中文版 | English
Title

双链转移试剂协同促进钛催化乙烯配位链转移聚合反应

Alternative Title
DUAL CHAIN TRANSFER AGENTS PROMOTED TITANIUM CATALYZED ETHYLENE COORDINATIVE CHAIN TRANSFER POLYMERIZATION
Author
Name pinyin
ZHU Boyu
School number
12032118
Degree
硕士
Discipline
0856 材料与化工
Subject category of dissertation
0856 材料与化工
Supervisor
唐勇
Mentor unit
化学系
Tutor of External Organizations
周姣龙
Tutor units of foreign institutions
中国科学院上海有机化学研究所
Publication Years
2022-11-18
Submission date
2022-12-16
University
南方科技大学
Place of Publication
深圳
Abstract

  配位链转移聚合可以实现对烯烃配位聚合物分子量、分子量分布、链末端基团等的调控,被用于制备单末端或双末端官能化的聚烯烃以及嵌段共聚物等材料。在工业生产中,这一聚合方法成功的应用于合成结构新颖、性能优异的乙烯/1-辛烯嵌段共聚物。在锆、铪催化剂催化高性能聚烯烃的大规模生产工艺中,二乙基锌通常作为链转移试剂被广泛应用。在聚烯烃生产过程中,钛金属催化剂常常会被烷基金属试剂所毒化,从而导致聚合活性降低。到目前为止,鲜有钛催化烯烃配位链转移聚合体系被应用于工业生产的报道。

  针对上述问题,我们创新性的开发了一类钛催化剂催化的双链转移试剂聚合体系。在胺基二酚钛配合物催化乙烯聚合体系中,加入等比例的三乙基铝(TEA)与二乙基锌(DEZ)组合作为链转移试剂,可以显著提高钛催化剂聚合活性、生成聚合物链数以及链转移效率。同时将双链转移试剂引入到多种非茂钛催化剂催化烯烃聚合反应中,对双链转移试剂组合的普适性进行了系统的研究。值得一提的是,该双链转移试剂体系链转移效率最高可达97.0%。并且通过核磁实验进行了初步的机理研究,初步研究表明三乙基铝抑制了二乙基锌对催化剂的毒化作用。

  本文利用双链转移试剂组合活化策略发展了一系列基于钛催化剂的高效配位链转移聚合体系,拓展了钛催化剂催化体系及配位链转移聚合的应用范围,具有一定的应用潜力。

 

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2020
Year of Degree Awarded
2022-12
References List

[1] 宋艳萍, 陈伟, 陈慧敏, et al. 中国聚烯烃高端化产品发展现状及前景分析[J]. 油气与新能源, 2022, 34(4): 9.
[2] Valente A, Mortreux A, Visseaux M, et al. Coordinative Chain Transfer Polymerization[J]. Chemical Reviews, 2013, 113(5): 3836-3857.
[3] Britovsek G J P, Cohen S A, Gibson V C, et al. Iron Catalyzed Polyethylene Chain Growth on Zinc:  A Study of the Factors Delineating Chain Transfer versus Catalyzed Chain Growth in Zinc and Related Metal Alkyl Systems[J]. Journal of the American Chemical Society, 2004, 126(34): 10701-10712.
[4] Arriola D J, Carnahan E M, Hustad P D, et al. Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization[J]. Science, 2006, 312(5774): 714.
[5] Ziegler K. Aluminium‐organische Synthese im Bereich olefinischer Kohlen-wasserstoffe[J]. Angewandte Chemie, 1952, 64: 323-329.
[6] Ziegler K, Holzkamp E, Martin H, et al. Angew. Chem, 1955, 67: 541.
[7] Giulio, Natta I, Pasquon. The Kinetics of the Stereospecific Polymerization of α-Olefins[J]. Advances in Catalysis, 1959, 11, 1.
[8] Boor J. Polymerization of Monomers[J]. Ziegler–Natta Catalysts Polymeri-zations, 1979: 512-562.
[9] Firsov A P, Chirkov N M. Influence of the nature of the organometallic component of the complex catalyst on the kinetics of the stereospecific polymerization of propylene[J]. Bulletin of the Academy of Sciences of the USSR, Division of chemical science, 1964, 13(11): 1870-1874.
[10] Stevenson D P. The Strengths of Chemical Bonds[J]. Journal of the American Chemical Society, 1955, 77(8): 2350-2350.
[11] Po R, Cardi N, Abis L. Effect of aluminium alkyls on the synthesis of syndiotactic polystyrene with titanium complexes/methylaluminoxane catalytic systems[J]. Polymer, 1998, 39(4): 959-964.
[12] Naga N, Mizunuma K. Chain transfer reaction by trialkylaluminum (AIR3) in the stereospecific polymerization of propylene with metallocene — AIR3/Ph3CB(C6F5)4[J]. Polymer, 1998, 39(21): 5059-5067.
[13] M N, T M. Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer[J]. U. S. Patent Appl. US6548686, 2003.
[14] Senda T, Hanaoka H, Nakahara S, et al. Rational Design of Silicon-Bridged Fluorenyl−Phenoxy Group 4 Metal Complexes as Catalysts for Producing High Molecular Weight Copolymers of Ethylene and 1-Hexene at Elevated Tempera-ture[J]. Macromolecules, 2010, 43(5): 2299-2306.
[15] Senda T, Hanaoka H, Okado Y, et al. Titanium Complexes of Silicon-Bridged Cyclopentadienyl−Phenoxy Ligands Modified with Fused-Thiophene: Synthesis, Characterization, and Their Catalytic Performance in Copolymerization of Ethylene and 1-Hexene[J]. Organometallics, 2009, 28(24): 6915-6926.
[16] Jayaratne K C, Sita L R. Stereospecific Living Ziegler−Natta Polymerization of 1-Hexene[J]. Journal of the American Chemical Society, 2000, 122(5): 958-959.
[17] Zhang W, Sita L R. Highly Efficient, Living Coordinative Chain-Transfer Polymerization of Propene with ZnEt2:  Practical Production of Ultrahigh to Very Low Molecular Weight Amorphous Atactic Polypropenes of Extremely Narrow Polydispersity[J]. Journal of the American Chemical Society, 2008, 130(2): 442-443.
[18] Zhang W, Wei J, Sita L R. Living Coordinative Chain-Transfer Polymerization and Copolymerization of Ethene, α-Olefins, and α,ω-Nonconjugated Dienes using Dialkylzinc as “Surrogate” Chain-Growth Sites[J]. Macromolecules, 2008, 41(21): 7829-7833.
[19] Wei J, Zhang W, Sita L R. Aufbaureaktion Redux: Scalable Production of Precision Hydrocarbons from AlR3 (R=Et or iBu) by Dialkyl Zinc Mediated Ternary Living Coordinative Chain-Transfer Polymerization[J]. Angewandte Chemie International Edition, 2010, 49(10): 1768-1772.
[20] Haas I, Kretschmer W P, Kempe R. Synthesis of Alumina-Terminated Linear PE with a Hafnium Aminopyridinate Catalyst[J]. Organometallics, 2011, 30(18): 4854-4861.
[21] Yin X, Gao H, Yang F, et al. Stereoblock Polypropylenes Prepared by Efficient Chain Shuttling Polymerization of Propylene with Binary Zirconium Catalysts and iBu3Al[J]. Chinese Journal of Polymer Science, 2020, 38(11): 1192-1201.
[22] Gao H, Chen S, Du B, et al. Cyclic olefin copolymers containing both linear polyethylene and poly(ethylene-co-norbornene) segments prepared from chain shuttling copolymerization of ethylene and norbornene[J]. Polymer Chemistry, 2022, 13(2): 245-257.
[23] Cozzi P G, Floriani C, Chiesi-Villa A, et al. Oxazoline Early Transition Metal Complexes: Functionalizable Achiral Titanium(IV), Titanium(III), Zirconium(IV), Vanadium(III), and Chiral Zirconium(IV) Bis(oxazoline) Complexes[J]. Inorganic Chemistry, 1995, 34(11): 2921-2930.
[24] T F, Y T, Al M M E. Olefin polymerization catalysts, transition metal compounds, processes for olefin polymerization, and alpha-olefin/conjugated diene copolymers[J]. Euro. Patent Appl. EP0874005 1998.
[25] Saito J, Tohi Y, Matsukawa N, et al. Selective Synthesis of Al-Terminated Polyethylenes Using a Bis(Phenoxy-Imine)Zr Complex with Methylalumoxane[J]. Macromolecules, 2005, 38(12): 4955-4957.
[26] Cueny E S, Landis C R. Zinc-Mediated Chain Transfer from Hafnium to Aluminum in the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene Revealed by Job Plot Analysis[J]. Organometallics, 2019, 38(4): 926-932.
[27] Hanifpour A, Bahri-Laleh N, Nekoomanesh-Haghighi M, et al. Coordinative chain transfer polymerization of 1-decene in the presence of a Ti-based diamine bis(phenolate) catalyst: a sustainable approach to produce low viscosity PAOs[J]. Green Chemistry, 2020, 22(14): 4617-4626.
[28] Pelletier J-F, Mortreux A, Olonde X, et al. Synthesis of New Dialkylmagnesium Compounds by Living Transfer Ethylene Oligo- and Polymerization with Lanthanocene Catalysts[J]. Angewandte Chemie International Edition in English, 1996, 35(16): 1854-1856.
[29] Sarazin Y, Chenal T, Mortreux A, et al. Binary cerium(IV) tert-butoxides-dialkylmagnesium systems: Radical versus coordinative polymerization of styrene[J]. Journal of Molecular Catalysis A: Chemical, 2005, 238(1): 207-214.
[30] Kretschmer W P, Meetsma A, Hessen B, et al. Reversible Chain Transfer between Organoyttrium Cations and Aluminum: Synthesis of Aluminum-Terminated Polyethylene with Extremely Narrow Molecular-Weight Distribution[J]. Chemistry – A European Journal, 2006, 12(35): 8969-8978.
[31] Gollwitzer A, Dietel T, Kretschmer W P, et al. A broadly tunable synthesis of linear α-olefins[J]. Nature Communications, 2017, 8(1): 1226.
[32] Pan L, Zhang K, Nishiura M, et al. Chain-Shuttling Polymerization at Two Different Scandium Sites: Regio- and Stereospecific “One-Pot” Block Copolymerization of Styrene, Isoprene, and Butadiene[J]. Angewandte Chemie International Edition, 2011, 50(50): 12012-12015.
[33] Zinck P. Tuning polyolefins and polydienes microstructure and architecture via coordinative chain transfer polymerization[J]. Polymer International, 2012, 61(1): 2-5.
[34] Valente A, Zinck P, Mortreux A, et al. Half-lanthanocene/dialkylmagnesium-mediated coordinative chain transfer copolymerization of styrene and hexene[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(17): 3778-3782.
[35] Norsic S, Thomas C, D'agosto F, et al. Divinyl-End-Functionalized Polyethylenes: Ready Access to a Range of Telechelic Polyethylenes through Thiol–Ene Reactions[J]. Angewandte Chemie International Edition, 2015, 54(15): 4631-4635.
[36] Kolb H C, Finn M G, Sharpless K B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions[J]. Angewandte Chemie International Edition, 2001, 40(11): 2004-2021.
[37] Göttker-Schnetmann I, Kenyon P, Mecking S. Coordinative Chain Transfer Polymerization of Butadiene with Functionalized Aluminum Reagents[J]. Angewandte Chemie International Edition, 2019, 58(49): 17777-17781.
[38] Lin F, Liu Z, Wang M, et al. Chain Transfer to Toluene in Styrene Coordination Polymerization[J]. Angewandte Chemie International Edition, 2020, 59(11): 4324-4328.
[39] Mani G, Gabbaï F P. A Neutral Chromium(III) Catalyst for the Living “Aufbaureaktion”[J]. Angewandte Chemie International Edition, 2004, 43(17): 2263-2266.
[40] Britovsek G J P, Cohen S A, Gibson V C, et al. Iron-Catalyzed Polyethylene Chain Growth on Zinc: Linear α-Olefins with a Poisson Distribution[J]. Angewandte Chemie International Edition, 2002, 41(3): 489-491.
[41] Mu J-S, Wang Y-X, Li B-X, et al. Synthesis of vanadium(iii) complexes bearing iminopyrrolyl ligands and their role as thermal robust ethylene (co)polymerization catalysts[J]. Dalton Transactions, 2011, 40(14): 3490-3497.
[42] Hue R J, Cibuzar M P, Tonks I A. Analysis of Polymeryl Chain Transfer Between Group 10 Metals and Main Group Alkyls during Ethylene Polymerization[J]. ACS Catalysis, 2014, 4(11): 4223-4231.
[43] Canlch, Jam. Olefin polymerization catalysts [J]. Euro. Patent Appl. EP0420436, 1991.
[44] Jc S, Dr N. Metal Complex Compounds[J]. U. S. Patent Appl. US5064802, 1991.
[45] Braunschweig H, Breitling F M. Constrained geometry complexes—Synthesis and applications[J]. Coordination Chemistry Reviews, 2006, 250(21): 2691-2720.
[46] Resconi L. Process for the preparation of titanium complexes field of the invention: U.S. Patent Appl. WO 00/75151 A1.
[47] Saito J, Mitani M, Ji J, et al. Living Polymerization of Ethylene with a Titanium Complex Containing Two Phenoxy-Imine Chelate Ligands[J]. Angewandte Chemie, 2001, 40(15): 2918.
[48] Pletcher P D, Switzer J M, Steelman D K, et al. Quantitative Comparative Kinetics of 1-Hexene Polymerization across Group IV Bis-Phenolate Catalysts[J]. ACS Catalysis, 2016, 6(8): 5138-5145.
[49] Yang X-H, Wang Z, Sun X-L, et al. Synthesis, characterization, and catalytic behaviours of β-carbonylenamine-derived [O−NS]TiCl3 complexes in ethylene homo- and copolymerization[J]. Dalton Transactions, 2009(41): 8945-8954.
[50] Van Meurs M, Britovsek G J P, Gibson V C, et al. Polyethylene Chain Growth on Zinc Catalyzed by Olefin Polymerization Catalysts:  A Comparative Investigation of Highly Active Catalyst Systems across the Transition Series[J]. Journal of the American Chemical Society, 2005, 127(27): 9913-9923.
[51] Bolton P D, Clot E, Cowley A R, et al. AlMe3 and ZnMe2 Adducts of a Titanium Imido Methyl Cation:  A Combined Crystallographic, Spectroscopic, and DFT Study[J]. Journal of the American Chemical Society, 2006, 128(46): 15005-15018.
[52] Liu B, Cui D. Regioselective Chain Shuttling Polymerization of Isoprene: An Approach To Access New Materials from Single Monomer[J]. Macromolecules, 2016, 49(17): 6226-6231.
[53] Périn S G M, Severn J R, Koning C E, et al. Unusual Effect of Diethyl Zinc and Triisobutylaluminium in Ethylene/1-Hexene Copolymerisation using an MgCl2-Supported Ziegler-Natta Catalyst[J]. Macromolecular Chemistry and Physics, 2006, 207(1): 50-56.
[54] Gao Y, Chen J, Wang Y, et al. Highly branched polyethylene oligomers via group IV-catalysed polymerization in very nonpolar media[J]. Nature Catalysis, 2019, 2(3): 236-242.
[55] Tshuva E Y, Goldberg I, Kol M, et al. Zirconium Complexes of Amine−Bis(phenolate) Ligands as Catalysts for 1-Hexene Polymerization:  Peripheral Structural Parameters Strongly Affect Reactivity[J]. Organometallics, 2001, 20(14): 3017-3028.
[56] Romanato P, Duttwyler S, Linden A, et al. Intramolecular Halogen Stabilization of Silylium Ions Directs Gearing Dynamics[J]. Journal of the American Chemical Society, 2010, 132(23): 7828-7829.
[57] Chen Z, Liu W, Daugulis O, et al. Mechanistic Studies of Pd(II)-Catalyzed Copolymerization of Ethylene and Vinylalkoxysilanes: Evidence for a β-Silyl Elimination Chain Transfer Mechanism[J]. Journal of the American Chemical Society, 2016, 138(49): 16120-16129.
[58] Bukowski W, Bukowska A, Sobota A, et al. Copolymerization of Phthalic Anhydride with Epoxides Catalyzed by Amine-Bis(Phenolate) Chromium(III) Complexes[J]. Polymers, 2021, 13(11): 1785.
[59] Axenov K V, Klinga M, Lehtonen O, et al. Hafnium Bis(phenoxyimino) Dibenzyl Complexes and Their Activation toward Olefin Polymerization[J]. Organometallics, 2007, 26(6): 1444-1460.
[60] Mitani M, Mohri J-I, Yoshida Y, et al. Living Polymerization of Ethylene Catalyzed by Titanium Complexes Having Fluorine-Containing Phenoxy−Imine Chelate Ligands[J]. Journal of the American Chemical Society, 2002, 124(13): 3327-3336.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O63
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/416947
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
朱博宇. 双链转移试剂协同促进钛催化乙烯配位链转移聚合反应[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
12032118-朱博宇-化学系.pdf(4435KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[朱博宇]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[朱博宇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[朱博宇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.