中文版 | English
Title

小分子化合物RHP1促进根毛极性生长的调控机制研究

Author
Name pinyin
JIN Zhongcai
School number
11849498
Degree
博士
Discipline
071001
Subject category of dissertation
071001
Supervisor
李瑞熙
Mentor unit
生物系
Tutor units of foreign institutions
哈尔滨工业大学
Publication Years
2022-10-24
Submission date
2022-12-21
University
哈尔滨工业大学
Place of Publication
哈尔滨工业大学
Abstract

根毛是根表皮细胞分化形成的管状凸起结构。根毛的存在可以提高根系营养吸收效率,帮助植物在土壤中固着,建立植物与土壤微生物共生关系并改善土壤结构。因此,研究根毛的发育调控机制具有重要生物学意义。虽然之前研究通过传统遗传学筛选发现了许多根毛发育调控的关键因子,但传统遗传筛选固有的基因冗余和致死效应等缺陷限制了科学家对根毛调控网络的深入研究。化学遗传学是近年来新兴的综合性研究方法,能有效克服传统遗传学常见的瓶颈问题,提升发现新调控机制的概率。筛选到的活性化合物能够在特定时间和特定部位快速可逆的调节生物功能,因而可期待发现新的调控机制并具有潜在的应用前景。

本研究根据花粉管和根毛极性生长具有相似性的特点,通过两轮化学遗传学筛选得到一个在极低浓度下显著促进根毛极性生长而不明显影响其它发育过程的甾醇类化合物—RHP1Root Hair Promoting Reagent 1)。RHP1对根毛的促进作用是瞬时并可逆的。化学结构与功能关系分析发现A4号位羟基为RHP1活性所必需。本研究通过化学方法合成了带有生物素标签且保留了生物学功能的RHP1衍生物FB-4,为RHP1的结构修饰和功能优化提供了重要信息。

为了探索RHP1调控根毛发育的分子机制,本研究首先证明了RHP1特异性作用于根毛尖端极性生长阶段,促进根毛生长速率和生长时间,而对根毛分化和起始没有明显作用。进一步,本研究分析了RHP1调控根毛极性生长的可能生物学途径。通过一系列分子、遗传和细胞学实验,本研究证明了RHP1作用于转录因子RHD6ROOT HAIR DEFECTIVE6- RSL4ROOT HAIR DEFECTIVE6-LIKE 4)上游,并通过促进RHD6RSL4的表达加强根毛转录调控水平。同时,本研究也发现RHP1能特异性促进小G蛋白ROP2Rho-of-plant 2GTPase在根毛尖端的极性分布而不改变其蛋白含量,暗示RHP1可能增强了ROP活性,进而加强根毛极性信号途径。该假设得到后续实验验证,因为RHP1能显著改变ROP下游效应因子,增强根毛尖端Ca2+信号强度并抑制微丝成束,最终促进分泌囊泡在根毛尖端积累。上述结果表明RHP1能同时促进调控根毛极性生长的转录激活途径和依赖于ROP GTPase的信号途径。

RHP1能同时促进根毛转录调控途径和ROP信号途径的现象引出了关于两条途径上下游调控关系的问题。本研究通过搜集相关突变体转录组数据,采用表达关联分析法研究了转录本途径与极性信号途径之间的潜在互作关系。结果表明,RHD6可能通过调控鸟苷酸交换因子GEF4/GEF10以及钙离子通道CNGC14的转录水平间接调控ROP极性信号途径。

为了进一步探索RHP1调控根毛极性生长的生物学机制,本研究基于RHP1的甾醇结构以及功能信息猜测RHP1可能通过调控脂类代谢间接促进根毛生长。脂质组学分析发现RHP1处理能显著增加植物特有的糖基肌醇磷酸神经酰胺(glycosyl inositol phospho ceramidesGIPC)的含量,并降低菜油甾醇的含量。然而,脂类合成途径关键基因突变体和脂类合成抑制剂均不能有效抑制RHP1对根毛生长的促进作用,外源添加脂类也不能模拟RHP1的效应促进根毛生长,因此脂类含量变化不是RHP1调控根毛极性生长的主要原因。之后,本研究通过转录组数据分析,发现RHP1影响光信号和化合物胁迫相关生物学过程。最后,本研究发现RHP1还能促进拟南花粉管生长及水稻和西红柿根毛生长,因而具有潜在的应用前景。

综上所述,本研究通过正向化学遗传学筛选体系成功筛到一个在低浓度下高效促进根毛生长的化合物—RHP1;揭示了RHP1能同时增强依赖于RHD6-RSL4的转录调控途径和依赖于ROP GTPase的极性信号途径;证实了RHP1在不同极性生长体系和不同植物物种之间的功能普适性。上述结果为RHP1作为生物活性分子应用到植物基础研究以及农业生产提供了重要的实验数据和理论信息。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-12
References List

[1] CLAIRE, GRIERSON, ERIK, et al. Root hairs.[J]. The Arabidopsis book / American Society of Plant Biologists, 2014, 12: e0172.
[2] SMITH S E, SMITH F A. Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales[J/OL]. Annual Review of Plant Biology, 2011, 62(1): 227-250.
[3] DE BAETS S, DENBIGH T D G, SMYTH K M, et al. Micro-scale interactions between Arabidopsis root hairs and soil particles influence soil erosion[J/OL]. Communications Biology, 2020, 3(1): 164.
[4] HEPLER P K, VIDALI L, CHEUNG A Y. Polarized Cell Growth in Higher Plants[J/OL]. Annual Review of Cell and Developmental Biology, 2001, 17(1): 159-187.
[5] ROUNDS C M, BEZANILLA M. Growth Mechanisms in Tip-Growing Plant Cells[J/OL]. Annual Review of Plant Biology, 2013, 64(1): 243-265.
[6] DATTA S, KIM C M, PERNAS M, et al. Root hairs: development, growth and evolution at the plant-soil interface[J/OL]. Plant and Soil, 2011, 346(1-2): 1-14.
[7] SALAZAR-HENAO J E, VÉLEZ-BERMÚDEZ I C, SCHMIDT W. The regulation and plasticity of root hair patterning and morphogenesis[J/OL]. Development, 2016, 143(11): 1848-1858.
[8] GALWAY M E, MASUCCI J D, LLOYD A M, et al. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root.[J]. Developmental Biology, 1994, 166(2): 740-754.
[9] BALCEROWICZ D, SCHOENAERS S, VISSENBERG K. Cell Fate Determination and the Switch from Diffuse Growth to Planar Polarity in Arabidopsis Root Epidermal Cells[J/OL]. Frontiers in Plant Science, 2015, 6
[2022-07-22].
[10] CUI S, SUZAKI T, TOMINAGA-WADA R, et al. Regulation and functional diversification of root hairs[J/OL]. Seminars in Cell & Developmental Biology, 2018, 83: 115-122.
[11] LEE M M, SCHIEFELBEIN J. WEREWOLF, a MYB-Related Protein in Arabidopsis, Is a Position-Dependent Regulator of Epidermal Cell Patterning[J/OL]. Cell, 1999, 99(5): 473-483.
[12] PAYNE C T, ZHANG F, LLOYD A M. GL3 Encodes a bHLH Protein That Regulates Trichome Development in Arabidopsis Through Interaction With GL1 and TTG1[J/OL]. Genetics, 2000, 156(3): 1349-1362.
[13] KWAK S H, SHEN R, SCHIEFELBEIN J. Positional Signaling Mediated by a Receptor-like Kinase in Arabidopsis[J/OL]. Science, 2005, 307(5712): 1111-1113.
[14] KIRIK V, SIMON M, HUELSKAMP M, et al. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis[J/OL]. Developmental Biology, 2004, 268(2): 506-513.
[15] WADA T, TACHIBANA T, SHIMURA Y, et al. Epidermal Cell Differentiation in Arabidopsis Determined by a Myb Homolog, CPC[J/OL]. Science, 1997, 277(5329): 1113-1116.
[16] SCHIEFELBEIN J, HUANG L, ZHENG X. Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops[J/OL]. Frontiers in Plant Science, 2014, 5
[2022-07-22].
[17] KANG Y H, KIRIK V, HULSKAMP M, et al. The MYB23 Gene Provides a Positive Feedback Loop for Cell Fate Specification in the Arabidopsis Root Epidermis[J/OL]. The Plant Cell, 2009, 21(4): 1080-1094.
[18] HASSAN H, SCHERES B, BLILOU I. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism[J/OL]. Development, 2010, 137(9): 1523-1529.
[19] SONG J H, KWAK S H, NAM K H, et al. QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis[J/OL]. Nature Communications, 2019, 10(1): 1744.
[20] HAN G, WEI X, DONG X, et al. Arabidopsis ZINC FINGER PROTEIN1 Acts Downstream of GL2 to Repress Root Hair Initiation and Elongation by Directly Suppressing bHLH Genes[J/OL]. The Plant Cell, 2020, 32(1): 206-225.
[21] YI K, MENAND B, BELL E, et al. A basic helix-loop-helix transcription factor controls cell growth and size in root hairs[J/OL]. Nature Genetics, 2010, 42(3): 264-267.
[22] VIJAYAKUMAR P, DATTA S, DOLAN L. ROOT HAIR DEFECTIVE SIX ‐ LIKE 4 ( RSL 4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth[J/OL]. New Phytologist, 2016, 212(4): 944-953.
[23] FISCHER U, IKEDA Y, GREBE M. Planar polarity of root hair positioning in Arabidopsis[J/OL]. Biochemical Society Transactions, 2007, 35(1): 149-151.
[24] STANISLAS T, HÜSER A, BARBOSA I C R, et al. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity[J/OL]. Nature Plants, 2015, 1(11): 15162.
[25] NAKAMURA M, GREBE M. Outer, inner and planar polarity in the Arabidopsis root[J/OL]. Current Opinion in Plant Biology, 2018, 41: 46-53.
[26] TAKATSUKA H, ITO M. Cytoskeletal Control of Planar Polarity in Root Hair Development[J/OL]. Frontiers in Plant Science, 2020, 11: 580935.
[27] MOLENDIJK A J. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth[J/OL]. The EMBO Journal, 2001, 20(11): 2779-2788.
[28] ŽÁRSKÝ V, FOWLER J. ROP (Rho-Related Protein from Plants) GTPases for Spatial Control of Root Hair Morphogenesis[M/OL]//EMONS A M C, KETELAAR T. Root Hairs: volume 12. Berlin, Heidelberg: Springer Berlin Heidelberg,2009:191-209
[2022-06-20].
[29] GENDRE D, BARAL A, DANG X, et al. Rho-of-plant-activated root hair formation requires Arabidopsis YIP4a/b gene function[J/OL]. Development, 2019: dev.168559.
[30] BIBIKOVA T N, JACOB T, DAHSE I, et al. Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana[J]. The Company of Biologists Ltd, 1998(15).
[31] FOREMAN J, DEMIDCHIK V, BOTHWELL J H F, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J/OL]. Nature, 2003, 422(6930): 442-446.
[32] SCHIEFELBEIN JohnW, SHIPLEY A, ROWSE P. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana[J/OL]. Planta, 1992, 187(4)
[2022-03-30].
[33] COSGROVE D J. Growth of the plant cell wall[J/OL]. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861.
[34] FAVERY B, RYAN E, FOREMAN J, et al. KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis[J/OL]. Genes & Development, 2001, 15(1): 79-89.
[35] PARK S, SZUMLANSKI A L, GU F, et al. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells[J/OL]. Nature Cell Biology, 2011, 13(8): 973-980.
[36] SINGH S K, FISCHER U, SINGH M, et al. Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana[J/OL]. BMC Plant Biology, 2008, 8(1): 57.
[37] CHO H T, COSGROVE D J. Regulation of Root Hair Initiation and Expansin Gene Expression in Arabidopsis[W][J/OL]. The Plant Cell, 2002, 14(12): 3237-3253.
[38] LIN C, CHOI H S, CHO H T. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis[J/OL]. Molecules and Cells, 2011, 31(4): 393-397.
[39] VELASQUEZ S M, RICARDI M M, DOROSZ J G, et al. O-Glycosylated Cell Wall Proteins Are Essential in Root Hair Growth[J/OL]. Science, 2011, 332(6036): 1401-1403.
[40] CRADDOCK C, LAVAGI I, YANG Z. New insights into Rho signaling from plant ROP/Rac GTPases[J/OL]. Trends in Cell Biology, 2012, 22(9): 492-501.
[41] HUANG G, LI E, GE F, et al. Arabidopsis Rop GEF 4 and Rop GEF 10 are important for FERONIA ‐mediated developmental but not environmental regulation of root hair growth[J/OL]. New Phytologist, 2013, 200(4): 1089-1101.
[42] LI E, ZHANG Y L, SHI X, et al. A positive feedback circuit for ROP-mediated polar growth[J/OL]. Molecular Plant, 2021, 14(3): 395-410.
[43] CAROL R J, TAKEDA S, LINSTEAD P, et al. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells[J/OL]. Nature, 2005, 438(7070): 1013-1016.
[44] KANG E, ZHENG M, ZHANG Y, et al. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth[J/OL]. Plant Physiology, 2017, 174(1): 202-222.
[45] GE F, CHAI S, LI S, et al. Targeting and signaling of Rho of plants guanosine triphosphatases require synergistic interaction between guanine nucleotide inhibitor and vesicular trafficking[J/OL]. Journal of Integrative Plant Biology, 2020, 62(10): 1484-1499.
[46] MUCHA E, FRICKE I, SCHAEFER A, et al. Rho proteins of plants – Functional cycle and regulation of cytoskeletal dynamics[J/OL]. European Journal of Cell Biology, 2011, 90(11): 934-943.
[47] CUI X, WANG S, HUANG Y, et al. Arabidopsis SYP121 acts as a ROP2 effector in the regulation of root hair tip growth[J/OL]. Molecular Plant, 2022, 0(0)
[2022-04-29].
[48] MONSHAUSEN G B, BIBIKOVA T N, MESSERLI M A, et al. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs[J/OL]. Proceedings of the National Academy of Sciences, 2007, 104(52): 20996-21001.
[49] MANGANO S, MARTÍNEZ PACHECO J, MARINO-BUSLJE C, et al. How Does pH Fit in with Oscillating Polar Growth?[J/OL]. Trends in Plant Science, 2018, 23(6): 479-489.
[50] MORI I C, SCHROEDER J I. Reactive Oxygen Species Activation of Plant Ca2+ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction[J/OL]. Plant Physiology, 2004, 135(2): 702-708.
[51] MANGANO S, DENITA-JUAREZ S P, CHOI H S, et al. Molecular link between auxin and ROS-mediated polar growth[J/OL]. Proceedings of the National Academy of Sciences, 2017, 114(20): 5289-5294.
[52] KUBĚNOVÁ L, TICHÁ M, ŠAMAJ J, et al. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development[J/OL]. Plant Physiology, 2022, 188(3): 1563-1585.
[53] WYMER C L, BIBIKOVA T N, GILROY S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana[J/OL]. The Plant Journal, 1997, 12(2): 427-439.
[54] MONSHAUSEN G B, MESSERLI M A, GILROY S. Imaging of the Yellow Cameleon 3.6 Indicator Reveals That Elevations in Cytosolic Ca2+ Follow Oscillating Increases in Growth in Root Hairs of Arabidopsis[J/OL]. Plant Physiology, 2008, 147(4): 1690-1698.
[55] MESSERLI M A, CRÉTON R, JAFFE L F, et al. Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth[J/OL]. Developmental Biology, 2000, 222(1): 84-98.
[56] KWON T, SPARKS J A, LIAO F, et al. ERULUS is a Plasma Membrane-Localized Receptor-Like Kinase that Specifies Root Hair Growth by Maintaining Tip-Focused Cytoplasmic Calcium Oscillations.[J]. Plant Cell, 2018: tpc.00316.2018.
[57] SCHOENAERS S, BALCEROWICZ D, BREEN G, et al. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth[J/OL]. Current Biology, 2018, 28(5): 722-732.e6.
[58] LAOHAVISIT A, SHANG Z, RUBIO L, et al. Arabidopsis Annexin1 Mediates the Radical-Activated Plasma Membrane Ca 2+ - and K + -Permeable Conductance in Root Cells[J/OL]. The Plant Cell, 2012, 24(4): 1522-1533.
[59] ZHANG S, PAN Y, TIAN W, et al. Arabidopsis CNGC14 Mediates Calcium Influx Required for Tip Growth in Root Hairs[J/OL]. Molecular Plant, 2017, 10(7): 1004-1006.
[60] BROST C, STUDTRUCKER T, REIMANN R, et al. Multiple cyclic nucleotide‐gated channels coordinate calcium oscillations and polar growth of root hairs[J/OL]. The Plant Journal, 2019: tpj.14371. DOI:10.1111/tpj.14371.
[61] TAN Y Q, YANG Y, ZHANG A, et al. Three CNGC Family Members, CNGC5, CNGC6, and CNGC9, Are Required for Constitutive Growth of Arabidopsis Root Hairs as Ca2+-Permeable Channels[J/OL]. Plant Communications, 2020, 1(1): 100001.
[62] KANDASAMY M K, MCKINNEY E C, MEAGHER R B. A Single Vegetative Actin Isovariant Overexpressed under the Control of Multiple Regulatory Sequences Is Sufficient for Normal Arabidopsis Development[J/OL]. The Plant Cell, 2009, 21(3): 701-718.
[63] KETELAAR T. The actin cytoskeleton in root hairs: all is fine at the tip[J/OL]. Current Opinion in Plant Biology, 2013, 16(6): 749-756.
[64] DONG C H, XIA G X, HONG Y, et al. ADF Proteins Are Involved in the Control of Flowering and Regulate F-Actin Organization, Cell Expansion, and Organ Growth in Arabidopsis[J]. 14.
[65] RAMACHANDRAN S, CHRISTENSEN H E M, ISHIMARU Y, et al. Profilin Plays a Role in Cell Elongation, Cell Shape Maintenance, and Flowering in Arabidopsis[J/OL]. Plant Physiology, 2000, 124(4): 1637-1647.
[66] YI K, GUO C, CHEN D, et al. Cloning and Functional Characterization of a Formin-Like Protein (AtFH8) from Arabidopsis[J/OL]. Plant Physiology, 2005, 138(2): 1071-1082.
[67] MATHUR J, MATHUR N, KERNEBECK B, et al. Mutations in Actin-Related Proteins 2 and 3 Affect Cell Shape Development in Arabidopsis[J/OL]. The Plant Cell, 2003, 15(7): 1632-1645.
[68] PARK E, NEBENFÜHR A. Myosin XIK of Arabidopsis thaliana Accumulates at the Root Hair Tip and Is Required for Fast Root Hair Growth[J/OL]. PLoS ONE, 2013, 8(10): e76745.
[69] PROKHNEVSKY A I, PEREMYSLOV V V, DOLJA V V. Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility[J/OL]. Proceedings of the National Academy of Sciences, 2008, 105(50): 19744-19749.
[70] BAO Y, KOST B, CHUA N H. Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism: Reduced α-tubulin expression affects Arabidopsis roots[J/OL]. The Plant Journal, 2001, 28(2): 145-157.
[71] OVEČKA M, BERSON T, BECK M, et al. Structural Sterols Are Involved in Both the Initiation and Tip Growth of Root Hairs in Arabidopsis thaliana[J/OL]. The Plant Cell, 2010, 22(9): 2999-3019.
[72] LI R, LIU P, WAN Y, et al. A Membrane Microdomain-Associated Protein, Arabidopsis Flot1, Is Involved in a Clathrin-Independent Endocytic Pathway and Is Required for Seedling Development[J/OL]. The Plant Cell, 2012, 24(5): 2105-2122.
[73] SIMONS K. Lipid rafts and signal transduction.[J]. Nat Rev Mol Cell Biol, 2000, 1.
[74] LV X, JING Y, XIAO J, et al. Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1‐associated immune complex[J]. The Plant Journal, 2017, 90(1): 3.
[75] MENG Y, LIU H, DONG Z, et al. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis[J]. Journal of Plant Physiology, 2017, 215: 73.
[76] LIU P, LI R L, ZHANG L, et al. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth[J/OL]. The Plant Journal, 2009, 60(2): 303-313.
[77] MARTIN S W, KONOPKA J B. Lipid Raft Polarization Contributes to Hyphal Growth in Candida albicans[J]. Eukaryotic Cell, 2004, 3(3): 675.
[78] STEINBERG G. Hyphal Growth: a Tale of Motors, Lipids, and the Spitzenkorper[J]. Eukaryotic Cell, 2007.
[79] MARKUS, GREBE, AND, et al. Arabidopsis Sterol Endocytosis Involves Actin-Mediated Trafficking via ARA6-Positive Early Endosomes[J]. Current Biology, 2003.
[80] OWEN D M, RENTERO C, MAGENAU A, et al. Quantitative imaging of membrane lipid order in cells and organisms[J]. Nature Protocol, 2011, 7(1): 24-35.
[81] HUANG D, SUN Y, MA Z, et al. Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization[J/OL]. Proceedings of the National Academy of Sciences, 2019, 116(42): 21274-21284.
[82] XU F, SUO X, LI F, et al. Membrane lipid raft organization during cotton fiber development[J/OL]. Journal of Cotton Research, 2020, 3(1): 13.
[83] GALWAY M E, HECKMAN J W, SCHIEFELBEIN J W. Growth and ultrastructure ofArabidopsis root hairs: therhd3 mutation alters vacuole enlargement and tip growth[J/OL]. Planta, 1997, 201(2): 209-218.
[84] CHEUNG A Y, WU H ming. Structural and Signaling Networks for the Polar Cell Growth Machinery in Pollen Tubes[J/OL]. Annual Review of Plant Biology, 2008, 59(1): 547-572.
[85] KANG B H, NIELSEN E, PREUSS M L, et al. Electron Tomography of RabA4b- and PI-4Kβ1-Labeled Trans Golgi Network Compartments in Arabidopsis[J/OL]. Traffic, 2011, 12(3): 313-329.
[86] KUSANO H, TESTERINK C, VERMEER J E M, et al. The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 Is a Key Regulator of Root Hair Tip Growth[J/OL]. The Plant Cell, 2008, 20(2): 367-380.
[87] LI M, ZHU Y, LI S, et al. Regulation of Phytohormones on the Growth and Development of Plant Root Hair[J/OL]. Frontiers in Plant Science, 2022, 13: 865302.
[88] FISCHER U, IKEDA Y, LJUNG K, et al. Vectorial Information for Arabidopsis Planar Polarity Is Mediated by Combined AUX1, EIN2, and GNOM Activity[J/OL]. Current Biology, 2006, 16(21): 2143-2149.
[89] LEYSER O. Auxin Signaling[J/OL]. Plant Physiology, 2018, 176(1): 465-479.
[90] MANGANO S, DENITA-JUAREZ S P, CHOI H S, et al. Molecular link between auxin and ROS-mediated polar growth[J/OL]. Proceedings of the National Academy of Sciences, 2017, 114(20): 5289-5294.
[91] DINDAS J, SCHERZER S, ROELFSEMA M R G, et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling[J/OL]. Nature Communications, 2018, 9(1): 1174.
[92] QIU Y, TAO R, FENG Y, et al. EIN3 and RSL4 interfere with an MYB–bHLH–WD40 complex to mediate ethylene-induced ectopic root hair formation in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences, 2021, 118(51): e2110004118.
[93] FENG Y, XU P, LI B, et al. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences, 2017, 114(52): 13834-13839.
[94] KIM H, PARK P J, HWANG H J, et al. Brassinosteroid Signals Control Expression of the AXR3/IAA17 Gene in the Cross-Talk Point with Auxin in Root Development[J/OL]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(4): 768-773.
[95] KUPPUSAMY K T, CHEN A Y, NEMHAUSER J L. Steroids are required for epidermal cell fate establishment in Arabidopsis roots[J/OL]. Proceedings of the National Academy of Sciences, 2009, 106(19): 8073-8076.
[96] CHENG Y, ZHU W, CHEN Y, et al. Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases[J/OL]. eLife, 2014, 3: e02525.
[97] ZHANG S, HUANG L, YAN A, et al. Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis[J/OL]. Journal of Experimental Botany, 2016, 67(22): 6363-6372.
[98] ZHU Z, AN F, FENG Y, et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J/OL]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12539-12544.
[99] HAN X, ZHANG M, YANG M, et al. Arabidopsis JAZ Proteins Interact with and Suppress RHD6 Transcription Factor to Regulate Jasmonate-Stimulated Root Hair Development[J]. The Plant Cell, 2020(4): 4.
[100] LOMBARDO M C, LAMATTINA L. Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis[J/OL]. Nitric Oxide, 2018, 80: 89-97.
[101] RYMEN B, KAWAMURA A, SCHÄFER S, et al. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator[J/OL]. Plant Physiology, 2017, 173(3): 1750-1762.
[102] OU Y, KUI H, LI J. Receptor-like Kinases in Root Development: Current Progress and Future Directions[J/OL]. Molecular Plant, 2021, 14(1): 166-185.
[103] BOISSON-DERNIER A, FRANCK C M, LITUIEV D S, et al. Receptor-like cytoplasmic kinase MARIS functions downstream of Cr RLK1L-dependent signaling during tip growth[J/OL]. Proceedings of the National Academy of Sciences, 2015, 112(39): 12211-12216.
[104] FRANCK C M, WESTERMANN J, BÜRSSNER S, et al. The Protein Phosphatases ATUNIS1 and ATUNIS2 Regulate Cell Wall Integrity in Tip-Growing Cells[J/OL]. The Plant Cell, 2018, 30(8): 1906-1923.
[105] BATES T R, LYNCH J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability[J/OL]. Plant, Cell and Environment, 1996, 19(5): 529-538.
[106] SCHMIDT W, SCHIKORA A. Different Pathways Are Involved in Phosphate and Iron Stress-Induced Alterations of Root Epidermal Cell Development[J/OL]. Plant Physiology, 2001, 125(4): 2078-2084.
[107] SONG L, YU H, DONG J, et al. The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation[J/OL]. PLOS Genetics, 2016, 12(7): e1006194.
[108] LIU M, LIU X X, HE X L, et al. Ethylene and nitric oxide interact to regulate the magnesium deficiency‐induced root hair development in Arabidopsis[J/OL]. New Phytologist, 2017, 213(3): 1242-1256.
[109] ABOZEID A, YING Z, LIN Y, et al. Ethylene Improves Root System Development under Cadmium Stress by Modulating Superoxide Anion Concentration in Arabidopsis thaliana[J/OL]. Frontiers in Plant Science, 2017, 8
[2022-08-15].
[110] WEI YANG T J, PERRY P J, CIANI S, et al. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis[J/OL]. Journal of Experimental Botany, 2008, 59(12): 3453-3464.
[111] CANALES J, CONTRERAS-LÓPEZ O, ÁLVAREZ J M, et al. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana[J/OL]. The Plant Journal, 2017, 92(2): 305-316.
[112] BIENERT M D, WERNER L M, WIMMER M A, et al. Root hairs: the villi of plants[J/OL]. Biochemical Society Transactions, 2021: BST20200716.
[113] BAHMANI R, KIM D G, KIM J A, et al. The Density and Length of Root Hairs Are Enhanced in Response to Cadmium and Arsenic by Modulating Gene Expressions Involved in Fate Determination and Morphogenesis of Root Hairs in Arabidopsis[J/OL]. Frontiers in Plant Science, 2016, 7
[2022-08-15].
[114] BLACKWELL H E, ZHAO Y. Chemical Genetic Approaches to Plant Biology[J/OL]. Plant Physiology, 2003, 133(2): 448-455.
[115] MITCHISON T J. Towards a pharmacological genetics[J/OL]. Chemistry & Biology, 1994, 1(1): 3-6.
[116] SCHREIBER S L. Chemical genetics resulting from a passion for synthetic organic chemistry[J/OL]. Bioorganic & Medicinal Chemistry, 1998, 6(8): 1127-1152.
[117] ALONSO J M, ECKER J R. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis.[J]. Nature Reviews Genetics, 2006, 7(7): 524-536.
[118] SERRANO M, KOMBRINK E, MEESTERS C. Considerations for designing chemical screening strategies in plant biology[J/OL]. Frontiers in Plant Science, 2015, 6
[2022-07-25].
[119] TÓTH R, VAN DER HOORN R A L. Emerging principles in plant chemical genetics[J/OL]. Trends in Plant Science, 2010, 15(2): 81-88.
[120] PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins[J/OL]. Science, 2009, 324(5930): 1068-1071.
[121] DE RYBEL B, AUDENAERT D, VERT G, et al. Chemical Inhibition of a Subset of Arabidopsis thaliana GSK3-like Kinases Activates Brassinosteroid Signaling[J/OL]. Chemistry & Biology, 2009, 16(6): 594-604.
[122] NAKANO T, NAKASHITA H, SEKIMATA K, et al. The Influence of Chemical Genetics on Plant Science: Shedding Light on Functions and Mechanism of Action of Brassinosteroids Using Biosynthesis Inhibitors[J/OL]. Journal of Plant Growth Regulation, 2003, 22(4): 336-349.
[123] LUMBA S, BUNSICK M, MCCOURT P. Chemical genetics and strigolactone perception[J/OL]. F1000Research, 2017, 6: 975.
[124] MA Q, GRONES P, ROBERT S. Auxin signaling: a big question to be addressed by small molecules[J/OL]. Journal of Experimental Botany, 2018, 69(2): 313-328.
[125] TORII K U, HAGIHARA S, UCHIDA N, et al. Harnessing synthetic chemistry to probe and hijack auxin signaling[J/OL]. New Phytologist, 2018, 220(2): 417-424.
[126] BEKTAS Y, EULGEM T. Synthetic plant defense elicitors[J/OL]. Frontiers in Plant Science, 2015, 5
[2022-07-24].
[127] NAKAMICHI N, YAMAGUCHI J, SATO A, et al. Chemical biology to dissect molecular mechanisms underlying plant circadian clocks[J/OL]. New Phytologist, 2022: nph.18298.
[128] HICKS G R, RAIKHEL N V. Advances in dissecting endomembrane trafficking with small molecules[J/OL]. Current Opinion in Plant Biology, 2010, 13(6): 706-713.
[129] NORAMBUENA L, TEJOS R. Chemical Genetic Dissection of Membrane Trafficking[J/OL]. Annual Review of Plant Biology, 2017, 68(1): 197-224.
[130] DEJONGHE W, RUSSINOVA E. Plant Chemical Genetics: From Phenotype-Based Screens to Synthetic Biology[J/OL]. Plant Physiology, 2017, 174(1): 5-20.
[131] MCCOURT P, DESVEAUX D. Plant chemical genetics[J/OL]. New Phytologist, 2010, 185(1): 15-26.
[132] ZHANG C, BROWN M Q, VAN DE VEN W, et al. Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis[J/OL]. Proceedings of the National Academy of Sciences, 2016, 113(1)
[2022-08-03].
[133] MOON J Y, ADAMS E, MIYAZAKI T, et al. Cesium tolerance is enhanced by a chemical which binds to BETA-GLUCOSIDASE 23 in Arabidopsis thaliana[J/OL]. Scientific Reports, 2021, 11(1): 21109.
[134] COTTIER. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: Potential and limitations[J/OL]. Frontiers in Plant Science, 2011
[2022-08-01].
[135] DUFF, JR. M R, GRUBBS J, HOWELL E E. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity[J/OL]. Journal of Visualized Experiments, 2011(55): 2796.
[136] CUI Z, LI C, CHEN P, et al. An update of label-free protein target identification methods for natural active products[J/OL]. Theranostics, 2022, 12(4): 1829-1854.
[137] SUN X, LI Y, HE W, et al. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase[J/OL]. Nature Communications, 2017, 8(1): 15758.
[138] ZHU Y, LI H jiang, SU Q, et al. A phenotype-directed chemical screen identifies ponalrestat as an inhibitor of the plant flavin monooxygenase YUCCA in auxin biosynthesis[J/OL]. Journal of Biological Chemistry, 2019, 294(52): 19923-19933.
[139] MANGELSDORF D J, THUMMEL C, BEATO M, et al. The nuclear receptor superfamily: the second decade.[J]. Cell, 2000, 83(6): 835-839.
[140] ROSNER W. The Functions of Corticosteroid-Binding Globulin and Sex Hormone-Binding Globulin: Recent Advances*[J/OL]. Endocrine Reviews, 1990, 11(1): 80-91.
[141] WEHLING, M. SPECIFIC, NONGENOMIC ACTIONS OF STEROID HORMONES[J]. 1997, 59(1): 365-393.
[142] MEYER C, SCHMID R, SCRIBA P C, et al. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes.[J]. Eur J Biochem, 2010, 239(3): 726-731.
[143] YANG X H, XU Z H, XUE H W. Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell Elongation[J/OL]. The Plant Cell, 2005, 17(1): 116-131.
[144] PREUSS M L, SERNA J, FALBEL T G, et al. The Arabidopsis Rab GTPase RabA4b Localizes to the Tips of Growing Root Hair Cells[W][J/OL]. The Plant Cell, 2004, 16(6): 1589-1603.
[145] PREUSS M L, SCHMITZ A J, THOLE J M, et al. A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana[J/OL]. Journal of Cell Biology, 2006, 172(7): 991-998.
[146] JONES M A, SHEN J J, FU Y, et al. The Arabidopsis Rop2 GTPase Is a Positive Regulator of Both Root Hair Initiation and Tip Growth[J/OL]. The Plant Cell, 2002, 14(4): 763-776.
[147] DATTA S, PRESCOTT H, DOLAN L. Intensity of a pulse of RSL4 transcription factor synthesis determines Arabidopsis root hair cell size[J/OL]. Nature Plants, 2015, 1(10): 15138.
[148] MENAND B, YI K, JOUANNIC S, et al. An Ancient Mechanism Controls the Development of Cells with a Rooting Function in Land Plants[J/OL]. Science, 2007, 316(5830): 1477-1480.
[149] GENDRE D, BARAL A, DANG X, et al. Rho-of-plant-activated root hair formation requires Arabidopsis YIP4a/b gene function[J/OL]. Development, 2019: dev.168559.
[150] FEIGUELMAN G, FU Y, YALOVSKY S. ROP GTPases Structure-Function and Signaling Pathways[J/OL]. Plant Physiology, 2018, 176(1): 57-79.
[151] REN H, DANG X, YANG Y, et al. SPIKE1 Activates ROP GTPase to Modulate Petal Growth and Shape[J/OL]. Plant Physiology, 2016, 172(1): 358-371.
[152] LEE Y J, SZUMLANSKI A, NIELSEN E, et al. Rho-GTPase–dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth[J/OL]. Journal of Cell Biology, 2008, 181(7): 1155-1168.
[153] COLE R A, FOWLER J E. Polarized growth: maintaining focus on the tip[J/OL]. Current Opinion in Plant Biology, 2006, 9(6): 579-588.
[154] HWANG J U, YING G, LEE Y J, et al. Oscillatory ROP GTPase Activation Leads the Oscillatory Polarized Growth of Pollen Tubes[J]. Molecular Biology of the Cell, 2005, 16(11): 5385-5399.
[155] GU Y, FU Y, DOWD P, et al. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes[J/OL]. Journal of Cell Biology, 2005, 169(1): 127-138.
[156] WANG X, BI S, WANG L, et al. GLABRA2 Regulates Actin Bundling Protein VILLIN1 in Root Hair Growth in Response to Osmotic Stress[J/OL]. Plant Physiology, 2020, 184(1): 176-193.
[157] GELDNER N, DÉNERVAUD-TENDON V, HYMAN D L, et al. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set[J/OL]. The Plant Journal, 2009, 59(1): 169-178.
[158] DENNINGER P, REICHELT A, SCHMIDT V A F, et al. Distinct RopGEFs Successively Drive Polarization and Outgrowth of Root Hairs[J/OL]. Current Biology, 2019, 29(11): 1854-1865.e5.
[159] ZHANG H, ZHANG F, YU Y, et al. A Comprehensive Online Database for Exploring ∼20,000 Public Arabidopsis RNA-Seq Libraries[J/OL]. Molecular Plant, 2020, 13(9): 1231-1233.
[160] ZHU S, ESTÉVEZ J M, LIAO H, et al. The RALF1–FERONIA Complex Phosphorylates eIF4E1 to Promote Protein Synthesis and Polar Root Hair Growth[J/OL]. Molecular Plant, 2020, 13(5): 698-716.
[161] TARTAGLIO V, RENNIE E A, CAHOON R, et al. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis[J/OL]. The Plant Journal, 2017, 89(2): 278-290.
[162] ALI U, LI H, WANG X, et al. Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses[J/OL]. Molecular Plant, 2018, 11(11): 1328-1343.
[163] LIU N J, WANG N, BAO J J, et al. Lipidomic Analysis Reveals the Importance of GIPCs in Arabidopsis Leaf Extracellular Vesicles[J/OL]. Molecular Plant, 2020, 13(10): 1523-1532.
[164] GRONNIER J, GERMAIN V, GOUGUET P, et al. GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth[J/OL]. Plant Signaling & Behavior, 2016, 11(4): e1152438.
[165] CACAS J L, BURÉ C, GROSJEAN K, et al. Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids[J/OL]. Plant Physiology, 2016, 170(1): 367-384.
[166] LI C, YEH F L, CHEUNG A Y, et al. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis[J/OL]. eLife, 2015, 4: e06587.
[167] PAN X, FANG L, LIU J, et al. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation[J/OL]. Nature Communications, 2020, 11(1): 3914.
[168] LENARČIČ T, ALBERT I, BÖHM H, et al. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins[J/OL]. Science, 2017, 358(6369): 1431-1434. ¬¬¬¬
[169] JIANG Z, ZHOU X, TAO M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J/OL]. Nature, 2019, 572(7769): 341-346.
[170] GE S X, SON E W, YAO R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data[J/OL]. BMC Bioinformatics, 2018, 19(1): 534.
[171] ZHU C, GAN L, SHEN Z, et al. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis[J/OL]. Journal of Experimental Botany, 2006, 57(6): 1299-1308

Academic Degree Assessment Sub committee
生物系
Domestic book classification number
Q37
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/416850
DepartmentDepartment of Biology
Recommended Citation
GB/T 7714
金中财. 小分子化合物RHP1促进根毛极性生长的调控机制研究[D]. 哈尔滨工业大学. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849498-金中财-生物系.pdf(8073KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[金中财]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[金中财]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[金中财]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.