中文版 | English
Title

兼容生物大分子的硫亚胺脱氢Chan-Lam偶联反应研究

Alternative Title
Biomolecule-Compatible Dehydrogenative Chan-Lam Coupling of Free Sulfilimines
Author
Name pinyin
MENG Tingting
School number
11849560
Degree
博士
Discipline
070303 有机化学
Subject category of dissertation
07 理学
Supervisor
贾铁争
Mentor unit
化学系
Publication Years
2022-11-01
Submission date
2022-12-27
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

硫亚胺作为亚砜的氮杂类似物,在化学与生物学领域受到越来越多的关注。在生物大分子中,特别是肽和蛋白质上引入硫亚胺(S=N)结构,将赋予其独特的化学物理性质与新颖的生物活性。然而,N-芳基硫亚胺的传统合成方法,需要强氧化剂或者强碱性条件,因此底物范围受限,限制了硫亚胺在药物化学以及化学生物学中的进一步研究应用。本论文受亚砜配体与金属配位过程中内壳单电子转移机制的启发,发展了一种氧化还原中性的硫亚胺脱氢Chan-Lam偶联方法,以较高收率和良好的底物兼容性构建了一系列N-芳基硫亚胺类化合物。温和的反应条件和优异的化学选择性,使得该方法被成功应用于复杂肽分子的后期官能团修饰以及蛋白的化学标记中,实现了在肽分子与蛋白水平上构建S=N键。主要研究内容如下:

在无外加氧化剂条件下,实现了NH-二芳基硫亚胺与芳基硼酸的脱氢Chan-Lam偶联反应。反应条件温和,无需外加酸、碱和配体,具有良好的官能团兼容性。值得一提的是,以酪氨酸硼酸衍生物为底物时,也能以较高的化学选择性得到相应的偶联产物,为后续肽分子修饰奠定了基础。通过一系列控制实验、波谱表征以及计算化学方法,对这一氧化还原中性的硫亚胺脱氢Chan-Lam偶联反应机理进行了进一步的研究。通过电子顺磁共振波谱分析与紫外可见光谱分析,证明了在无外加氧化剂的条件下,NH-硫亚胺可以有效促进一价铜到二价铜的氧化。通过气相色谱分析与气体质谱检测,证实了H2是反应体系的主要副产物之一,H2中的氢原子分别来自于NH-硫亚胺与溶剂。结合实验与理论计算,确定了H2产生的反应途径,即:NH-硫亚胺与一价铜配位,通过内壳单电子转移过程形成含有硫亚胺自由基阴离子的二价铜过渡态,随后铜原子插入N-H键,经三元环过渡态产生含有三价铜的铜氢中间体,后者通过四元环过渡态从异丙醇溶剂中攫取氢正离子释放出 H2。该反应方法可以作为传统Chan-Lam偶联方法的有效补充,避免了外加氧化剂导致的副反应以及底物受限。

受到氧化还原中性以及酪氨酸硼酸衍生物成功兼容的启发,将铜催化硫亚胺脱氢Chan-Lam偶联方法拓展至肽分子的修饰中。通过对含酪氨酸硼酸衍生物的二肽底物的考察发现,反应表现出良好的底物普适性与化学选择性,可以很好地兼容氨基酸残基中的-OH、-SH、-CONH2以及吲哚-NH官能团等传统Chan-Lam偶联反应中的活性基团。该反应对于含酪氨酸硼酸衍生物的功能性三肽分子同样适用,以68%-96%的收率获得了对应的偶联产物。对于四肽以上肽链更长、结构更为复杂的肽分子,包括两种内源性肽分子endomorphin-1、met-enkephalin,以及外源性的七肽分子deltorphin I,通过该偶联策略也能够成功实现相应肽分子的硫亚胺化修饰。氧化还原中性的反应特点,使得这一新发展的偶联策略克服了传统Chan-Lam偶联应用于肽分子修饰中存在的化学选择性问题,表现出了良好的氨基酸兼容性,成功地实现了对多种功能性肽分子的硫亚胺化修饰。

在广泛的肽底物兼容性基础上,进一步探索将这一温和高效的偶联反应方法发展为一种有效的蛋白质硫亚胺化标记策略。为了保证蛋白质结构与功能的完整性,如何在接近生理学条件中高选择性地实现蛋白质的硫亚胺化标记,是该标记策略的主要化学挑战。选取了分子量为33 kDa、具有312个氨基酸残基的Halotag 7作为模型蛋白,经过一系列的条件优化后,最终克服了有机溶剂的限制,在以pH 7.4的PBS缓冲溶液为主要反应介质的反应体系中,以43%的收率生成目标蛋白Protein 7,实现了对Halotag 7的硫亚胺化修饰。IV型胶原蛋白内硫亚胺键的共价交联是保证基质膜结构完整性的关键因素。因此,在蛋白水平上研究硫亚胺键的稳定性具有重要的参考意义。通过免疫印迹实验,首次对蛋白质中的硫亚胺键在生理相关条件下的化学稳定性进行了考察。结果表明,蛋白质中硫亚胺键具有一定的氧化条件耐受性,但对酸、碱、还原性条件以及培养基条件较为敏感。在众多考察的生理学相关因素中,高温可以在较短时间内对硫亚胺键产生最为显著的破坏作用。

Other Abstract

Sulfilimines, the aza-analogues of sulfoxides, have drawn increasing attention in the fields of chemistry and biology. Derivatization of biomacromolecules, especially peptides and proteins with this S(IV)-derived motif could endow them with novel chemophysical properties and biological activities. However, their further uptake in medicinal chemistry as well as chemical biology was hampered since the traditional synthetic methods of N-aryl sulfilimines require strong oxidants or alkaline conditions, which result in the limited substrate scope. In this dissertation, a redox-neutral Chan-Lam coupling reaction of free sulfilimines was developed inspired by the classic electron-transfer process of sulfoxide ligand isomerization while binding to metal complexes. It permits facile access to a myriad of NAr-diaryl sulfilimines and even allows the synthesis of sulfilimine-modified peptides and protein under biomolecule-compatible conditions. The main research contents are as follows:

Copper-catalyzed dehydrogenative Chan-Lam coupling of free diaryl sulfilimines with arylboronic acids has been developed with excellent chemoselectivity and broad substrate compatibility. Moreover, a tyrosine-derived boronic acid was also compatible with the transformation, which laid the foundation for the subsequent peptide modification. The mechanism of the redox-neutral sulfilimine dehydrogenative coupling reaction was further investigated through a series of control experiments, spectroscopic characterization, and computational investigation. Cu(II) complex was characterized by EPR and UV-Vis spectra while mixing with NH-sulfilimine, supporting that the free sulfilimines could facilitate the oxidation of Cu(I) to Cu(II) in the absence of external oxidants.  Besides, based on gas chromatography analysis and gas mass spectrometry analysis of the gaseous byproducts in the reaction system with headspace injection, H2 was one of the major by-products of the reaction system, and the hydrogen atoms in H2 originated from NH-sulfilimine and solvent, respectively. A combined experimental and computational study reveals the copper hydride pathway of H2 generation: CuBr binds to NH-sulfilimines to yield Cu(II) intermediate featuring a radical anion NH-sulfilimine ligand via an inner-sphere electron transfer process. Subsequently, an insertion of Cu(II) into the N-H bond of the sulfilimine leads to the formation of three-membered transition state. Cu(II)-facilitated homolysis of O–H bond of iPrOH occurs to give a formal Cu(III) hydride species, which can release the hydrogen gas via a feasible four-membered transition state. The protocol described herein represents an appealing alternative to classic oxidative C-N coupling strategy, enabling greater substrate generality, and eliminating byproducts from oxidants.

Encouraged by redox-neutral reaction conditions and the excellent chemoselectivity with tyrosine-derived substrate, the suitability of the newly devised copper-catalyzed Chan-Lam coupling to afford sulfilimine-modified peptides was investigated next. The introduction of second amino acid attached to the tyrosine-based boronic acid exerted negligible effect to the outcome of this protocol, favoring C-N bond formation of sulfilimine N-H bonds over C-O, C-S, or C-N bond formation of hydroxyls O-H bonds, thiol S-H bonds, amide N-H bonds, or indole N-H bonds. The Tyr(B(OH)2) derivative of tripeptides were also well-suited to the method, providing the corresponding products in 68%-96% yields. Remarkably, the chemistry was well accommodated with more complex tetrapeptides and pentapeptides, including two endogenous opioid receptor agonists endomorphin-1 and met-enkephalin, and an exogenous opioid receptor agonist deltorphin I. The redox-neutral characteristics enables this newly developed coupling strategy to overcome the chemoselectivity problems when the traditional Chan-Lam coupling was applied to the peptide modifications, highlighting good amino acid compatibility and various bioactive peptides were successfully sulfilimine-modified.

Encouraged by the broad tolerance to different peptides, the copper-catalyzed Chan-Lam coupling of free sulfilimines was developed as a selective protein bioconjugation method. To ensure the structural and functional integrity of proteins, how to achieve highly selective sulfilimine-labeling of proteins under physiological conditions is the main chemical challenge of this labeling strategy. Halotag 7, the 33 kDa monomeric protein, was selected as a model protein substrate for this study. After a series of condition optimization, the target protein 7 was finally obtained in 43% yield using a PBS buffer solution (pH 7.4) as the main reaction medium. The sulfilimine covalent crosslink in collagen IV serves as a key reinforcement that stabilizes basement membranes. Therefore, the stability of sulfilimines in the context of proteins stands as a significant yet unsolved question. The chemical stability of the sulfilimine motif in protein structures under various physiologically relevant conditions was firstly investigated by Western blots in this thesis. The results show that the sulfilimine bond in protein 7 was relatively stable under oxidative conditions. Nevertheless, the S=N bond is sensitive to acidic, basic, reductive, or under the treatment of Dulbecco’s Modified Eagle Medium (DMEM). Among all the factors examined, high temperature caused the most degradation of the sulfilimine motif even in a very short period of time.

Keywords
Other Keyword
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2022-12
References List

[1] Gilchrist T L, Moody C J. The Chemistry of Sulfilimines [J]. Chemical Reviews, 1977, 77(3): 409.
[2] Furukawa N, Oae S. Sulfilimines. Synthetic Applications and Potential Utilizations [J]. Industrial & Engineering Chemistry Research, 1981, 20(2): 260.
[3] Koval I V. Advances in the Chemistry of Sulfimides and Related Compounds [J]. Sulfur Reports, 1993, 14(1): 149.
[4] Dolle R E, Osifo K I, Li C-S. Enantioselective Synthesis of (+)-Pinidine [J]. Tetrahedron Letters, 1991, 32(38): 5029.
[5] Garcia Ruano J L, Alemparte C, Clemente F R, et al. Cyclic Vinyl p-Tolyl Sulfilimines as Chiral Dienophiles: Diels-Alder Reactions with Furan and Acyclic Dienes [J]. Journal of Organic Chemistry, 2002, 67(9): 2919.
[6] Grange R L, Evans P A. Metal-Free Metathesis Reaction of C-Chiral Allylic Sulfilimines with Aryl Isocyanates: Construction of Chiral Nonracemic Allylic Isocyanates [J]. Journal of the American Chemical Society, 2014, 136(34): 11870.
[7] Padwa A, Nara S, Wang Q. Dichloroketene-Induced Cyclizations of Vinyl Sulfilimines: Application of the Method in the Synthesis of (±)-Desoxyeseroline [J]. Journal of Organic Chemistry, 2005, 70(21): 8538.
[8] Marino J P, Zou N. Chemoselective Syntheses of γ-Butyrolactams Using Vinyl Sulfilimines and Dichloroketene [J]. Organic Letters, 2005, 7(10): 1915.
[9] Xie X, Sun J.
[4+3]-Cycloaddition Reaction of Sulfilimines with Cyclobutenones: Access to Benzazepinones [J]. Organic Letters, 2021, 23(22): 8921.
[10] Yoshida S, Yano T, Misawa Y, et al. Direct Thioamination of Arynes via Reaction with Sulfilimines and Migratory N-Arylation [J]. Journal of the American Chemical Society, 2015, 137(44): 14071.
[11] Grange R L, Clizbe E A, Counsell E J, et al. Enantioselective Construction of C-Chiral Allylic Sulfilimines via the Iridium-Catalyzed Allylic Amination with S,S-Diphenylsulfilimine: Asymmetric Synthesis of Primary Allylic Amines [J]. Chemical science, 2015, 6(1): 777.
[12] Thakur V V, Ramesh Kumar N S C, Sudalai A. Sulfilimine Palladacycles: Stable and Efficient Catalysts for Carbon–Carbon Coupling Reactions [J]. Tetrahedron Letters, 2004, 45(14): 2915.
[13] Otocka S, Kwiatkowska M, Madalinska L, et al. Chiral Organosulfur Ligands/Catalysts with a Stereogenic Sulfur Atom: Applications in Asymmetric Synthesis [J]. Chemical Reviews, 2017, 117(5): 4147.
[14] Yu X, Zhang Y, Liu Y, et al. Synthesis and Acaricidal- and Insecticidal-Activity Evaluation of Novel Oxazolines Containing Sulfiliminyl Moieties and Their Derivatives [J]. Journal of Agricultural and Food Chemistry, 2019, 67(15): 4224.
[15] Koerber K W, J.; Kaiser, F.; Pohlman, M.; Deshmukh, P.; Culbertson, D. L.; Rogers, W. D.; Gunjima, K.; David, M.; Braun, F. J.; Thompson, S. Method of Controlling Ryanodine-Modulator Insecticide Resistant Insect: WO2014053406 A1 [P]. 2014-04-10.
[16] Hua X, Mao W, Fan Z, et al. Novel Anthranilic Diamide Insecticides: Design, Synthesis, and Insecticidal Evaluation [J]. Australian Journal of Chemistry, 2014, 67(10): 1491.
[17] Bland, D. C.; Ross R, Jr.; Johnson, P. L.; Johnson, T. C. Insecticidal Nsubstituted Sulfilimine and Sulfoximine Pyridine N-Oxides: US2014005234 (A1) [P]. 2014-01-02.
[18] Strekowski L, Henary M, Kim N, et al. N-(4-Bromobenzoyl)-S,S-Dimethyliminosulfurane, a Potent Dermal Penetration Enhancer [J]. Bioorganic and Medicinal Chemistry Letters, 1999, 9(7): 1033.
[19] Andersen K K, Bhattacharyya J, Mukhopadhyay S K. Antimalarial Sulfilimines and Sulfoximines Related to Diaminodiphenyl Sulfoxide and Sulfone [J]. Journal of Medicinal Chemistry, 1970, 13(4): 759.
[20] Milaeva E R, Shpakovsky D B, Maklakova I A, et al. Novel Diphenylsulfimide Antioxidants Containing 2,6-Di-Tert-Butylphenol Moieties [J]. Russian Chemical Bulletin, 2018, 67(11): 2025.
[21] Lücking U, Nguyen D, Von Bonin A, et al. Sulphimides as Protein Kinase Inhibitors: WO2007140957 (A1) [P]. 2007-12-13.
[22] Zhou S, Gu Y, Liu M, et al. Insecticidal Activities of Chiral N-Trifluoroacetyl Sulfilimines as Potential Ryanodine Receptor Modulators [J]. Journal of Agricultural and Food Chemistry, 2014, 62(46): 11054.
[23] Zhou S, Jia Z, Xiong L, et al. Chiral Dicarboxamide Scaffolds Containing a Sulfiliminyl Moiety as Potential Ryanodine Receptor Activators [J]. Journal of Agricultural and Food Chemistry, 2014, 62(27): 6269.
[24] Kim S M, Kang O Y, Lim H J, et al. Selective Synthesis of N-Cyano Sulfilimines by Dearomatizing Stable Thionium Ions [J]. ACS Omega, 2020, 5(17): 10191.
[25] Vanacore R, Ham A-J L, Voehler M, et al. A Sulfilimine Bond Identified in Collagen IV [J]. Science, 2009, 325(5945): 1230.
[26] Bhave G, Cummings C F, Vanacore R M, et al. Peroxidasin Forms Sulfilimine Chemical Bonds Using Hypohalous Acids in Tissue Genesis [J]. Nature Chemical Biology, 2012, 8(9): 784.
[27] Fidler A L, Vanacore R M, Chetyrkin S V, et al. A Unique Covalent Bond in Basement Membrane Is a Primordial Innovation for Tissue Evolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1): 331.
[28] McCall A S, Cummings C F, Bhave G, et al. Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture [J]. Cell, 2014, 157(6): 1380.
[29] Lau D, Baldus S. Myeloperoxidase and Its Contributory Role in Inflammatory Vascular Disease [J]. Pharmacology & Therapeutics, 2006, 111(1): 16.
[30] Pedchenko V, Kitching A R, Hudson B G. Goodpasture's Autoimmune Disease—A Collagen IV Disorder [J]. Matrix Biology, 2018, 71-72: 240.
[31] Candiello J, Balasubramani M, Schreiber E M, et al. Biomechanical Properties of Native Basement Membranes [J]. FEBS Journal 2007, 274(11): 2897.
[32] Pedchenko V, Boudko S P, Barber M, et al. Collagen IVα345 Dysfunction in Glomerular Basement Membrane Diseases. III. A Functional Framework for α345 Hexamer Assembly [J]. Journal of Biological Chemistry, 2021: 296.
[33] Wang Z, Zhai Z, Chen C, et al. Air Pollution Particles Hijack Peroxidasin to Disrupt Immunosurveillance and Promote Lung Cancer [J]. Elife, 2022: 11.
[34] Weiss S J. Peroxidasin: Tying the Collagen-Sulfilimine Knot [J]. Nature Chemical Biology, 2012, 8(9): 740.
[35] Xu K, Luan D, Wang X, et al. An Ultrasensitive Cyclization-Based Fluorescent Probe for Imaging Native HOBr in Live Cells and Zebrafish [J]. Angewandte Chemie International Edition, 2016, 55(41): 12751.
[36] Liu X, Zheng A, Luan D, et al. High-Quantum-Yield Mitochondria-Targeting near-Infrared Fluorescent Probe for Imaging Native Hypobromous Acid in Living Cells and in Vivo [J]. Analytical Chemistry, 2017, 89(3): 1787.
[37] Luan D, Gao X, Kong F, et al. Cyclic Regulation of the Sulfilimine Bond in Peptides and NC1 Hexamers via the HOBr/H2Se Conjugated System [J]. Analytical Chemistry, 2018, 90(15): 9523.
[38] Lin S, Yang X, Jia S, et al. Redox-Based Reagents for Chemoselective Methionine Bioconjugation [J]. Science, 2017, 355(6325): 597.
[39] Christian A H, Jia S, Cao W, et al. A Physical Organic Approach to Tuning Reagents for Selective and Stable Methionine Bioconjugation [J]. Journal of the American Chemical Society, 2019, 141(32): 12657.
[40] Elledge S K, Tran H L, Christian A H, et al. Systematic Identification of Engineered Methionines and Oxaziridines for Efficient, Stable, and Site-Specific Antibody Bioconjugation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(11): 5733.
[41] Rosselin M, Xiao Y, Belhomme L, et al. Expanding the Toolbox of Chemoselective Modifications of Protein-Like Polymers at Methionine Residues [J]. ACS Macro Letters, 2019, 8(12): 1648.
[42] Lin D, Wallace M, Allentoff A J, et al. Chemoselective Methionine Bioconjugation: Site-Selective Fluorine-18 Labeling of Proteins and Peptides [J]. Bioconjugate Chemistry, 2020, 31(8): 1908.
[43] Ohata J, Krishnamoorthy L, Gonzalez M A, et al. An Activity-Based Methionine Bioconjugation Approach to Developing Proximity-Activated Imaging Reporters [J]. ACS Central Science, 2020, 6(1): 32.
[44] Claus P K, Rieder W, Hofbauer P, et al. N-Aryl Sulfimides [J]. Tetrahedron, 1975, 31(6): 505.
[45] Koval I V. Sulfides: Synthesis and Properties [J]. Russian Chemical Reviews, 1994, 63(4): 323.
[46] Tian X, Song L, Rudolph M, et al. Sulfilimines as Versatile Nitrene Transfer Reagents: Facile Access to Diverse Aza-Heterocycles [J]. Angewandte Chemie International Edition, 2019, 58(11): 3589.
[47] Tian X, Song L, Hashmi A S K. α-Imino Gold Carbene Intermediates from Readily Accessible Sulfilimines: Intermolecular Access to Structural Diversity [J]. Chemistry—A European Journal, 2020, 26(15): 3197.
[48] West M J, Fyfe J W B, Vantourout J C, et al. Mechanistic Development and Recent Applications of the Chan-Lam Amination [J]. Chemical Reviews, 2019, 119(24): 12491.
[49] Tamura Y, Sumoto K, Matsushima H, et al. Reactions of N-Substituted Arylsulfilimines with Acylating Agents and with Activated Halobenzenes, Alkynes, and Alkenes [J]. The Journal of Organic Chemistry, 1973, 38(25): 4324.
[50] Furukawa N, Oae S, Yoshimura T. The Michael Type Addition of Free Sulfilimine [J]. Synthesis, 1976, 1976(01): 30.
[51] Tian X, Song L, Rudolph M, et al. N-Pyridinyl Sulfilimines as a Source for α-Imino Gold Carbenes: Access to 2-Amino-Substituted N-Fused Imidazoles [J]. Organic Letters, 2019, 21(6): 1598.
[52] Zhao X, Rudolph M, Asiri A M, et al. Easy Access to Pharmaceutically Relevant Heterocycles by Catalytic Reactions Involving α-Imino Gold Carbene Intermediates [J]. Frontiers of Chemical Science and Engineering, 2019, 14(3): 317.
[53] Tian X, Song L, Rudolph M, et al. Synthesis of 2-Aminoindoles through Gold-Catalyzed C-H Annulations of Sulfilimines with N-Arylynamides [J]. Organic Letters, 2019, 21(11): 4327.
[54] Tian X, Song L, Han C, et al. Gold(III)-Catalyzed Formal
[3+2] Annulations of N-Acyl Sulfilimines with Ynamides for the Synthesis of 4-Aminooxazoles [J]. Organic Letters, 2019, 21(8): 2937.
[55] Tian X, Song L, Hashmi A S K. Synthesis of Carbazoles and Related Heterocycles from Sulfilimines by Intramolecular C-H Aminations [J]. Angewandte Chemie International Edition, 2020, 59(30): 12342.
[56] Marichev K O, Wang K, Dong K, et al. Synthesis of Chiral Tetrasubstituted Azetidines from Donor-Acceptor Azetines via Asymmetric Copper(I)-Catalyzed Imido-Ylide
[3+1]-Cycloaddition with Metallo-Enolcarbenes [J]. Angewandte Chemie International Edition, 2019, 58(45): 16188.
[57] Song L, Tian X, Han C, et al. Catalyst-Free Synthesis of Oxazol-2(3H)-Ones from Sulfilimines and Diazo Compounds through a Tandem Rearrangement/Aziridination/Ring-Expansion Reaction [J]. Organic Chemistry Frontiers, 2021, 8(13): 3314.
[58] Cheng Q, Bai Z, Tewari S, et al. Bifunctional Sulfilimines Enable Synthesis of Multiple N-Heterocycles from Alkenes [J]. Nature Chemistry, 2022, 14(8): 898.
[59] Franz J A, Martin J C. Surfuranes. X. Reagent for the Facile Cleavage of Secondary Amides [J]. Journal of the American Chemical Society, 1973, 95(6): 2017.
[60] Franz J A, Martin J C. Reactions of Diaryldialkoxysulfuranes with Primary and Secondary Amines. Preparation and Reactions of S,S-Diaryl-N-Alkylsulfilimines and Oxidation of Secondary Amines to Imines [J]. Journal of the American Chemical Society, 1975, 97(3): 583.
[61] Bizet V, Hendriks C M, Bolm C. Sulfur Imidations: Access to Sulfimides and Sulfoximines [J]. Chemical Society Reviews, 2015, 44(11): 3378.
[62] Abou-Gharbia M, Ketcha D M, Zacharias D E, et al. Reactions of Ketenes with Sulfilimines. Synthetic Routes to Oxazolinones and Indolinones [J]. The Journal of Organic Chemistry, 1985, 50(13): 2224.
[63] Claridge R P, Millar R W, Sandall J P B, et al. Preparation of N-Aryl-S,S-Diphenylsulfilimines by Nucleophilic Attack of N-Lithio-S,S-Diphenylsulfilimine on Aromatic Compounds [J]. Tetrahedron, 1999, 55(33): 10243.
[64] Chan D M T, Monaco K L, Wang R-P, et al. New N- and O-Arylations with Phenylboronic Acids and Cupric Acetate [J]. Tetrahedron Letters, 1998, 39(19): 2933.
[65] Evans D A, Katz J L, West T R. Synthesis of Diaryl Ethers through the Copper-Promoted Arylation of Phenols with Arylboronic Acids. An Expedient Synthesis of Thyroxine [J]. Tetrahedron Letters, 1998, 39(19): 2937.
[66] Lam P Y S, Clark C G, Saubern S, et al. New Aryl/Heteroaryl C-N Bond Cross-Coupling Reactions via Arylboronic Acid Cupric Acetate Arylation [J]. Tetrahedron Letters, 1998, 39(19): 2941.
[67] Chen J Q, Li J H, Dong Z B. A Review on the Latest Progress of Chan-Lam Coupling Reaction [J]. Advanced Synthesis & Catalysis, 2020, 362(16): 3311.
[68] Bhunia S, Pawar G G, Kumar S V, et al. Selected Copper-Based Reactions for C-N, C-O, C-S, and C-C Bond Formation [J]. Angewandte Chemie International Edition, 2017, 56(51): 16136.
[69] Ley S V, Thomas A W. Modern Synthetic Methods for Copper-Mediated C(Aryl)-O, C(Aryl)-N, and C(Aryl)-S Bond Formation [J]. Angewandte Chemie International Edition, 2003, 42(44): 5400.
[70] Jia T, Wang C, Li X. Recent Advances in N-Arylation of Nh-Sulfoximines and Their Applications [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 714.
[71] Vantourout J C, Miras H N, Isidro-Llobet A, et al. Spectroscopic Studies of the Chan-Lam Amination: A Mechanism-Inspired Solution to Boronic Ester Reactivity [J]. Journal of the American Chemical Society, 2017, 139(13): 4769.
[72] Nasrollahzadeh M, Ehsani A, Maham M. Copper-Catalyzed N-Arylation of Sulfonamides with Boronic Acids in Water under Ligand-Free and Aerobic Conditions [J]. Synlett, 2014, 25(04): 505.
[73] Raghuvanshi D S, Gupta A K, Singh K N. Nickel-Mediated N-Arylation with Arylboronic Acids: An Avenue to Chan-Lam Coupling [J]. Organic Letters, 2012, 14(17): 4326.
[74] Battula S R K, Subbareddy G V, Chakravarthy I E. A Mild and Efficient Copper-Catalyzed N-Arylation of Unprotected Sulfonimidamides Using Boronic Acids [J]. Tetrahedron Letters, 2014, 55(2): 517.
[75] Lam P Y S, Vincent G, Clark C G, et al. Copper-Catalyzed General C-N and C-O Bond Cross-Coupling with Arylboronic Acid [J]. Tetrahedron Letters, 2001, 42(20): 3415.
[76] Pan C, Cheng J, Wu H, et al. Cu(OAc)2-Catalyzed N-Arylation of Sulfonamides with Arylboronic Acids or Trimethoxy(Phenyl)Silane [J]. Synthetic Communications, 2009, 39(12): 2082.
[77] Sanjeeva Rao K, Wu T-S. Chan-Lam Coupling Reactions: Synthesis of Heterocycles [J]. Tetrahedron, 2012, 68(38): 7735.
[78] Xie R-G, Yu X-Q, Lan J-B, et al. A Simple Copper Salt Catalyzed N-Arylation of Amines, Amides, Imides, and Sulfonamides with Arylboronic Acids [J]. Synlett, 2004, (6): 1095.
[79] Kantam M L, Neelima B, Reddy C V, et al. N-Arylation of Imidazoles, Imides, Amines, Amides and Sulfonamides with Boronic Acids Using a Recyclable Cu(OAc)2·H2O/[bmim][BF4] System [J]. Journal of Molecular Catalysis A: Chemical, 2006, 249(1-2): 201.
[80] You C, Yao F, Yan T, et al. A Highly Efficient Heterogeneous Copper-Catalyzed Chan-Lam Coupling Reaction of Sulfonyl Azides with Arylboronic Acids Leading to N-Arylsulfonamides [J]. RSC Advances, 2016, 6(49): 43605.
[81] West M J, Thomson B, Vantourout J C, et al. Discovery, Scope, and Limitations of an N-Dealkylation/N-Arylation of Secondary Sulfonamides under Chan-Lam Conditions [J]. Asian Journal of Organic Chemistry, 2019, 9(3): 364.
[82] Zu W, Liu S, Jia X, et al. Chemoselective N-Arylation of Aminobenzene Sulfonamides via Copper Catalysed Chan-Evans-Lam Reactions [J]. Organic Chemistry Frontiers, 2019, 6(9): 1356.
[83] Mudryk B, Zheng B, Chen K, et al. Development of a Robust Process for the Preparation of High-Quality Dicyclopropylamine Hydrochloride [J]. Organic Process Research & Development, 2014, 18(4): 520.
[84] Moessner C, Bolm C. Cu(OAc)2-Catalyzed N-Arylations of Sulfoximines with Aryl Boronic Acids [J]. Organic Letters, 2005, 7(13): 2667.
[85] Bohmann R A, Bolm C. Copper-Catalyzed C-N Cross-Coupling of Sulfondiimines with Boronic Acids [J]. Organic Letters, 2013, 15(17): 4277.
[86] Zhu H, Teng F, Pan C, et al. Radical N-Arylation/Alkylation of Sulfoximines [J]. Tetrahedron Letters, 2016, 57(22): 2372.
[87] Gupta S, Baranwal S, Muniyappan N, et al. Copper-Catalyzed N-Arylation of Sulfoximines with Arylboronic Acids under Mild Conditions [J]. Synthesis, 2019, 51(10): 2171.
[88] Baranwal S, Kandasamy J. Copper Catalyzed N-Arylation of Sulfoximines with Aryldiazonium Salts in the Presence of Dabco under Mild Conditions [J]. Tetrahedron Letters, 2020, 61(27):
[89] Wang C, Zhang H, Wells L A, et al. Autocatalytic Photoredox Chan-Lam Coupling of Free Diaryl Sulfoximines with Arylboronic Acids [J]. Nature Communications, 2021, 12(1): 932.
[90] Wang Y, Meng T, Su S, et al. Copper-Catalyzed Chan-Lam Coupling of NH-Diaryl Sulfondiimines [J]. Advanced Synthesis & Catalysis, 2022, 364(12): 2040.
[91] Collman J P, Zhong M. An Efficient Diamine·Copper Complex-Catalyzed Coupling of Arylboronic Acids with Imidazoles [J]. Organic Letters, 2000, 2(9): 1233.
[92] Lam P Y S, Deudon S, Averill K M, et al. Copper-Promoted C-N Bond Cross-Coupling with Hypervalent Aryl Siloxanes and Room-Temperature N-Arylation with Aryl Iodide [J]. Journal of the American Chemical Society, 2000, 122(31): 7600.
[93] Lam P Y S, Bonne D, Vincent G, et al. N-Arylation of α-Aminoesters with p-Tolylboronic Acid Promoted by Copper(II) Acetate [J]. Tetrahedron Letters, 2003, 44(8): 1691.
[94] Lam P Y S, Vincent G, Bonne D, et al. Copper-Promoted/Catalyzed C-N and C-O Bond Cross-Coupling with Vinylboronic Acid and Its Utilities [J]. Tetrahedron Letters, 2003, 44(26): 4927.
[95] King A E, Brunold T C, Stahl S S. Mechanistic Study of Copper-Catalyzed Aerobic Oxidative Coupling of Arylboronic Esters and Methanol: Insights into an Organometallic Oxidase Reaction [J]. Journal of the American Chemical Society, 2009, 131(14): 5044.
[96] Hardouin Duparc V, Bano G L, Schaper F. Chan-Evans-Lam Couplings with Copper Iminoarylsulfonate Complexes: Scope and Mechanism [J]. ACS Catalysis, 2018, 8(8): 7308.
[97] Kim Y, Ho S O, Gassman N R, et al. Efficient Site-Specific Labeling of Proteins via Cysteines [J]. Bioconjugate Chemistry, 2008, 19(3): 786.
[98] Chen X, Muthoosamy K, Pfisterer A, et al. Site-Selective Lysine Modification of Native Proteins and Peptides via Kinetically Controlled Labeling [J]. Bioconjugate Chemistry, 2012, 23(3): 500.
[99] Rodriguez J, Martinez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules [J]. Chemistry, 2020, 26(44): 9792.
[100] Ohata J, Martin S C, Ball Z T. Metal-Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold [J]. Angewandte Chemie International Edition, 2019, 58(19): 6176.
[101] deGruyter J N, Malins L R, Baran P S. Residue-Specific Peptide Modification: A Chemist's Guide [J]. Biochemistry, 2017, 56(30): 3863.
[102] Boutureira O, Bernardes G J. Advances in Chemical Protein Modification [J]. Chemical Reviews, 2015, 115(5): 2174.
[103] Munir I, Zahoor A F, Rasool N, et al. Synthetic Applications and Methodology Development of Chan-Lam Coupling: A Review [J]. Molecular Diversity, 2019, 23(1): 215.
[104] Arndt H-D, Kilitoglu B. Thieme Chemistry Journal Awardees - Where Are They Now? Scope of Tyrosine O-Arylations with Boronic Acids: Optimized Synthesis of an Orthogonally Protected Isodityrosine [J]. Synlett, 2009, 2009(05): 720.
[105] Hooper M W, Utsunomiya M, Hartwig J F. Scope and Mechanism of Palladium-Catalyzed Amination of Five-Membered Heterocyclic Halides [J]. Journal of Organic Chemistry, 2003, 68(7): 2861.
[106] Monnier F, Taillefer M. Catalytic C-C, C-N and C-O Ullmann-Type Coupling Reactions [J]. Angewandte Chemie International Edition, 2009, 48(38): 6954.
[107] DalZotto C, Michaux J, Martinand-Lurin E, et al. Chan-Lam-Evans Coupling of Cbz-Protected Histidines [J]. European Journal of Organic Chemistry, 2010, 2010(20): 3811.
[108] El Khatib M, Molander G A. Copper(II)-Mediated O-Arylation of Protected Serines and Threonines [J]. Organic Letters, 2014, 16(18): 4944.
[109] Li H, Tsu C, Blackburn C, et al. Identification of Potent and Selective Non-Covalent Inhibitors of the Plasmodium Falciparum Proteasome [J]. Journal of the American Chemical Society, 2014, 136(39): 13562.
[110] Ohata J, Minus M B, Abernathy M E, et al. Histidine-Directed Arylation/Alkenylation of Backbone N-H Bonds Mediated by Copper(II) [J]. Journal of the American Chemical Society, 2016, 138(24): 7472.
[111] Ohata J, Zeng Y, Segatori L, et al. A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan-Lam Coupling [J]. Angewandte Chemie International Edition, 2018, 57(15): 4015.
[112] Shabani S, Hutton C A. Total Synthesis of Seongsanamide B [J]. Organic Letters, 2020, 22(11): 4557.
[113] Li S, Cai H, He J, et al. Extent of the Oxidative Side Reactions to Peptides and Proteins During the Cuaac Reaction [J]. Bioconjugate Chemistry, 2016, 27(10): 2315.
[114] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision B.01, Gaussian, Inc.: Wallingford, CT, 2016.
[115] Perdew J P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas [J]. Physical Review B, 1986, 33(12): 8822.
[116] Marenich A V, Cramer C J, Truhlar D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions [J]. Journal of Physical Chemistry B, 2009, 113(18): 6378.
[117] Becke A D. A New Mixing of Hartree-Fock and Local Density-Functional Theories [J]. Journal of Chemical Physics, 1993, 98(2): 1372.
[118] Becke A D. Density-Functional Thermochemistry. III. The Role of Exact Exchange [J]. Journal of Chemical Physics, 1993, 98(7): 5648.
[119] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density [J]. Physical Review B, 1988, 37(2): 785.
[120] Legault, C. Y. CYLview, 1.0b. Université de Sherbrooke, Canada, 2009, http://www.cylview.org.
[121] Sies H, Berndt C, Jones D P. Oxidative Stress [J]. Annual Review of Biochemistry, 2017, 86(1): 715.
[122] Rack J. Electron Transfer Triggered Sulfoxide Isomerization in Ruthenium and Osmium Complexes [J]. Coordination Chemistry Reviews, 2009, 253(1-2): 78.
[123] Alvarez-Paggi D, Hannibal L, Castro M A, et al. Multifunctional Cytochrome C: Learning New Tricks from an Old Dog [J]. Chemical Reviews, 2017, 117(21): 13382.
[124] Conry R R. Copper: Inorganic & Coordination [M]. Encyclopedia of Inorganic Chemistry. 2006.
[125] Losada J, del Peso I, Beyer L. Electrochemical and Spectroelectrochemical Properties of Copper(II) Schiff-Base Complexes [J]. Inorganica Chimica Acta, 2001, 321(1): 107.
[126] Gurung S R, Mitchell C, Huang J, et al. Development and Scale-up of an Efficient Miyaura Borylation Process Using Tetrahydroxydiboron [J]. Organic Process Research & Development, 2016, 21(1): 65.
[127] Yan L, Lu Y, Li X. A Density Functional Theory Protocol for the Calculation of Redox Potentials of Copper Complexes [J]. Physical Chemistry Chemical Physics, 2016, 18(7): 5529.
[128] Huang Y-T, Tsai W-T, Badsara S S, et al. Copper-Catalyzed Cross-Couplingligand-Free Conditions Reaction of Thiols with Aryl Iodides under Ligand-Free Conditions [J]. Journal of the Chinese Chemical Society (Taipei, Taiwan), 2014, 61(9): 967.
[129] Marzinzik A L, Sharpless K B. A Simple Method for the Preparation of N-Sulfonylsulfilimines from Sulfides [J]. Journal of Organic Chemistry, 2001, 66(2): 594.
[130] Yoshimura T, Omata T, Furukawa N, et al. Free Sulfilimines. 5. Preparation and Physical and Chemical Properties of "Free" Sulfilimines [J]. Journal of Organic Chemistry, 1976, 41(10): 1728.
[131] Atabaki F, Abedini E, Shokrolahi A. Efficient Oxidation of Sulfides to Sulfoxides and Deoxygenation of Sulfoxides over Carbonaceous Solid Acid [J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2015, 190(7): 1169.
[132] Krüger J, Gries J. A Practical Approach to N-(Trifluoroacetyl)Sulfilimines [J]. Synlett, 2014, 25(13): 1831.
[133] Whitlock G A, Carreira E M. Enantioselective Synthesis of ent-Stellettamide A: Asymmetric Dipolar Cycloadditions with Me3SiCHN2 [J]. Helvetica Chimica Acta, 2000, 83(8): 2007.
[134] Feng Z, Min Q-Q, Xiao Y-L, et al. Palladium-Catalyzed Difluoroalkylation of Aryl Boronic Acids: A New Method for the Synthesis of Aryldifluoromethylated Phosphonates and Carboxylic Acid Derivatives [J]. Angewandte Chemie International Edition, 2014, 53(6): 1669.
[135] Servatius P, Junk L, Kazmaier U. Peptide Modifications: Versatile Tools in Peptide and Natural Product Syntheses [J]. Synlett, 2019, 30(11): 1289.
[136] Kotha S, Meshram M, Panguluri N. Advanced Approaches to Post-Assembly Modification of Peptides by Transition-Metal-Catalyzed Reactions [J]. Synthesis, 2019, 51(09): 1913.
[137] Ager D J, Pantaleone D P, Henderson S A, et al. Commercial, Synthetic Nonnutritive Sweeteners [J]. Angewandte Chemie International Edition, 1998, 37(13-14): 1802.
[138] Simbirtsev A, Kolobov A, Zabolotnych N, et al. Biological Activity of Peptide SCV-07 against Murine Tuberculosis [J]. Russian journal of immunology, 2003, 8(1): 11.
[139] Ding W, Zhang J, Yao Z, et al. The Synthesis, Distribution, and Anti-Hepatic Cancer Activity of YSL [J]. Bioconjugate Chemistry, 2004, 12(18): 4989.
[140] Kawakami A, Kayahara H, Tadasa K. Taste Evaluations of Angiotensin I Converting Enzyme Inhibitors, Leu-Lys-Tyr Analogues [J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(4): 709.
[141] Wu G, Fang Y-Z, Yang S, et al. Glutathione Metabolism and Its Implications for Health [J]. Journal of Nutritional Biochemistry, 2004, 134(3): 489.
[142] Puig A, Antón J M, Mangues M. A New Decorin-Like Tetrapeptide for Optimal Organization of Collagen Fibres [J]. International Journal of Cosmetic Science, 2008, 30(2): 97.
[143] Ishihara Y, Oka M, Tsunakawa M, et al. Melanostatin, a New Melanin Synthesis Inhibitor. Production, Isolation, Chemical Properties, Structure and Biological Activity [J]. Journal of Antibiotics, 1991, 44(1): 25.
[144] Byun H-G, Kim S. Purification and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Alaska Pollack (Theragra Chalcogramma) Skin [J]. Process Biochemistry, 2001, 36(12): 1155.
[145] Terskiy A, Wannemacher K M, Yadav P N, et al. Search of the Human Proteome for Endomorphin-1 and Endomorphin-2 Precursor Proteins [J]. Life Sciences, 2007, 81(23): 1593.
[146] Walker J M, Berntson G G, Sandman C A, et al. An Analog of Enkephalin Having Prolonged Opiate-Like Effects in vivo [J]. Science, 1977, 196(4285): 85.
[147] Erspamer V, Melchiorri P, Falconieri-Erspamer G, et al. Deltorphins: A Family of Naturally Occurring Peptides with High Affinity and Selectivity for δ Opioid Binding Sites [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(13): 5188.
[148] Sun H B, Gong L, Tian Y B, et al. Metal- and Base-Free Room-Temperature Amination of Organoboronic Acids with N-Alkyl Hydroxylamines [J]. Angewandte Chemie International Edition, 2018, 57(30): 9456.
[149] Kaiser E, Colescott R L, Bossinger C D, et al. Color Test for Detection of Free Terminal Amino Groups in the Solid-Phase Synthesis of Peptides [J]. Analytical Biochemistry, 1970, 34(2): 595.
[150] Los G V, Wood K. The Halotag: A Novel Technology for Cell Imaging and Protein Analysis [M]. Methods in Molecular Biology. 2007: 195.
[151] Ohana R F, Hurst R, Vidugiriene J, et al. Halotag-Based Purification of Functional Human Kinases from Mammalian Cells [J]. Protein Expression and Purification, 2011, 76(2): 154.
[152] England C G, Luo H, Cai W. Halotag Technology: A Versatile Platform for Biomedical Applications [J]. Bioconjugate Chemistry, 2015, 26(6): 975.
[153] Los G V, Encell L P, McDougall M G, et al. Halotag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis [J]. ACS Chemical Biology, 2008, 3(6): 373.
[154] Singh V, Wang S, Chan K M, et al. Genetically Encoded Multispectral Labeling of Proteins with Polyfluorophores on a DNA Backbone [J]. Journal of the American Chemical Society, 2013, 135(16): 6184.
[155] Hu L, Maurer K, Moeller K D. Building Addressable Libraries: Site-Selective Suzuki Reactions on Microelectrode Arrays [J]. Organic Letters, 2009, 11(6): 1273.

Academic Degree Assessment Sub committee
化学系
Domestic book classification number
O627.51
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/416956
DepartmentDepartment of Chemistry
Recommended Citation
GB/T 7714
孟庭庭. 兼容生物大分子的硫亚胺脱氢Chan-Lam偶联反应研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849560-孟庭庭-化学系.pdf(7423KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[孟庭庭]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[孟庭庭]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孟庭庭]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.