杨霞珍, 唐浩东, 等. 载体对合成气制甲烷镍基催化剂性能的影响[J].催化学报, 2011, 32(08): 1400-1404.
[72] MUNNIK P, VELTHOEN M E, DE JONGH P E, et al. Nanoparticle growth in supported nickel catalysts during methanation reaction––larger is better[J]. Angewandte Chemie International Edtion, 2014, 53(36): 9493-9497.
[73] 陈诵英, 王琴. 固体催化剂制备原理与技术 [M]. 化学工业出版社, 2012.
[74] DU X R, HUANG Y K, PAN X L, et al. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts[J]. Nature Communication, 2020, 11(1): 5811.
[75] HU D, LIU C, LI L, et al. Carbon dioxide reforming of methane over nickel catalysts supported on TiO2(001) nanosheets[J]. International Journal of Hydrogen Energy, 2018, 43(46): 21345-21354.
[76] 刘吉, 王东旭, 肖显斌, 等. 焙烧温度对Ni/γ-Al2O3还原条件及催化甲苯水蒸气重整反应的影响[J]. 燃料化学学报, 2014, 42(10): 1225-1232.
[77] FU Q, WAGNER T. Interaction of nanostructured metal overlayers with oxide surfaces[J]. Surface Science Reports, 2007, 62(11): 431-498.
[78] LAZZERI M, VITTADINI A, SELLONI A. Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Physical Review B, 2001, 63(15): 155409.
[79] TIAN F, ZHANG Y P, ZHANG J, et al. Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets[J]. The Journal of Physical Chemistry C, 2012, 116(13): 7515-7519.
[80] CHEN S L, LI D, LIU Y X, et al. Morphology-dependent defect structures and photocatalytic performance of hydrogenated anatase TiO2 nanocrystals[J]. Journal of Catalysis, 2016, 341: 126-135.
[81] 雷振坤, 仇巍, 亢一澜. 微尺度拉曼光谱实验力学[M]. 科学出版社, 2015.
[82] BERGER T, STERRER M, DIWALD O, et al. Light-induced charge separation in anatase TiO2 particles[J]. Journal of Physical Chemistry B, 2005, 109(13): 6061-6068.
[83] LIU X G, DU G R, LI M. True photoreactivity origin of Ti3+-doped anatase TiO2 crystals with respectively dominated exposed {001}, {101}, and {100} facets[J]. ACS Omega, 2019, 4(12): 14902-14912.
Edit Comment