中文版 | English
Title

基于 MindQuantum 的量子变分求解器拟设研究

Alternative Title
RESEARCH ON ANSATZES OF VARIATIONAL QUANTUM EIGENSOLVER WITH MINDQUANTUM
Author
Name pinyin
ZHANG Wengang
School number
11930481
Degree
硕士
Discipline
0702 物理学
Subject category of dissertation
07 理学
Supervisor
翁文康
Mentor unit
量子科学与工程研究院
Publication Years
2022-11-28
Submission date
2022-12-20
University
南方科技大学
Place of Publication
深圳
Abstract

从费曼提出量子计算设想到量子计算优越性的验证,量子计算已经取得了许 多重大进步。在量子计算的热潮中,量子化学研究遇见了新的机遇。其中著名的量 子变分求解算法(Variational quantum eigensolver, VQE)在带噪声的中等规模量子 计算(Noisy intermediate-scale quantum, NISQ)时代得到了广泛关注。与量子相位 估计算法(Quantum phase estimation, QPE)相比,VQE 算法降低了对相干时间的 要求,代价是需要重复测量待求解哈密顿量的期望值。在 VQE 算法的流程中,需 要先将带参数的量子线路作用在初始态上作为试验态(拟设),接着用经典优化算 法去调节参数来降低待求解哈密顿量的期望值,最终可以求解得到哈密顿量的基态。

在 VQE 算法中,拟设的设计方式对问题的求解至关重要。其中幺正耦合簇 (Unitary coupled cluster, UCC)拟设最早提出并且在实验上完成了验证。然而当模 拟规模增加时,现有的量子硬件系统无法提供实现该拟设所需的量子资源。基于 量子硬件条件硬件友好型拟设(Hardware-efficient ansatz, HEA)结构容易实现却不 一定使得能量收敛最快。针对上述问题,论文中研究了受启发于上述两种拟设的 新拟设,称为对称的硬件友好型拟设(Symmetric hardware-efficient ansatz, SHEA)。 它在原来泡利演化算符对应量子线路的基础上引入了额外了的参数来增加其表达 性。SHEA 拟设有重复结构和变结构两种类型。对 LiH,BeH2 分子在 STO-3G 基 组下的数值模拟中证明重复结构的 SHEA 拟设在精度和收敛稳定性上要优于 HEA 拟设。在对 H4 分子的数值模拟中,采用预筛选策略构建的变结构 SHEA 拟设的线 路更加简洁高效。相信 SHEA 拟设的研究将会为量子化学模拟提供新的思路。

Keywords
Language
Chinese
Training classes
独立培养
Enrollment Year
2019
Year of Degree Awarded
2022-12
References List

[1] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6-7): 467-488.
[2] SHOR P W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
[3] GROVER L K. A Fast Quantum Mechanical Algorithm for Database Search[C]//Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. Philadelphia, Pennsylvania, USA: Association for Computing Machinery, 1996: 212–219.
[4] PRESKILL J. Quantum Computing in the NISQ era and beyond[J]. Quantum, 2018, 2(July): 79
[5] ROFFE J. Quantum error correction: an introductory guide[J]. Contemporary Physics, 2019, 60(3): 226-245.
[6] PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonic quantum processor[J]. Nature communications, 2014, 5(1): 1-7.
[7] TILLY J, CHEN H, CAO S, et al. The Variational Quantum Eigensolver: A review of methods and best practices[J]. Physics Reports, 2022, 986: 1-128.
[8] MCCLEAN J R, BOIXO S, SMELYANSKIY V N, et al. Barren plateaus in quantum neural network training landscapes[J]. Nature communications, 2018, 9(1): 1-6.
[9] CEREZO M, SONE A, VOLKOFF T, et al. Cost function dependent barren plateaus in shallow parametrized quantum circuits[J]. Nature communications, 2021, 12(1): 1-12.
[10] SKOLIK A, MCCLEAN J R, MOHSENI M, et al. Layerwise learning for quantum neural networks[J]. Quantum Machine Intelligence, 2021, 3(1): 1-11.
[11] GRANT E, WOSSNIG L, OSTASZEWSKI M, et al. An initialization strategy for addressing barren plateaus in parametrized quantum circuits[J]. Quantum, 2019, 3: 214.
[12] DEUTSCH D, JOZSA R. Rapid solution of problems by quantum computation[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1992, 439: 553- 558.
[13] CIRAC, ZOLLER. Quantum Computations with Cold Trapped Ions.[J]. Physical review letters, 1995, 74 20: 4091-4094.
[14] SHNIRMAN A, SCHÖN G, HERMON Z. Quantum Manipulations of Small Josephson Junctions[J]. Phys. Rev. Lett., 1997, 79: 2371-2374.
[15] HANSON R, KOUWENHOVEN L P, PETTA J R, et al. Spins in few-electron quantum dots[J]. Rev. Mod. Phys., 2007, 79: 1217-1265.
[16] DIVINCENZO D P. Two-bit gates are universal for quantum computation[J]. Phys. Rev. A, 1995, 51: 1015-1022.
[17] GREENBERGER D M, HORNE M A, SHIMONY A, et al. Bell’s theorem without inequalities[J]. American Journal of Physics, 1990, 58(12): 1131-1143.
[18] BLINDER S. Chapter 8 - The hydrogen atom and atomic orbitals[M]//BLINDER S. Introduction to Quantum Mechanics (Second Edition). Second edition ed. San Diego: Academic Press, 2021: 129-149.
[19] Hartree-Fock Theory[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 93-113.
[20] SCHAEFER H F, III. Molecular electronic structure theory: 1972-1975[J]. Annu. Rev. Phys. Chem.; (United States), 1976, 27.
[21] CIZEK J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[J]. Journal of Chemical Physics, 1966, 45: 4256-4266.
[22] BARTLETT R J, MUSIAŁ M. Coupled-cluster theory in quantum chemistry[J]. Reviews of Modern Physics, 2007, 79(1): 291-352.
[23] CAO Y, ROMERO J, OLSON J P, et al. Quantum Chemistry in the Age of Quantum Computing[J]. Chemical Reviews, 2019, 119(19): 10856-10915.
[24] MCARDLE S, ENDO S, ASPURU-GUZIK A, et al. Quantum computational chemistry[J]. Rev. Mod. Phys., 2020, 92: 015003.
[25] JORDAN P, WIGNER E. Über das Paulische Äquivalenzverbot[J]. Zeitschrift für Physik, 47: 631-651.
[26] SEELEY J T, RICHARD M J, LOVE P J. The Bravyi-Kitaev transformation for quantum computation of electronic structure[J]. Journal of Chemical Physics, 2012, 137(22).
[27] JIANG Z, KALEV A, MRUCZKIEWICZ W, et al. Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning[J]. Quantum, 2020, 4: 276.
[28] HATANO N, SUZUKI M. Finding Exponential Product Formulas of Higher Orders[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 37-68.
[29] VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[J]. Nature Methods, 2020, 17: 261-272.
[30] HAMAMURA I, IMAMICHI T. Efficient evaluation of quantum observables using entangled measurements[J]. npj Quantum Information, 2020, 6(1): 19-21.
[31] HUGGINS W J, MCCLEAN J R, RUBIN N C, et al. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers[J]. npj Quantum Information, 2021, 7(1): 1-9.
[32] WECKER D, HASTINGS M B, TROYER M. Progress towards practical quantum variational algorithms[J]. Phys. Rev. A, 2015, 92: 042303.
[33] ROMERO J, BABBUSH R, MCCLEAN J R, et al. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz[J]. Quantum Science and Technology, 2019, 4(1).
[34] UVAROV A V, BIAMONTE J D. On barren plateaus and cost function locality in variational quantum algorithms[J]. Journal of Physics A: Mathematical and Theoretical, 2021, 54(24).
[35] HOLMES Z, SHARMA K, CEREZO M, et al. Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus[J]. PRX Quantum, 2022, 3: 010313.
[36] LYU C, MONTENEGRO V, BAYAT A. Accelerated variational algorithms for digital quantum simulation of many-body ground states[J]. Quantum, 2020, 4: 324.
[37] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242-246.
[38] GRIMSLEY H R, CLAUDINO D, ECONOMOU S E, et al. Is the Trotterized UCCSD Ansatz Chemically Well-Defined?[J]. Journal of Chemical Theory and Computation, 2020, 16(1): 1-6.
[39] LEE J, HUGGINS W J, HEAD-GORDON M, et al. Generalized Unitary Coupled Cluster Wave functions for Quantum Computation[J]. Journal of Chemical Theory and Computation, 2019,15(1): 311-324.
[40] STEIN T, HENDERSON T M, SCUSERIA G E. Seniority zero pair coupled cluster doubles theory[J]. The Journal of chemical physics, 2014, 140(21): 214113.
[41] GRIMSLEY H R, ECONOMOU S E, BARNES E, et al. An adaptive variational algorithm for exact molecular simulations on a quantum computer[J]. Nature communications, 2019, 10(1): 1-9.
[42] TANG H L, SHKOLNIKOV V, BARRON G S, et al. qubit-adapt-vqe: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor[J]. PRX Quantum, 2021, 2(2): 020310.
[43] YORDANOV Y S, ARVIDSSON-SHUKUR D R, BARNES C H. Efficient quantum circuits for quantum computational chemistry[J]. Physical Review A, 2020, 102(6): 1-7.
[44] YORDANOV Y S, ARMAOS V, BARNES C H, et al. Qubit-excitation-based adaptive variational quantum eigensolver[J]. Communications Physics, 2021, 4(1): 1-11.
[45] RYABINKIN I G, YEN T C, GENIN S N, et al. Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer[J]. Journal of Chemical Theory and Computation, 2018, 14(12): 6317-6326.
[46] RYABINKIN I G, LANG R A, GENIN S N, et al. Iterative Qubit Coupled Cluster Approach with Efficient Screening of Generators[J]. Journal of Chemical Theory and Computation, 2020, 16(2): 1055-1063.
[47] SKOLIK A, MCCLEAN J R, MOHSENI M, et al. Layerwise learning for quantum neural networks[J]. Quantum Machine Intelligence, 2021, 3(1): 1-11.
[48] BROYDEN C G. The Convergence of a Class of Double-rank Minimization Algorithms 1.General Considerations[J]. IMA Journal of Applied Mathematics, 1970, 6(1): 76-90.
[49] FLETCHER R. A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13(3): 317-322.

Academic Degree Assessment Sub committee
物理系
Domestic book classification number
TM301.2
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/416952
DepartmentDepartment of Physics
Recommended Citation
GB/T 7714
张雯钢. 基于 MindQuantum 的量子变分求解器拟设研究[D]. 深圳. 南方科技大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11930481-张雯钢-物理系.pdf(2352KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[张雯钢]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[张雯钢]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张雯钢]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.