[1] RICKMAN A. The commercialization of silicon photonics[J]. Nature Photonics, 2014, 8(8): 579-582.
[2] ZHOU Z, CHEN R, LI X, et al. Development trends in silicon photonics for data centers[J]. Optical Fiber Technology, 2018, 44: 13-23.
[3] Nocerino E. The semiconductor multiplication system for photoelectrons in a vacuum silicon photomultiplier tube and related front end electronics[D]. Napoli: Università degli studi di Napoli Federico II, 2016.
[4] MICHEL J, LIU J, KIMERLING L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8): 527-534.
[5] YUAN Y, HUANG Z, ZENG X, et al. High Responsivity Si-Ge Waveguide Avalanche Photodiodes Enhanced by Loop Reflector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2): 1-8.
[6] ARMAND PILON F T, NIQUET Y M, CHRETIEN J, et al. Investigation of lasing in highly strained germanium at the crossover to direct band gap[J]. Physical Review Research, 2022, 4(3): 033050.
[7] FADALY E M T, DIJKSTRA A, SUCKERT J R, et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys[J]. Nature, 2020, 580(7802): 205-209.
[8] CHAISAKUL P, MARRIS-MORINI D, FRIGERIO J, et al. Integrated germanium optical interconnects on silicon substrates[J]. Nature Photonics, 2014, 8(6): 482-488.
[9] LIU J, BEALS M, POMERENE A, et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators[J]. Nature Photonics, 2008, 2(7): 433-437.
[10] LIU J, SUN X, CAMACHO-AGUILERA R, et al. Ge-on-Si laser operating at room temperature[J]. Optics Letters, 2010, 35(5): 679-681.
[11] PILLARISETTY R. Academic and industry research progress in germanium nanodevices[J]. Nature, 2011, 479(7373): 324-328.
[12] XIANG J, LU W, HU Y, et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors[J]. Nature, 2006, 441(7092): 489-493.
[13] DU Y, XU B, WANG G, et al. Growth of high-quality epitaxy of GaAs on Si with engineered Ge buffer using MOCVD[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(5): 6425-6437.
[14] TANG T, YU T, YANG G, et al. Investigation into the InAs/GaAs quantum dot material epitaxially grown on silicon for O band lasers[J]. Journal of Semiconductors, 2022, 43(1): 012301.
[15] BOSI M, ATTOLINI G. Germanium: Epitaxy and its applications[J]. Progress in Crystal Growth and Characterization of Materials, 2010, 56(3-4): 146-174.
[16] TORIUMI A, NISHIMURA T. Germanium CMOS potential from material and process perspectives: Be more positive about germanium[J]. Japanese Journal of Applied Physics, 2018, 57(1):010101.
[17] WANG B, MU J. High-speed Si-Ge avalanche photodiodes[J]. PhotoniX, 2022, 3(1): 8.
[18] MO Y, SAVAGE D E, SWARTZENTRUBER B S, et al. Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001)[J]. Physical Review Letters, 1990, 65(8): 1020-1023.
[19] SLACK G A, BARTRAM S F. Thermal expansion of some diamondlike crystals[J]. Journal of Applied Physics, 1975, 46(1): 89-98.
[20] CURRIE M T, SAMAVEDAM S B, LANGDO T A, et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing[J]. Applied Physics Letters, 1998, 72(14): 1718-1720.
[21] LUAN H-C, LIM D R, LEE K K, et al. High-quality Ge epilayers on Si with low threading-dislocation densities[J]. Applied Physics Letters, 1999, 75(19): 2909-2911.
[22] VANAMU G, DATYE A K, ZAIDI S H. Epitaxial growth of high-quality Ge films on nanostructured silicon substrates[J]. Applied Physics Letters, 2006, 88(20):204104.
[23] SEIDL J, GLUSCHKE J G, YUAN X, et al. Regaining a Spatial Dimension: Mechanically Transferrable Two-Dimensional InAs Nanofins Grown by Selective Area Epitaxy[J]. Nano Letters, 2019, 19(7): 4666-4677.
[24] KROGSTRUP P, ZIINO N L, CHANG W, et al. Epitaxy of semiconductor-superconductor nanowires[J]. Nature Materials, 2015, 14(4): 400-406.
[25] YAMAMOTO Y, ZAUMSEIL P, SCHUBERT M A, et al. Influence of annealing conditions on threading dislocation density in Ge deposited on Si by reduced pressure chemical vapor deposition[J]. Semiconductor Science and Technology, 2018, 33(12): 124007.
[26] NAYFEH A, CHUI C O, SARASWAT K C, et al. Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality[J]. Applied Physics Letters, 2004, 85(14): 2815-2817.
[27] LANGDO T A, LEITZ C W, CURRIE M T, et al. High quality Ge on Si by epitaxial necking[J]. Applied Physics Letters, 2000, 76(25): 3700-3702.
[28] PARK J S, CURTIN M, HYDRICK J M, et al. Low-Defect-Density Ge Epitaxy on Si(001) Using Aspect Ratio Trapping and Epitaxial Lateral Overgrowth[J]. Electrochemical and Solid-State Letters, 2009, 12(4): H142-H144.
[29] YAKO M, ISHIKAWA Y, WADA K. Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification[J]. Journal of Applied Physics, 2018, 123(18): 185304.
[30] FALUB C V, VON KANEL H, ISA F, et al. Scaling hetero-epitaxy from layers to three-dimensional crystals[J]. Science, 2012, 335(6074): 1330-1304.
[31] WEN R T, WANG B, MICHEL J. Unpredicted Internal Geometric Reconfiguration of an Enclosed Space Formed by Heteroepitaxy[J]. Nano Letters, 2020, 20(1): 540-545.
[32] BIN AMIN M F, MOTOMURA K, HIZAWA T, et al. Reduced threading dislocation density in a germanium epitaxial film coalesced on an arrayed silicon-on-insulator strip[J]. Japanese Journal of Applied Physics, 2022, 61(9): 095506.
[33] HE Y, WANG J, HU H, et al. Coalescence of GaAs on (001) Si nano-trenches based on three-stage epitaxial lateral overgrowth[J]. Applied Physics Letters, 2015, 106(20): 202105.
[34] YAKO M, ISHIKAWA Y, ABE E, et al. Defects and their reduction in Ge selective epitaxy and coalescence layer on Si with semicylindrical voids on SiO2 masks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-7.
[35] PARK J-S, BAI J, CURTIN M, et al. Facet formation and lateral overgrowth of selective Ge epitaxy on SiO2-patterned Si(001) substrates[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008, 26(1): 117-121.
[36] JULIAN N, MAGES P, ZHANG C, et al. Coalescence of InP Epitaxial Lateral Overgrowth by MOVPE with V/III Ratio Variation[J]. J Electronic Materials, 2012, 41(5): 845-852.
[37] MULLINS W W. Theory of Thermal Grooving[J]. Journal of Applied Physics, 1957, 28(3): 333-339.
[38] KHENNER M, BRAUN R J, MAUK M G. A model for isotropic crystal growth from vapor on a patterned substrate[J]. Journal of Crystal Growth, 2002, 235(1-4): 425-438.
[39] KHENNER M, BRAUN R J, MAUK M G. A model for anisotropic epitaxial lateral overgrowth[J]. Journal of Crystal Growth, 2002, 241(3): 330-346.
[40] YAKO M, KAWAI N, MIZUNO, et al. The kinetics of Ge lateral overgrowth on SiO2[J]. MRS Advances, 2015, 1(23): 1703-1708.
[41] BERGAMASCHINI R, ISA F, FALUB C V, et al. Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays[J]. Surface Science Reports, 2013, 68(3-4): 390-417.
[42] 刘磊, 任晓敏, 周静, 等. 横向外延过生长磷化铟材料的生长速率模型[J]. 物理学报, 2007, 56(5): 3570-3576.
[43] 戴显英, 金国强, 董洁琼, 等. 锗硅硅异质结材料的化学气相淀积生长动力学模型[J]. 物理学报, 2011, 60(6): 065101.
[44] CHEN L-Q. Phase-Field Models for Microstructure Evolution[J]. Annual Review of Materials Research, 2002, 32(1): 113-140.
[45] BOETTINGER W J, WARREN J A, BECKERMANN C, et al. Phase-field simulation of solidification[J]. Annual Review of Materials Research, 2002, 32: 163-194.
[46] TONKS M R, AAGESEN L K. The Phase Field Method: Mesoscale Simulation Aiding Material Discovery[M]//CLARKE D R. Annual Review of Materials Research, Vol 49. 2019: 79-102.
[47] AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2014, 55(2): 383-405.
[48] AMBATI M, GERASIMOV T, DE LORENZIS L. Phase-field modeling of ductile fracture[J]. Computational Mechanics, 2015, 55(5): 1017-1040.
[49] SHEN J, XU J, YANG J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. Journal of Computational Physics, 2018, 353: 407-416.
[50] LOHSE D, ZHANG X. Physicochemical hydrodynamics of droplets out of equilibrium[J]. Nature Reviews Physics, 2020, 2(8): 426-443.
[51] CHENG Q, SHEN J. Multiple Scalar Auxiliary Variable (MSAV) Approach and its Application to the Phase-Field Vesicle Membrane Model[J]. SIAM Journal on Scientific Computing, 2018, 40(6): A3982-A4006.
[52] ZHANG T, WOLGEMUTH C W. A general computational framework for the dynamics of single- and multi-phase vesicles and membranes[J]. Journal of Computational Physics, 2022, 450: 110815.
[53] SALVALAGLIO M, BACKOFEN R, VOIGT A. Thin-film growth dynamics with shadowing effects by a phase-field approach[J]. Physical Review B, 2016, 94(23): 235432.
[54] SALVALAGLIO M, BACKOFEN R, BERGAMASCHINI R, et al. Faceting of Equilibrium and Metastable Nanostructures: A Phase-Field Model of Surface Diffusion Tackling Realistic Shapes[J]. Crystal Growth & Design, 2015, 15(6): 2787-2794.
[55] SALVALAGLIO M, BERGAMASCHINI R, BACKOFEN R, et al. Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended film[J]. Applied Surface Science, 2017, 391: 33-38.
[56] STEWART J A, SPEAROT D E. Phase-field models for simulating physical vapor deposition and grain evolution of isotropic single-phase polycrystalline thin films[J]. Computational Materials Science, 2016, 123: 111-120.
[57] STEWART J A, SPEAROT D E. Physical vapor deposition of multiphase materials with phase nucleation via a coupled phase-field approach[J]. Computational Materials Science, 2018, 143: 71-79.
[58] STEWART J A, SPEAROT D E. Phase-field simulations of microstructure evolution during physical vapor deposition of single-phase thin films[J]. Computational Materials Science, 2017, 131: 170-177.
[59] YANG S, ZHONG J, CHEN M, et al. A Parametric Three-Dimensional Phase-Field Study of the Physical Vapor Deposition Process of Metal Thin Films Aiming at Quantitative Simulations[J]. Coatings, 2019, 9(10): 607.
[60] DE DONNO M, ALBANI M, BERGAMASCHINI R, et al. Phase-field modeling of the morphological evolution of ringlike structures during growth: Thermodynamics, kinetics, and template effects[J]. Physical Review Materials, 2022, 6(2): 023401.
[61] ALBANI M, BERGAMASCHINI R, MONTALENTI F. Dynamics of pit filling in heteroepitaxy via phase-field simulations[J]. Physical Review B, 2016, 94(7): 075303.
[62] ALBANI M, GHISALBERTI L, BERGAMASCHINI R, et al. Growth kinetics and morphological analysis of homoepitaxial GaAs fins by theory and experiment[J]. Physical Review Materials, 2018, 2(9): 093404.
[63] MASULLO M, BERGAMASCHINI R, ALBANI M, et al. Growth and Coalescence of 3C-SiC on Si(111) Micro-Pillars by a Phase-Field Approach[J]. Materials, 2019, 12(19): 3223.
[64] AAGESEN L K, COLTRIN M E, HAN J, et al. Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries[J]. Journal of Applied Physics, 2015, 117(19): 194302.
[65] HAO Y, BHARATHI M S, WANG L, et al. The role of surface oxygen in the growth of large single-crystal graphene on copper[J]. Science, 2013, 342(6159): 720-723.
[66] XU X, ZHANG Z, QIU L, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply[J]. Nature Nanotechnology, 2016, 11(11): 930-935.
[67] KEBLINSKI P, MARITAN A, TOIGO F, et al. Continuum model for the growth of interfaces[J]. Physical Review E, 1996, 53(1): 759-778.
[68] SUO Z, ZHAO X, GREENE W. A nonlinear field theory of deformable dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 467-486.
[69] HONG W, ZHAO X H, ZHOU J X, et al. A theory of coupled diffusion and large deformation in polymeric gels[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-1793.
[70] LIU H, CHENG A, WANG H, et al. Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation[J]. Computational & Mathematics with Applications, 2018, 76(8): 1876-1892.
[71] KIM J, JEONG D, YANG S-D, et al. A finite difference method for a conservative Allen–Cahn equation on non-flat surfaces[J]. Journal of Computational Physics, 2017, 334: 170-181.
[72] YOON S, JEONG D, LEE C, et al. Fourier-Spectral Method for the Phase-Field Equations[J]. Mathematics, 2020, 8(8): 1385.
[73] OLSHANSKII M, XU X, YUSHUTIN V. A finite element method for Allen–Cahn equation on deforming surface[J]. Computational & Mathematics with Applications, 2021, 90: 148-158.
[74] KEITA S, BELJADID A, BOURGAULT Y. Efficient second-order semi-implicit finite element method for fourth-order nonlinear diffusion equations[J]. Computer Physics Communications, 2021, 258: 107588.
[75] SIEM E J, CARTER W C. Orientation-dependent surface tension functions for surface energy minimizing calculations[J]. Journal of Materials Science, 2005, 40(12): 3107-3113.
[76] GAI Z, YANG W S, ZHAO R G, et al. Macroscopic and nanoscale faceting of germanium surfaces[J]. Physical Review B, 1999, 59(23): 15230-15239.
[77] WULFF G. XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen[J]. Zeitschrift für Kristallographie - Crystalline Materials, 1901, 34(1-6): 449-530.
[78] MARKS L D, PENG L. Nanoparticle shape, thermodynamics and kinetics[J]. Journal of Physics-Condensed Matter, 2016, 28(5): 053001.
[79] STOFFEL M, RASTELLI A, TERSOFF J, et al. Local equilibrium and global relaxation of strained SiGe/Si(001) layers[J]. Physical Review B, 2006, 74(15):155326.
[80] ROBINSON J T, RASTELLI A, SCHMIDT O, et al. Global faceting behavior of strained Ge islands on Si[J]. Nanotechnology, 2009, 20(8): 085708.
Edit Comment