中文版 | English
Title

轴手性环己二烯类化合物的催化不对称合成研究

Alternative Title
CATALYTIC ASYMMETRIC SYNTHESIS OF AXIALLY CHIRAL CYCLOHEXADIENYLIDENE COMPOUNDS
Author
Name pinyin
ZHU Shuai
School number
11849573
Degree
博士
Discipline
070303 有机化学
Subject category of dissertation
07 理学
Supervisor
谭斌
Mentor unit
化学系
Publication Years
2022-11-01
Submission date
2022-12-27
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

    轴手性化合物是一类普遍存在的手性化合物,从结构上可以分为阻转异构体、联烯、螺环化合物等几种不同类型。轴手性分子在手性配体、催化剂、生物活性分子以及手性材料等领域都有着广泛应用。近些年来,对于轴手性化合物的研究得到了快速发展,但主要集中于对已有优势骨架的应用和不对称合成,而新型骨架的开发相对较少。开发新型轴手性骨架,不仅可以拓展轴手性化合物的种类,也可以为含轴手性医药分子的筛选以及新型轴手性材料的进一步发展提供重要支撑。结合阻转异构体和联烯两类轴手性化合物的手性特征,本论文设计并合成了一类基于环己二烯骨架的新型轴手性分子。在这种新型骨架中,环己二烯平面与环外双键处于共平面,环外双键的Z/E构型与环己二烯环内立体中心的构型共同影响该类化合物的手性特征。本论文通过催化不对称去芳构化、不对称缩合及去对称化三种策略完成了对该类新型轴手性骨架的构建,具体的研究内容包括:

    使用手性磷酸作为催化剂,以不同取代基的螺环环己二烯酮和羟胺为原料,通过不对称缩合反应高效合成了轴手性环己二烯基肟类化合物,反应可扩大到克级规模。该反应通过控制环己二烯环外双键的构型来控制反应的对映选择性。通过手性磷酸边臂的调整,可以实现对螺环内酯类环己二烯酮和氧化吲哚类环己二烯酮底物的兼容,高效、高对映选择性得到37个轴手性环己二烯基肟类化合物(收率最高可达96%ee值最高可达96%)。利用产物结构上不同类型取代基进行多样性衍生化能够得到丰富多样的轴手性分子,拓展化合物的范围。化合物的手性稳定性测试显示,产物在100 ℃下,在不同的溶剂中都能保持稳定的ee值,说明环己二烯基肟骨架具有稳定的轴手性。动力学实验显示催化剂的对映体纯度与产物ee值之间呈线性相关关系,反应速率与催化剂浓度之间呈一级动力学关系,说明单个催化剂分子参与该反应的速率和立体化学决定步骤。

    在手性磷酸催化下吲哚与偶氮苯对位反应,实现了苯环的催化不对称去芳构化,合成了轴手性环己二烯基腙类化合物。反应中使用偶氮作为活化基和导向基,实现了苯环对位的选择性活化。该反应突破了去芳构化反应仅用于中心手性产物合成的局限性,拓展了催化不对称去芳构化反应的应用场景。反应得到的27个轴手性环己二烯基腙类化合物收率最高可达97%ee值最高可达99%。值得一提的是,该反应体系的催化剂用量仅为0.5 mol%,突破了有机小分子催化反应中催化剂用量高的局限性。化合物手性稳定性测试显示,产物分子的消旋能垒为135 kJ/mol,说明该类化合物具有稳定的轴手性。反应的动力学实验结果显示反应产物的对映体过量值随催化剂ee值的升高呈线性上升趋势,反应速率随催化剂浓度提高而线性提升,说明该反应的速率和立体化学决定步骤由单个催化剂分子决定。该反应具有操作简单、反应收率高、立体选择性好等优点,而且可以放大到克级规模制备。

    将环己二烯环外碳氮双键拓展到碳碳双键,合成了环己二烯基烯类轴手性化合物。以螺环环己二烯基烯烃为核心骨架,通过在烯烃末端引入对称性的醛基,利用手性磷酸催化的醛胺缩合反应,实现了轴手性环己二烯基烯的不对称构建。反应中手性磷酸展现出较好的催化效果,得到的16个轴手性环己二烯基烯化合物收率最高可达82%ee值最高可达90%。该类产物可以通过另一侧保留的醛基进行衍生化,能够一锅法与呋喃-2-甲酰肼发生第二次缩合得到双醛基转化的产物,丰富轴手性分子的多样性。

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-12
References List

[1] Christie G H, Kenner J. LXXI.—The Molecular Configurations of Polynuclear Aromatic Compounds. Part I. The Resolution of γ-6 : 6′-dinitro- and 4 : 6 : 4′ : 6′-tetranitro-diphenic Acids into Optically Active Components[J]. Journal of the Chemical Society, Transactions, 1922, 121: 614-620.
[2] Miyashita A, Yasuda A, Takaya H, et al. Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), An Atropisomeric Chiral bis(triaryl)phosphine, and its use in the Rhodium(I)-catalyzed Asymmetric Hydrogenation of alpha.-(acylamino)acrylic Acids[J]. Journal of the American Chemical Society, 1980, 102(27): 7932-7934.
[3] Akiyama T, Itoh J, Yokota K, et al. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid[J]. Angewandte Chemie International Edition, 2004, 43(12): 1566-1568.
[4] Uraguchi D, Terada M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation[J]. Journal of the American Chemical Society, 2004, 126(17): 5356-5357.
[5] Noyori R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture)[J]. Angewandte Chemie International Edition, 2002, 41(12): 2008-2022.
[6] Ma S M. Some Typical Advances in the Synthetic Applications of Allenes[J]. Chemical Reviews, 2005, 105(7): 2829-2872.
[7] Aubert C, Fensterbank L, Garcia P, et al. Transition Metal Catalyzed Cycloisomerizations of 1,n-Allenynes and -Allenenes[J]. Chemical Reviews, 2011, 111(3): 1954-1993.
[8] Brandsma L, Nedolya N A. Allenic Compounds and Isothiocyanates as Key Building Units in the Synthesis of Heterocycles[J]. Synthesis, 2004, 2004(05): 735-745.
[9] Hashmi A S K. Synthesis of Allenes by Isomerization Reactions[J]. Modern Allene Chemistry, 2004: 2-50.
[10] Ma S. Electrophilic Addition and Cyclization Reactions of Allenes[J]. Accounts of Chemical Research, 2009, 42(10): 1679-1688.
[11] Yu S, Ma S M. Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses[J]. Angewandte Chemie International Edition, 2012, 51(13): 3074-3112.
[12] Brasholz M, Reissig H U, Zimmer R. Sugars, Alkaloids, and Heteroaromatics: Exploring Heterocyclic Chemistry with Alkoxyallenes[J]. Accounts of Chemical Research, 2009, 42(1): 45-56.
[13] Ma S M. Palladium-Catalyzed Two- or Three-Component Cyclization of Functionalized Allenes[J] Springer Berlin Heidelberg, 2005: 183-210.
[14] Ye J, Ma S M. Palladium-Catalyzed Cyclization Reactions of Allenes in the Presence of Unsaturated Carbon–Carbon Bonds[J]. Accounts of Chemical Research, 2014, 47(4): 989-1000.
[15] Bringmann G, Gulder T, Gulder T A M, et al. Atroposelective Total Synthesis of Axially Chiral Biaryl Natural Products[J]. Chemical Reviews, 2011, 111(2): 563-639.
[16] Kozlowski M C, Morgan B J, Linton E C. Total Synthesis of Chiral Biaryl Natural Products by Asymmetric Biaryl Coupling[J]. Chemical Society Reviews, 2009, 38(11): 3193-3207.
[17] Smyth J E, Butler N M, Keller P A. A Twist of Nature – the Significance of Atropisomers in Biological Systems[J]. Natural Product Reports, 2015, 32(11): 1562-1583.
[18] Bringmann G, Price Mortimer A J, Keller P A, et al. Atroposelective Synthesis of Axially Chiral Biaryl Compounds[J]. Angewandte Chemie International Edition, 2005, 44(34): 5384-5427.
[19] Clayden J, Moran W J, Edwards P J, et al. The Challenge of Atropisomerism in Drug Discovery[J]. Angewandte Chemie International Edition, 2009, 48(35): 6398-6401.
[20] Toenjes S T, Gustafson J L. Atropisomerism in Medicinal Chemistry: Challenges and Opportunities[J]. Future Medicinal Chemistry, 2018, 10(4): 409-422.
[21] Berthod M, Mignani G, Woodward G, et al. Modified BINAP: The How and the Why[J]. Chemical Reviews, 2005, 105(5): 1801-1836.
[22] Shibasaki M, Matsunaga S. Design and Application of Linked-BINOL Chiral Ligands in Bifunctional Asymmetric Catalysis[J]. Chemical Society Reviews, 2006, 35(3): 269-279.
[23] Rokade B V, Guiry P J. Axially Chiral P,N-Ligands: Some Recent Twists and Turns[J]. ACS Catalysis, 2018, 8(1): 624-643.
[24] Chen Y, Yekta S, Yudin A K. Modified BINOL Ligands in Asymmetric Catalysis[J]. Chemical Reviews, 2003, 103(8): 3155-3212.
[25] Akiyama T. Stronger Brønsted Acids[J]. Chemical Reviews, 2007, 107(12): 5744-5758.
[26] Kočovský P, Vyskočil Š, Smrčina M. Non-Symmetrically Substituted 1,1‘-Binaphthyls in Enantioselective Catalysis[J]. Chemical Reviews, 2003, 103(8): 3213-3246.
[27] Dotsevi G, Sogah Y, Cram D J. Total Chromatographic Optical Resolutions of alpha-Amino Acid and Ester Salts Through Chiral Recognition by a Host Covalently Bound to Polystyrene Resin[J]. Journal of the American Chemical Society, 1976, 98(10): 3038-3041.
[28] Cheng J K, Xiang S H, Li S Y, et al. Recent Advances in Catalytic Asymmetric Construction of Atropisomers[J]. Chemical Reviews, 2021, 121(8): 4805-4902.
[29] Cahn R S, Ingold C, Prelog V. Specification of Molecular Chirality[J]. Angewandte Chemie International Edition in English, 1966, 5(4): 385-415.
[30] Kaul P N. Enzyme Inhibiting Action of Tetrahydroaminoacridine and its Structural Fragments[J]. Journal of Pharmacy and Pharmacology, 1962, 14(1): 243-248.
[31] Shaw F H, Bentley G A. The Pharmacology of Some New Anti-cholineesterases [J]. Australian Journal of Experimental Biology and Medical Science, 1953, 31(6): 573-576.
[32] Li L, Seidel D. Catalytic Enantioselective Friedländer Condensations: Facile Access to Quinolines with Remote Stereogenic Centers[J]. Organic Letters, 2010, 12(21): 5064-5067.
[33] Ren L, Lei T, Gong L Z. Brønsted Acid-Catalyzed Enantioselective Friedländer Condensations: Achiral Amine Promoter Plays Crucial Role in the Stereocontrol[J]. Chemical Communications, 2011, 47(42): 11683-11685.
[34] Knoevenagel E. Ueber eine Darstellungsweise der Glutarsäure[J]. Berichte der deutschen chemischen Gesellschaft, 1894, 27(2): 2345-2346.
[35] Lee A, Michrowska A, Sulzer M S, et al. The Catalytic Asymmetric Knoevenagel Condensation[J]. Angewandte Chemie International Edition, 2011, 50(7): 1707-1710.
[36] Das S, Majumdar N, De C K, et al. Asymmetric Catalysis of the Carbonyl-Amine Condensation: Kinetic Resolution of Primary Amines[J]. Journal of the American Chemical Society, 2017, 139(4): 1357-1359.
[37] Wen K G, Liu C, Wei D H, et al. Catalytic Enantioselective Desymmetrization of Cyclobutane-1,3-diones by Carbonyl-Amine Condensation[J]. Organic Letters, 2021, 23(3): 1118-1122.
[38] Yang B, Dai J, Luo Y, et al. Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine[J]. Journal of the American Chemical Society, 2021, 143(11): 4179-4186.
[39] Hanessian S, Delorme D, Beaudoin S, et al. Design and Reactivity of Topologically Unique, Chiral Phosphonamides. Remarkable Diastereofacial Selectivity in Asymmetric Olefination and Alkylation[J]. Journal of the American Chemical Society, 1984, 106(19): 5754-5756.
[40] Iguchi M, Tomioka K. External Chiral Ligand-Mediated Enantioselective Peterson Reaction of α-Trimethylsilanylacetate with Substituted Cyclohexanones[J]. Organic Letters, 2002, 4(24): 4329-4331.
[41] Peterson D J. Carbonyl Olefination Reaction Using Silyl-Substituted Organometallic Compounds[J]. The Journal of Organic Chemistry, 1968, 33(2): 780-784.
[42] Nimmagadda S K, Mallojjala S C, Woztas L, et al. Enantioselective Synthesis of Chiral Oxime Ethers: Desymmetrization and Dynamic Kinetic Resolution of Substituted Cyclohexanones[J]. Angewandte Chemie International Edition, 2017, 56(9): 2454-2458.
[43] Crotti S, Di I N, Artusi C, et al. Direct Access to Alkylideneoxindoles via Axially Enantioselective Knoevenagel Condensation[J]. Organic Letters, 2019, 21(9): 3013-3017.
[44] Schleyer P R, Jiao H J. What is aromaticity?[J]. Pure and Applied Chemistry, 1996, 68(2): 209-218.
[45] Hua Y H, Zhang H, Xia H P. History and Development[J]. Chinese Journal of Organic Chemistry, 2018, 38(1): 11-28.
[46] Pape A R, Kaliappan K P, Kündig E P. Transition-Metal-Mediated Dearomatization Reactions[J]. Chemical Reviews, 2000, 100(8): 2917-2940.
[47] Roche S P, Porco J A. Dearomatization Strategies in the Synthesis of Complex Natural Products[J]. Angewandte Chemie International Edition, 2011, 50(18): 4068-4093.
[48] Zhang X, Larock R C. Synthesis of Spiro
[4.5]trienones by Intramolecular ipso-Halocyclization of 4-(p-Methoxyaryl)-1-alkynes[J]. Journal of the American Chemical Society, 2005, 127(35): 12230-12231.
[49] Yang X H, Ouyang X H, Wei W T, et al. Nitrative Spirocyclization Mediated by TEMPO: Synthesis of Nitrated Spirocycles fromN-Arylpropiolamides,tert-Butyl Nitrite and Water[J]. Advanced Synthesis & Catalysis, 2015, 357(6): 1161-1166.
[50] Wen J, Wei W, Xue S, et al. Metal-Free Oxidative Spirocyclization of Alkynes with Sulfonylhydrazides Leading to 3-Sulfonated Azaspiro
[4,5]trienones[J]. J Org Chem, 2015, 80(10): 4966-4972.
[51] Zhang Y, Zhang J, Hu B, et al. Synthesis of Difluoromethylated and Phosphorated Spiro
[5.5]trienones via Dearomative Spirocyclization of Biaryl Ynones[J]. Org Lett, 2018, 20(10): 2988-2992.
[52] Turiso G L F, Curran D P. Radical Cyclization Approach to Spirocyclohexadienones[J]. Organic Letters, 2005, 7(1): 151-154.
[53] Frlan R, Kikelj D. Recent Progress in Diaryl Ether Synthesis[J]. Synthesis, 2006, 2006(14): 2271-2285.
[54] Bedford R B, Coles S J, Hursthouse M B, et al. The Catalytic Intermolecular Orthoarylation of Phenols[J]. Angewandte Chemie International Edition, 2003, 42(1): 112-114.
[55] Rousseaux S, Garcia F J, Sanchez M A D A, et al. Palladium(0)-Catalyzed Arylative Dearomatization of Phenols[J]. J Am Chem Soc, 2011, 133(24): 9282-9285.
[56] Bodipati N, Peddinti R K. Hypervalent Iodine Mediated Synthesis of Carbamate Protected p-Quinone Monoimine Ketals and p-Benzoquinone Monoketals[J]. Org Biomol Chem, 2012, 10(23): 4549-4553.
[57] Dohi T, Kato D, Hyodo R, et al. Discovery of Stabilized Bisiodonium Salts as Intermediates in the Carbon-Carbon Bond Formation of Alkynes[J]. Angew Chem Int Ed Engl, 2011, 50(16): 3784-3787.
[58] Wu Q F, Liu W B, Zhuo C X, et al. Iridium-Catalyzed Intramolecular Asymmetric Allylic Dearomatization of Phenols[J]. Angewandte Chemie International Edition, 2011, 50(19): 4455-4458.
[59] Du K, Guo P, Chen Y, et al. Enantioselective Palladium-Catalyzed Dearomative Cyclization for the Efficient Synthesis of Terpenes and Steroids[J]. Angewandte Chemie International Edition, 2015, 54(10): 3033-3037.
[60] Yoshida M, Nemoto T, Zhao Z, et al. Enantioselective Construction of All-Carbon Quaternary Spirocenters Through a Pd-Catalyzed Asymmetric Intramolecular ipso-Friedel–Crafts Allylic Alkylation of Phenols[J]. Tetrahedron: Asymmetry, 2012, 23(11): 859-866.
[61] Yang L, Zheng H, Luo L, et al. Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic Biaryls: Axial-to-Central Chirality Transfer[J]. Journal of the American Chemical Society, 2015, 137(15): 4876-4879.
[62] Ge Y, Qin C, Bai L, et al. A Dearomatization/Debromination Strategy for the
[4+1] Spiroannulation of Bromophenols with α,β-Unsaturated Imines[J]. Angewandte Chemie International Edition, 2020, 59(43): 18985-18989.
[63] Nakayama H, Harada S, Kono M, et al. Chemoselective Asymmetric Intramolecular Dearomatization of Phenols with α-Diazoacetamides Catalyzed by Silver Phosphate[J]. Journal of the American Chemical Society, 2017, 139(30): 10188-10191.
[64] Dohi T, Maruyama A, Takenaga N, et al. A Chiral Hypervalent Iodine(III) Reagent for Enantioselective Dearomatization of Phenols[J]. Angewandte Chemie International Edition, 2008, 47(20): 3787-3790.
[65] Boppisetti J K, Birman V B. Asymmetric Oxidation of o-Alkylphenols with Chiral 2-(o-Iodoxyphenyl)-oxazolines[J]. Organic Letters, 2009, 11(6): 1221-1223.
[66] Uyanik M, Yasui T, Ishihara K. Enantioselective Kita Oxidative Spirolactonization Catalyzed by In Situ Generated Chiral Hypervalent Iodine(III) Species[J]. Angewandte Chemie International Edition, 2010, 49(12): 2175-2177.
[67] Uyanik M, Yasui T, Ishihara K. Hydrogen Bonding and Alcohol Effects in Asymmetric Hypervalent Iodine Catalysis: Enantioselective Oxidative Dearomatization of Phenols[J]. Angewandte Chemie International Edition, 2013, 52(35): 9215-9218.
[68] Zhang D Y, Xu L, Wu H, et al. Chiral Iodine-Catalyzed Dearomatizative Spirocyclization for the Enantioselective Construction of an All-Carbon Stereogenic Center[J]. Chemistry – A European Journal, 2015, 21(29): 10314-10317.
[69] Quideau S, Lyvinec G, Marguerit M, et al. Asymmetric Hydroxylative Phenol Dearomatization through In Situ Generation of Iodanes from Chiral Iodoarenes and m-CPBA[J]. Angewandte Chemie International Edition, 2009, 48(25): 4605-4609.
[70] García F J, Kessler F, Buchwald S L. Palladium-Catalyzed Asymmetric Dearomatization of Naphthalene Derivatives[J]. Journal of the American Chemical Society, 2009, 131(19): 6676-6677.
[71] Phipps R J, Toste F D. Chiral Anion Phase-Transfer Catalysis Applied to the Direct Enantioselective Fluorinative Dearomatization of Phenols[J]. Journal of the American Chemical Society, 2013, 135(4): 1268-1271.
[72] Hamilton G L, Kanai T, Toste F D. Chiral Anion-Mediated Asymmetric Ring Opening of meso-Aziridinium and Episulfonium Ions[J]. Journal of the American Chemical Society, 2008, 130(45): 14984-14986.
[73] Rauniyar V, Lackner A D, Hamilton G L, et al. Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst[J]. Science, 2011, 334(6063): 1681-1684.
[74] Phipps R J, Hamilton G L, Toste F D. The Progression of Chiral Anions from Concepts to Applications in Asymmetric Catalysis[J]. Nature Chemistry, 2012, 4(8): 603-614.
[75] Zhang Y Q, Chen Y B, Liu J R, et al. Asymmetric Dearomatization Catalysed by Chiral Brønsted Acids via Activation of Ynamides[J]. Nature Chemistry, 2021, 13(11): 1093-1100.
[76] Buncel E, Dust J M, Jonczyk A, et al. Ambident Nucleophilic Reactivity. 9. Regioselectivity in the Reaction of Ambident Phenoxide Ion and Methoxide and Hydroxide Ions with 2,4,6-Trinitroanisole. Kinetic and Thermodynamic Control[J]. Journal of the American Chemical Society, 1992, 114(14): 5610-5619.
[77] Barner B A, Meyers A I. Asymmetric Addition to Chiral Naphthyloxazolines. A Facile Route to 1,1,2-Trisubstituted 1,2-Dihydronaphthalenes in High Enantiomeric Excess[J]. Journal of the American Chemical Society, 1984, 106(6): 1865-1866.
[78] Rawson D J, Meyers A I. Asymmetric Tandem Additions to Chiral Naphthyloxazolines. A New and Potent Chiral Auxiliary Resulting in a Major Improvement in Convenience and Efficiency[J]. The Journal of Organic Chemistry, 1991, 56(7): 2292-2294.
[79] Andrews R C, Teague S J, Meyers A I. Asymmetric Total Synthesis of (-)-Podophyllotoxin[J]. Journal of the American Chemical Society, 1988, 110(23): 7854-7858.
[80] Clayden J, Parris S, Cabedo N, et al. Stereoselective Dearomatizing Addition of Nucleophiles to Uncomplexed Benzene Rings: A Route to Carbocyclic Sugar Analogues[J]. Angewandte Chemie International Edition, 2008, 47(27): 5060-5062.
[81] Clayden J, Menet C J, Mansfield D J. Asymmetric Deprotonation and Dearomatising Cyclisation of N-benzyl Benzamides Using Chiral Lithium Amides: Formal Synthesis of (–)-Kainic Acid[J]. Chemical Communications, 2002(1): 38-39.
[82] Clayden J, Knowles F E, Menet C J. Stereospecific Dearomatising Cyclisation of Tertiary α-Amidoorganolithiums[J]. Synlett, 2003, 2003(11): 1701-1703.
[83] Di I N, Righi P, Mazzanti A, et al. Remote Control of Axial Chirality: Aminocatalytic Desymmetrization of N-Arylmaleimides via Vinylogous Michael Addition[J]. Journal of the American Chemical Society, 2014, 136(29): 10250-10253.
[84] Curran D P, Qi H, Geib S J, et al. Atroposelective Thermal Reactions of Axially Twisted Amides and Imides[J]. Journal of the American Chemical Society, 1994, 116(7): 3131-3132.
[85] Di I N, Champavert F, Erice A, et al. Targeting Remote Axial Chirality Control of N-(2-tert-butylphenyl)Succinimides by means of Michael Addition Type Reactions[J]. Tetrahedron, 2016, 72(34): 5191-5201.
[86] Mori K, Ichikawa Y, Kobayashi M, et al. Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence[J]. Journal of the American Chemical Society, 2013, 135(10): 3964-3970.
[87] Armstrong R J, Smith M D. Catalytic Enantioselective Synthesis of Atropisomeric Biaryls: A Cation-Directed Nucleophilic Aromatic Substitution Reaction[J]. Angewandte Chemie International Edition, 2014, 53(47): 12822-12826.
[88] Zhang J W, Xu J H, Cheng D J, et al. Discovery and Enantiocontrol of Axially Chiral Urazoles via Organocatalytic Tyrosine Click Reaction[J]. Nature Communications, 2016, 7(1): 10677.
[89] Zhang L, Xiang S H, Wang J, et al. Phosphoric Acid-Catalyzed Atroposelective Construction of Axially Chiral Arylpyrroles[J]. Nature Communications, 2019, 10(1): 566.
[90] Yang J, Zhang J W, Bao W, et al. Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron–Carbon Bond[J]. Journal of the American Chemical Society, 2021, 143(33): 12924-12929.
[91] Zhou L M, Qu R Y, Yang G F. An Overview of Spirooxindole as a Promising Scaffold for Novel Drug Discovery[J]. Expert Opinion on Drug Discovery, 2020, 15(5): 603-625.
[92] Galliford C V, Scheidt K A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents[J]. Angewandte Chemie International Edition, 2007, 46(46): 8748-8758.
[93] 林晔, 杜大明. 方酰胺催化的不对称串联反应合成螺环氧吲哚衍生物. 研究进展[J]. 2020, 40(10): 3214-3236.
[94] 王晓科, 何锡敏, 欧文华, 等. 新型螺环内酯的合成研究. 上海应用技术学院学报(自然科学版)[J]. 2009, 9(04): 271-273+329.
[95] 王建玲, 刘志景. 有机催化的串联反应合成螺环氧化吲哚研究进展. 山东化工[J]. 2020, 49(16): 60-61.
[96] 张敏, 汪军鑫, 田民义, 等. 新型多环吡咯并双螺环色满酮氧化吲哚类化合物的合成. 合成化学[J]. 2020, 28(05): 451-455.
[97] 朱铭, 杨超, 余章彪, 等. 芝麻酚与3-羟基氧化吲哚拼接衍生物的合成及其抗肿瘤活性. 合成化学[J]. 2014, 22(04): 444-447.
[98] 王碧川, 陈凯镔, 朱宝磊, 等. 螺环氧化吲哚化合物抗肿瘤活性研究进展. 化学试剂[J]. 2019, 41(12): 1271-1281.
[99] Nair V, Nair J S, Vinod A U. Triphenylphosphane-Mediated Addition of Dimethyl Acetylenedicarboxylate to 1,2- and 1,4-Benzoquinones: Synthesis of Novel γ-Spirolactones[J]. Synthesis, 2000, 2000(12): 1713-1718.
[100] Liu T, Li Y, Jiang L, et al. Photo-mediated Synthesis of Halogenated Spiro
[4,5]trienones of N-Aryl Alkynamides with PhI(OCOCF3)2 and KBr/KCl[J]. Organic & Biomolecular Chemistry, 2020, 18(10): 1933-1939.
[101] Raji R C, Ajaykumar U, Kolgave D H. Expeditious Access to Spiro-Fused 2,5-Cyclohexadienones via Thio(seleno)cyanative ipso-Cyclization[J]. The Journal of Organic Chemistry, 2020, 85(23): 15521-15531.
[102] Xiong F, Zuo Y, Song Y, et al. Synthesis of ortho-Phenolic Sulfilimines via an Intermolecular Sulfur Atom Transfer Cascade Reaction[J]. Organic Letters, 2020, 22(10): 3799-3803.
[103] Wu L, Xu H, Gao H, et al. Chiral Allylic Amine Synthesis Enabled by the Enantioselective CpXRh(III)-Catalyzed Carboaminations of 1,3-Dienes[J]. ACS Catalysis, 2021, 11(4): 2279-2287.
[104] Zheng G, Zhou Z, Zhu G, et al. Rhodium(III)-Catalyzed Enantio- and Diastereoselective C−H Cyclopropylation of N-Phenoxylsulfonamides: Combined Experimental and Computational Studies[J]. Angewandte Chemie International Edition, 2020, 59(7): 2890-2896.
[105] Pereira J, Barlier M, Guillou C. Formal Total Syntheses of Aspidosperma Alkaloids via a Novel and General Synthetic Pathway Based on an Intramolecular Heck Cyclization[J]. Organic Letters, 2007, 9(16): 3101-3103.
[106] Lanza T, Leardini R, Minozzi M, et al. Approach to Spirocyclohexadienimines and Corresponding Dienones through Radical ipso Cyclization onto Aromatic Azides[J]. Angewandte Chemie International Edition, 2008, 47(49): 9439-9442.
[107] Chen M, Sun J. Catalytic Asymmetric N-Alkylation of Indoles and Carbazoles through 1,6-Conjugate Addition of Aza-para-quinone Methides[J]. Angewandte Chemie International Edition, 2017, 56(16): 4583-4587.
[108] Ma D, Miao C B, Sun J. Catalytic Enantioselective House–Meinwald Rearrangement: Efficient Construction of All-Carbon Quaternary Stereocenters[J]. Journal of the American Chemical Society, 2019, 141(35): 13783-13787.
[109] Mao J H, Wang Y B, Yang L, et al. Organocatalyst-Controlled Site-Selective Arene C–H Functionalization[J]. Nature Chemistry, 2021, 13(10): 982-991.
[110] Wencel-Delord J, Panossian A, Leroux F R, et al. Recent Advances and new Concepts for the Synthesis of Axially Stereoenriched Biaryls[J]. Chemical Society Reviews, 2015, 44(11): 3418-3430.
[111] Ma G, Sibi M P. Catalytic Kinetic Resolution of Biaryl Compounds[J]. Chemistry – A European Journal, 2015, 21(33): 11644-11657.
[112] Cheng D-J, Yan L, Tian S-K, et al. Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Brønsted Acid[J]. Angewandte Chemie International Edition, 2014, 53(14): 3684-3687.
[113] Xue F, Hayashi T. Asymmetric Synthesis of Axially Chiral 2-Aminobiaryls by Rhodium-Catalyzed Benzannulation of 1-Arylalkynes with 2-(Cyanomethyl)phenylboronates[J]. Angewandte Chemie International Edition, 2018, 57(32): 10368-10372.
[114] Chen X, Gao D, Wang D, et al. Access to Aryl-Naphthaquinone Atropisomers by Phosphine-Catalyzed Atroposelective (4+2) Annulations of δ-Acetoxy Allenoates with 2-Hydroxyquinone Derivatives[J]. Angewandte Chemie International Edition, 2019, 58(43): 15334-15338.
[115] Xu K, Li W, Zhu S, et al. Atroposelective Arene Formation by Carbene-Catalyzed Formal
[4+2] Cycloaddition[J]. Angewandte Chemie International Edition, 2019, 58(49): 17625-17630.
[116] Qi L W, Mao J H, Zhang J, et al. Organocatalytic Asymmetric Arylation of Indoles Enabled by Azo Groups[J]. Nature Chemistry, 2018, 10(1): 58-64.
[117] Xia W, An Q J, Xiang S H, et al. Chiral Phosphoric Acid Catalyzed Atroposelective C−H Amination of Arenes[J]. Angewandte Chemie International Edition, 2020, 59(17): 6775-6779.
[118] Yan S, Xia W, Li S, et al. Michael Reaction Inspired Atroposelective Construction of Axially Chiral Biaryls[J]. Journal of the American Chemical Society, 2020, 142(16): 7322-7327.
[119] Xia W, Zhou Z A, Lv J, et al. Facile Synthesis of N-Aryl Phenothiazines and Phenoxazines via Brønsted Acid Catalyzed C–H Amination of Arenes[J]. Chemical Communications, 2022, 58(10): 1613-1616.
[120] Wang C, Chen Y, Li J, et al. Phosphine-Catalyzed Asymmetric Cycloaddition Reaction of Diazenes: Enantioselective Synthesis of Chiral Dihydropyrazoles[J]. Organic Letters, 2019, 21(18): 7519-7523.
[121] Li H, Shi W, Wang C, et al. Phosphine-Catalyzed Cascade Annulation of MBH Carbonates and Diazenes: Synthesis of Hexahydrocyclopenta[c]pyrazole Derivatives[J]. Organic Letters, 2021, 23(14): 5571-5575.
[122] Zhu B, Yang T, Gu Y, et al. Enantioselective Organocatalytic Amination of 2-Perfluoroalkyl-oxazol-5(2H)-ones Towards the Synthesis of Chiral N,O-Aminals with Perfluoroalkyl and Amino Groups[J]. Organic Chemistry Frontiers, 2021, 8(15): 4160-4165.
[123] Gassman P G, Campbell G A, Frederick R C. Chemistry of Nitrenium Ions. XXI. Nucleophilic Aromatic Substitution of Anilines via Aryl Nitrenium Ions (Anilenium Ions)[J]. Journal of the American Chemical Society, 1972, 94(11): 3884-3891.
[124] Novak M, Rangappa K S, Manitsas R K. Nucleophilic Aromatic Substitution on Ester Derivatives of Carcinogenic N-Arylhydroxamic Acids by Aniline and N,N-Dimethylaniline[J]. The Journal of Organic Chemistry, 1993, 58(27): 7813-7821.
[125] Fishbein J C, McClelland R A. Nature of Nitrenium: Carboxylate Ion Pair Intermediates in the Hydrolysis of O-aroyl-N-acetyl-N-(2,6-dimethylphenyl)hydroxylamines[J]. Journal of the Chemical Society, Perkin Transactions 2, 1995(4): 663-671.
[126] McClelland R A, Kahley M J, Davidse P A, et al. Acid−Base Properties of Arylnitrenium Ions[J]. Journal of the American Chemical Society, 1996, 118(20): 4794-4803.
[127] Shudo K, Ohta T, Okamoto T. Acid-catalyzed Reactions of N-Arylhydroxylamines and Related Compounds with Benzene. Iminium-benzenium ions[J]. Journal of the American Chemical Society, 1981, 103(3): 645-653.
[128] McIlroy S, Falvey D E. Reactions of Nitrenium Ions with Arenes: Laser Flash Photoylsis Detection of a σ-Complex between N,N-Diphenylnitrenium Ion and Alkoxybenzenes[J]. Journal of the American Chemical Society, 2001, 123(45): 11329-11330.
[129] Srivastava S, Ruane P H, Toscano J P, et al. Structures of Reactive Nitrenium Ions: Time-Resolved Infrared Laser Flash Photolysis and Computational Studies of Substituted N-Methyl-N-arylnitrenium Ions[J]. Journal of the American Chemical Society, 2000, 122(34): 8271-8278.
[130] Chiapperino D, Anderson G B, Robbins R J, et al. Photochemically Generated Arylnitrenium Ions: Laser Flash Photolysis and Product Studies of the Photochemistry of N-tert-Butyl-3-methyl-6-chloroanthranilium Ions[J]. The Journal of Organic Chemistry, 1996, 61(9): 3195-3199.
[131] Novak M, Kahley M J, Lin J, et al. Involvement of Free Nitrenium Ions, Ion Pairs, and Preassociation Trapping in the Reactions of Ester Derivatives of N-Arylhydroxylamines and N-Arylhydroxamic Acids in Aqueous Solution[J]. The Journal of Organic Chemistry, 1995, 60(25): 8294-8304.
[132] Novak M, Helmick J S, Oberlies N, et al. The Electrochemical Preparation and kinetic and Product Studies of Acylated Quinol and Quinol Ether Imines. In Search of the Hydrolysis Products of the Ultimate Carcinogen of N-acetyl-2-Aminofluorene[J]. The Journal of Organic Chemistry, 1993, 58(4): 867-878.
[133] Hopf H, Kämpen J, Bubenitschek P, et al. En Route to 7,7,8,8-Tetraethynyl-p-quinodimethane (TEQ)[J]. European Journal of Organic Chemistry, 2002, 2002(10): 1708-1721.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O625.1
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/416955
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
朱帅. 轴手性环己二烯类化合物的催化不对称合成研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849573-朱帅-化学系.pdf(10900KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[朱帅]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[朱帅]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[朱帅]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.