[1] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6-7): 467-488.
[2] SHOR P W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
[3] GROVER L K. A Fast Quantum Mechanical Algorithm for Database Search[C]//Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. Philadelphia, Pennsylvania, USA: Association for Computing Machinery, 1996: 212–219.
[4] PRESKILL J. Quantum Computing in the NISQ era and beyond[J]. Quantum, 2018, 2(July): 79
[5] ROFFE J. Quantum error correction: an introductory guide[J]. Contemporary Physics, 2019, 60(3): 226-245.
[6] PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonic quantum processor[J]. Nature communications, 2014, 5(1): 1-7.
[7] TILLY J, CHEN H, CAO S, et al. The Variational Quantum Eigensolver: A review of methods and best practices[J]. Physics Reports, 2022, 986: 1-128.
[8] MCCLEAN J R, BOIXO S, SMELYANSKIY V N, et al. Barren plateaus in quantum neural network training landscapes[J]. Nature communications, 2018, 9(1): 1-6.
[9] CEREZO M, SONE A, VOLKOFF T, et al. Cost function dependent barren plateaus in shallow parametrized quantum circuits[J]. Nature communications, 2021, 12(1): 1-12.
[10] SKOLIK A, MCCLEAN J R, MOHSENI M, et al. Layerwise learning for quantum neural networks[J]. Quantum Machine Intelligence, 2021, 3(1): 1-11.
[11] GRANT E, WOSSNIG L, OSTASZEWSKI M, et al. An initialization strategy for addressing barren plateaus in parametrized quantum circuits[J]. Quantum, 2019, 3: 214.
[12] DEUTSCH D, JOZSA R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1992, 439: 553- 558.
[13] CIRAC, ZOLLER. Quantum Computations with Cold Trapped Ions.[J]. Physical review letters, 1995, 74 20: 4091-4094.
[14] SHNIRMAN A, SCHÖN G, HERMON Z. Quantum Manipulations of Small Josephson Junctions[J]. Phys. Rev. Lett., 1997, 79: 2371-2374.
[15] HANSON R, KOUWENHOVEN L P, PETTA J R, et al. Spins in few-electron quantum dots[J]. Rev. Mod. Phys., 2007, 79: 1217-1265.
[16] DIVINCENZO D P. Two-bit gates are universal for quantum computation[J]. Phys. Rev. A, 1995, 51: 1015-1022.
[17] GREENBERGER D M, HORNE M A, SHIMONY A, et al. Bell’s theorem without inequalities[J]. American Journal of Physics, 1990, 58(12): 1131-1143.
[18] BLINDER S. Chapter 8 - The hydrogen atom and atomic orbitals[M]//BLINDER S. Introduction to Quantum Mechanics (Second Edition). Second edition ed. San Diego: Academic Press, 2021: 129-149.
[19] Hartree-Fock Theory[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 93-113.
[20] SCHAEFER H F, III. Molecular electronic structure theory: 1972-1975[J]. Annu. Rev. Phys. Chem.; (United States), 1976, 27.
[21] CIZEK J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[J]. Journal of Chemical Physics, 1966, 45: 4256-4266.
[22] BARTLETT R J, MUSIAŁ M. Coupled-cluster theory in quantum chemistry[J]. Reviews of Modern Physics, 2007, 79(1): 291-352.
[23] CAO Y, ROMERO J, OLSON J P, et al. Quantum Chemistry in the Age of Quantum Computing[J]. Chemical Reviews, 2019, 119(19): 10856-10915.
[24] MCARDLE S, ENDO S, ASPURU-GUZIK A, et al. Quantum computational chemistry[J]. Rev. Mod. Phys., 2020, 92: 015003.
[25] JORDAN P, WIGNER E. Über das Paulische Äquivalenzverbot[J]. Zeitschrift für Physik, 47: 631-651.
[26] SEELEY J T, RICHARD M J, LOVE P J. The Bravyi-Kitaev transformation for quantum computation of electronic structure[J]. Journal of Chemical Physics, 2012, 137(22).
[27] JIANG Z, KALEV A, MRUCZKIEWICZ W, et al. Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning[J]. Quantum, 2020, 4: 276.
[28] HATANO N, SUZUKI M. Finding Exponential Product Formulas of Higher Orders[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 37-68.
[29] VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[J]. Nature Methods, 2020, 17: 261-272.
[30] HAMAMURA I, IMAMICHI T. Efficient evaluation of quantum observables using entangled measurements[J]. npj Quantum Information, 2020, 6(1): 19-21.
[31] HUGGINS W J, MCCLEAN J R, RUBIN N C, et al. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers[J]. npj Quantum Information, 2021, 7(1): 1-9.
[32] WECKER D, HASTINGS M B, TROYER M. Progress towards practical quantum variational algorithms[J]. Phys. Rev. A, 2015, 92: 042303.
[33] ROMERO J, BABBUSH R, MCCLEAN J R, et al. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz[J]. Quantum Science and Technology, 2019, 4(1).
[34] UVAROV A V, BIAMONTE J D. On barren plateaus and cost function locality in variational quantum algorithms[J]. Journal of Physics A: Mathematical and Theoretical, 2021, 54(24).
[35] HOLMES Z, SHARMA K, CEREZO M, et al. Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus[J]. PRX Quantum, 2022, 3: 010313.
[36] LYU C, MONTENEGRO V, BAYAT A. Accelerated variational algorithms for digital quantum simulation of many-body ground states[J]. Quantum, 2020, 4: 324.
[37] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242-246.
[38] GRIMSLEY H R, CLAUDINO D, ECONOMOU S E, et al. Is the Trotterized UCCSD Ansatz Chemically Well-Defined?[J]. Journal of Chemical Theory and Computation, 2020, 16(1): 1-6.
[39] LEE J, HUGGINS W J, HEAD-GORDON M, et al. Generalized Unitary Coupled Cluster Wave functions for Quantum Computation[J]. Journal of Chemical Theory and Computation, 2019,15(1): 311-324.
[40] STEIN T, HENDERSON T M, SCUSERIA G E. Seniority zero pair coupled cluster doubles theory[J]. The Journal of chemical physics, 2014, 140(21): 214113.
[41] GRIMSLEY H R, ECONOMOU S E, BARNES E, et al. An adaptive variational algorithm for exact molecular simulations on a quantum computer[J]. Nature communications, 2019, 10(1): 1-9.
[42] TANG H L, SHKOLNIKOV V, BARRON G S, et al. qubit-adapt-vqe: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor[J]. PRX Quantum, 2021, 2(2): 020310.
[43] YORDANOV Y S, ARVIDSSON-SHUKUR D R, BARNES C H. Efficient quantum circuits for quantum computational chemistry[J]. Physical Review A, 2020, 102(6): 1-7.
[44] YORDANOV Y S, ARMAOS V, BARNES C H, et al. Qubit-excitation-based adaptive variational quantum eigensolver[J]. Communications Physics, 2021, 4(1): 1-11.
[45] RYABINKIN I G, YEN T C, GENIN S N, et al. Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer[J]. Journal of Chemical Theory and Computation, 2018, 14(12): 6317-6326.
[46] RYABINKIN I G, LANG R A, GENIN S N, et al. Iterative Qubit Coupled Cluster Approach with Efficient Screening of Generators[J]. Journal of Chemical Theory and Computation, 2020, 16(2): 1055-1063.
[47] SKOLIK A, MCCLEAN J R, MOHSENI M, et al. Layerwise learning for quantum neural networks[J]. Quantum Machine Intelligence, 2021, 3(1): 1-11.
[48] BROYDEN C G. The Convergence of a Class of Double-rank Minimization Algorithms 1.General Considerations[J]. IMA Journal of Applied Mathematics, 1970, 6(1): 76-90.
[49] FLETCHER R. A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13(3): 317-322.
Edit Comment