[1] Gilchrist T L, Moody C J. The Chemistry of Sulfilimines [J]. Chemical Reviews, 1977, 77(3): 409.
[2] Furukawa N, Oae S. Sulfilimines. Synthetic Applications and Potential Utilizations [J]. Industrial & Engineering Chemistry Research, 1981, 20(2): 260.
[3] Koval I V. Advances in the Chemistry of Sulfimides and Related Compounds [J]. Sulfur Reports, 1993, 14(1): 149.
[4] Dolle R E, Osifo K I, Li C-S. Enantioselective Synthesis of (+)-Pinidine [J]. Tetrahedron Letters, 1991, 32(38): 5029.
[5] Garcia Ruano J L, Alemparte C, Clemente F R, et al. Cyclic Vinyl p-Tolyl Sulfilimines as Chiral Dienophiles: Diels-Alder Reactions with Furan and Acyclic Dienes [J]. Journal of Organic Chemistry, 2002, 67(9): 2919.
[6] Grange R L, Evans P A. Metal-Free Metathesis Reaction of C-Chiral Allylic Sulfilimines with Aryl Isocyanates: Construction of Chiral Nonracemic Allylic Isocyanates [J]. Journal of the American Chemical Society, 2014, 136(34): 11870.
[7] Padwa A, Nara S, Wang Q. Dichloroketene-Induced Cyclizations of Vinyl Sulfilimines: Application of the Method in the Synthesis of (±)-Desoxyeseroline [J]. Journal of Organic Chemistry, 2005, 70(21): 8538.
[8] Marino J P, Zou N. Chemoselective Syntheses of γ-Butyrolactams Using Vinyl Sulfilimines and Dichloroketene [J]. Organic Letters, 2005, 7(10): 1915.
[9] Xie X, Sun J.
[4+3]-Cycloaddition Reaction of Sulfilimines with Cyclobutenones: Access to Benzazepinones [J]. Organic Letters, 2021, 23(22): 8921.
[10] Yoshida S, Yano T, Misawa Y, et al. Direct Thioamination of Arynes via Reaction with Sulfilimines and Migratory N-Arylation [J]. Journal of the American Chemical Society, 2015, 137(44): 14071.
[11] Grange R L, Clizbe E A, Counsell E J, et al. Enantioselective Construction of C-Chiral Allylic Sulfilimines via the Iridium-Catalyzed Allylic Amination with S,S-Diphenylsulfilimine: Asymmetric Synthesis of Primary Allylic Amines [J]. Chemical science, 2015, 6(1): 777.
[12] Thakur V V, Ramesh Kumar N S C, Sudalai A. Sulfilimine Palladacycles: Stable and Efficient Catalysts for Carbon–Carbon Coupling Reactions [J]. Tetrahedron Letters, 2004, 45(14): 2915.
[13] Otocka S, Kwiatkowska M, Madalinska L, et al. Chiral Organosulfur Ligands/Catalysts with a Stereogenic Sulfur Atom: Applications in Asymmetric Synthesis [J]. Chemical Reviews, 2017, 117(5): 4147.
[14] Yu X, Zhang Y, Liu Y, et al. Synthesis and Acaricidal- and Insecticidal-Activity Evaluation of Novel Oxazolines Containing Sulfiliminyl Moieties and Their Derivatives [J]. Journal of Agricultural and Food Chemistry, 2019, 67(15): 4224.
[15] Koerber K W, J.; Kaiser, F.; Pohlman, M.; Deshmukh, P.; Culbertson, D. L.; Rogers, W. D.; Gunjima, K.; David, M.; Braun, F. J.; Thompson, S. Method of Controlling Ryanodine-Modulator Insecticide Resistant Insect: WO2014053406 A1 [P]. 2014-04-10.
[16] Hua X, Mao W, Fan Z, et al. Novel Anthranilic Diamide Insecticides: Design, Synthesis, and Insecticidal Evaluation [J]. Australian Journal of Chemistry, 2014, 67(10): 1491.
[17] Bland, D. C.; Ross R, Jr.; Johnson, P. L.; Johnson, T. C. Insecticidal Nsubstituted Sulfilimine and Sulfoximine Pyridine N-Oxides: US2014005234 (A1) [P]. 2014-01-02.
[18] Strekowski L, Henary M, Kim N, et al. N-(4-Bromobenzoyl)-S,S-Dimethyliminosulfurane, a Potent Dermal Penetration Enhancer [J]. Bioorganic and Medicinal Chemistry Letters, 1999, 9(7): 1033.
[19] Andersen K K, Bhattacharyya J, Mukhopadhyay S K. Antimalarial Sulfilimines and Sulfoximines Related to Diaminodiphenyl Sulfoxide and Sulfone [J]. Journal of Medicinal Chemistry, 1970, 13(4): 759.
[20] Milaeva E R, Shpakovsky D B, Maklakova I A, et al. Novel Diphenylsulfimide Antioxidants Containing 2,6-Di-Tert-Butylphenol Moieties [J]. Russian Chemical Bulletin, 2018, 67(11): 2025.
[21] Lücking U, Nguyen D, Von Bonin A, et al. Sulphimides as Protein Kinase Inhibitors: WO2007140957 (A1) [P]. 2007-12-13.
[22] Zhou S, Gu Y, Liu M, et al. Insecticidal Activities of Chiral N-Trifluoroacetyl Sulfilimines as Potential Ryanodine Receptor Modulators [J]. Journal of Agricultural and Food Chemistry, 2014, 62(46): 11054.
[23] Zhou S, Jia Z, Xiong L, et al. Chiral Dicarboxamide Scaffolds Containing a Sulfiliminyl Moiety as Potential Ryanodine Receptor Activators [J]. Journal of Agricultural and Food Chemistry, 2014, 62(27): 6269.
[24] Kim S M, Kang O Y, Lim H J, et al. Selective Synthesis of N-Cyano Sulfilimines by Dearomatizing Stable Thionium Ions [J]. ACS Omega, 2020, 5(17): 10191.
[25] Vanacore R, Ham A-J L, Voehler M, et al. A Sulfilimine Bond Identified in Collagen IV [J]. Science, 2009, 325(5945): 1230.
[26] Bhave G, Cummings C F, Vanacore R M, et al. Peroxidasin Forms Sulfilimine Chemical Bonds Using Hypohalous Acids in Tissue Genesis [J]. Nature Chemical Biology, 2012, 8(9): 784.
[27] Fidler A L, Vanacore R M, Chetyrkin S V, et al. A Unique Covalent Bond in Basement Membrane Is a Primordial Innovation for Tissue Evolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1): 331.
[28] McCall A S, Cummings C F, Bhave G, et al. Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture [J]. Cell, 2014, 157(6): 1380.
[29] Lau D, Baldus S. Myeloperoxidase and Its Contributory Role in Inflammatory Vascular Disease [J]. Pharmacology & Therapeutics, 2006, 111(1): 16.
[30] Pedchenko V, Kitching A R, Hudson B G. Goodpasture's Autoimmune Disease—A Collagen IV Disorder [J]. Matrix Biology, 2018, 71-72: 240.
[31] Candiello J, Balasubramani M, Schreiber E M, et al. Biomechanical Properties of Native Basement Membranes [J]. FEBS Journal 2007, 274(11): 2897.
[32] Pedchenko V, Boudko S P, Barber M, et al. Collagen IVα345 Dysfunction in Glomerular Basement Membrane Diseases. III. A Functional Framework for α345 Hexamer Assembly [J]. Journal of Biological Chemistry, 2021: 296.
[33] Wang Z, Zhai Z, Chen C, et al. Air Pollution Particles Hijack Peroxidasin to Disrupt Immunosurveillance and Promote Lung Cancer [J]. Elife, 2022: 11.
[34] Weiss S J. Peroxidasin: Tying the Collagen-Sulfilimine Knot [J]. Nature Chemical Biology, 2012, 8(9): 740.
[35] Xu K, Luan D, Wang X, et al. An Ultrasensitive Cyclization-Based Fluorescent Probe for Imaging Native HOBr in Live Cells and Zebrafish [J]. Angewandte Chemie International Edition, 2016, 55(41): 12751.
[36] Liu X, Zheng A, Luan D, et al. High-Quantum-Yield Mitochondria-Targeting near-Infrared Fluorescent Probe for Imaging Native Hypobromous Acid in Living Cells and in Vivo [J]. Analytical Chemistry, 2017, 89(3): 1787.
[37] Luan D, Gao X, Kong F, et al. Cyclic Regulation of the Sulfilimine Bond in Peptides and NC1 Hexamers via the HOBr/H2Se Conjugated System [J]. Analytical Chemistry, 2018, 90(15): 9523.
[38] Lin S, Yang X, Jia S, et al. Redox-Based Reagents for Chemoselective Methionine Bioconjugation [J]. Science, 2017, 355(6325): 597.
[39] Christian A H, Jia S, Cao W, et al. A Physical Organic Approach to Tuning Reagents for Selective and Stable Methionine Bioconjugation [J]. Journal of the American Chemical Society, 2019, 141(32): 12657.
[40] Elledge S K, Tran H L, Christian A H, et al. Systematic Identification of Engineered Methionines and Oxaziridines for Efficient, Stable, and Site-Specific Antibody Bioconjugation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(11): 5733.
[41] Rosselin M, Xiao Y, Belhomme L, et al. Expanding the Toolbox of Chemoselective Modifications of Protein-Like Polymers at Methionine Residues [J]. ACS Macro Letters, 2019, 8(12): 1648.
[42] Lin D, Wallace M, Allentoff A J, et al. Chemoselective Methionine Bioconjugation: Site-Selective Fluorine-18 Labeling of Proteins and Peptides [J]. Bioconjugate Chemistry, 2020, 31(8): 1908.
[43] Ohata J, Krishnamoorthy L, Gonzalez M A, et al. An Activity-Based Methionine Bioconjugation Approach to Developing Proximity-Activated Imaging Reporters [J]. ACS Central Science, 2020, 6(1): 32.
[44] Claus P K, Rieder W, Hofbauer P, et al. N-Aryl Sulfimides [J]. Tetrahedron, 1975, 31(6): 505.
[45] Koval I V. Sulfides: Synthesis and Properties [J]. Russian Chemical Reviews, 1994, 63(4): 323.
[46] Tian X, Song L, Rudolph M, et al. Sulfilimines as Versatile Nitrene Transfer Reagents: Facile Access to Diverse Aza-Heterocycles [J]. Angewandte Chemie International Edition, 2019, 58(11): 3589.
[47] Tian X, Song L, Hashmi A S K. α-Imino Gold Carbene Intermediates from Readily Accessible Sulfilimines: Intermolecular Access to Structural Diversity [J]. Chemistry—A European Journal, 2020, 26(15): 3197.
[48] West M J, Fyfe J W B, Vantourout J C, et al. Mechanistic Development and Recent Applications of the Chan-Lam Amination [J]. Chemical Reviews, 2019, 119(24): 12491.
[49] Tamura Y, Sumoto K, Matsushima H, et al. Reactions of N-Substituted Arylsulfilimines with Acylating Agents and with Activated Halobenzenes, Alkynes, and Alkenes [J]. The Journal of Organic Chemistry, 1973, 38(25): 4324.
[50] Furukawa N, Oae S, Yoshimura T. The Michael Type Addition of Free Sulfilimine [J]. Synthesis, 1976, 1976(01): 30.
[51] Tian X, Song L, Rudolph M, et al. N-Pyridinyl Sulfilimines as a Source for α-Imino Gold Carbenes: Access to 2-Amino-Substituted N-Fused Imidazoles [J]. Organic Letters, 2019, 21(6): 1598.
[52] Zhao X, Rudolph M, Asiri A M, et al. Easy Access to Pharmaceutically Relevant Heterocycles by Catalytic Reactions Involving α-Imino Gold Carbene Intermediates [J]. Frontiers of Chemical Science and Engineering, 2019, 14(3): 317.
[53] Tian X, Song L, Rudolph M, et al. Synthesis of 2-Aminoindoles through Gold-Catalyzed C-H Annulations of Sulfilimines with N-Arylynamides [J]. Organic Letters, 2019, 21(11): 4327.
[54] Tian X, Song L, Han C, et al. Gold(III)-Catalyzed Formal
[3+2] Annulations of N-Acyl Sulfilimines with Ynamides for the Synthesis of 4-Aminooxazoles [J]. Organic Letters, 2019, 21(8): 2937.
[55] Tian X, Song L, Hashmi A S K. Synthesis of Carbazoles and Related Heterocycles from Sulfilimines by Intramolecular C-H Aminations [J]. Angewandte Chemie International Edition, 2020, 59(30): 12342.
[56] Marichev K O, Wang K, Dong K, et al. Synthesis of Chiral Tetrasubstituted Azetidines from Donor-Acceptor Azetines via Asymmetric Copper(I)-Catalyzed Imido-Ylide
[3+1]-Cycloaddition with Metallo-Enolcarbenes [J]. Angewandte Chemie International Edition, 2019, 58(45): 16188.
[57] Song L, Tian X, Han C, et al. Catalyst-Free Synthesis of Oxazol-2(3H)-Ones from Sulfilimines and Diazo Compounds through a Tandem Rearrangement/Aziridination/Ring-Expansion Reaction [J]. Organic Chemistry Frontiers, 2021, 8(13): 3314.
[58] Cheng Q, Bai Z, Tewari S, et al. Bifunctional Sulfilimines Enable Synthesis of Multiple N-Heterocycles from Alkenes [J]. Nature Chemistry, 2022, 14(8): 898.
[59] Franz J A, Martin J C. Surfuranes. X. Reagent for the Facile Cleavage of Secondary Amides [J]. Journal of the American Chemical Society, 1973, 95(6): 2017.
[60] Franz J A, Martin J C. Reactions of Diaryldialkoxysulfuranes with Primary and Secondary Amines. Preparation and Reactions of S,S-Diaryl-N-Alkylsulfilimines and Oxidation of Secondary Amines to Imines [J]. Journal of the American Chemical Society, 1975, 97(3): 583.
[61] Bizet V, Hendriks C M, Bolm C. Sulfur Imidations: Access to Sulfimides and Sulfoximines [J]. Chemical Society Reviews, 2015, 44(11): 3378.
[62] Abou-Gharbia M, Ketcha D M, Zacharias D E, et al. Reactions of Ketenes with Sulfilimines. Synthetic Routes to Oxazolinones and Indolinones [J]. The Journal of Organic Chemistry, 1985, 50(13): 2224.
[63] Claridge R P, Millar R W, Sandall J P B, et al. Preparation of N-Aryl-S,S-Diphenylsulfilimines by Nucleophilic Attack of N-Lithio-S,S-Diphenylsulfilimine on Aromatic Compounds [J]. Tetrahedron, 1999, 55(33): 10243.
[64] Chan D M T, Monaco K L, Wang R-P, et al. New N- and O-Arylations with Phenylboronic Acids and Cupric Acetate [J]. Tetrahedron Letters, 1998, 39(19): 2933.
[65] Evans D A, Katz J L, West T R. Synthesis of Diaryl Ethers through the Copper-Promoted Arylation of Phenols with Arylboronic Acids. An Expedient Synthesis of Thyroxine [J]. Tetrahedron Letters, 1998, 39(19): 2937.
[66] Lam P Y S, Clark C G, Saubern S, et al. New Aryl/Heteroaryl C-N Bond Cross-Coupling Reactions via Arylboronic Acid Cupric Acetate Arylation [J]. Tetrahedron Letters, 1998, 39(19): 2941.
[67] Chen J Q, Li J H, Dong Z B. A Review on the Latest Progress of Chan-Lam Coupling Reaction [J]. Advanced Synthesis & Catalysis, 2020, 362(16): 3311.
[68] Bhunia S, Pawar G G, Kumar S V, et al. Selected Copper-Based Reactions for C-N, C-O, C-S, and C-C Bond Formation [J]. Angewandte Chemie International Edition, 2017, 56(51): 16136.
[69] Ley S V, Thomas A W. Modern Synthetic Methods for Copper-Mediated C(Aryl)-O, C(Aryl)-N, and C(Aryl)-S Bond Formation [J]. Angewandte Chemie International Edition, 2003, 42(44): 5400.
[70] Jia T, Wang C, Li X. Recent Advances in N-Arylation of Nh-Sulfoximines and Their Applications [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 714.
[71] Vantourout J C, Miras H N, Isidro-Llobet A, et al. Spectroscopic Studies of the Chan-Lam Amination: A Mechanism-Inspired Solution to Boronic Ester Reactivity [J]. Journal of the American Chemical Society, 2017, 139(13): 4769.
[72] Nasrollahzadeh M, Ehsani A, Maham M. Copper-Catalyzed N-Arylation of Sulfonamides with Boronic Acids in Water under Ligand-Free and Aerobic Conditions [J]. Synlett, 2014, 25(04): 505.
[73] Raghuvanshi D S, Gupta A K, Singh K N. Nickel-Mediated N-Arylation with Arylboronic Acids: An Avenue to Chan-Lam Coupling [J]. Organic Letters, 2012, 14(17): 4326.
[74] Battula S R K, Subbareddy G V, Chakravarthy I E. A Mild and Efficient Copper-Catalyzed N-Arylation of Unprotected Sulfonimidamides Using Boronic Acids [J]. Tetrahedron Letters, 2014, 55(2): 517.
[75] Lam P Y S, Vincent G, Clark C G, et al. Copper-Catalyzed General C-N and C-O Bond Cross-Coupling with Arylboronic Acid [J]. Tetrahedron Letters, 2001, 42(20): 3415.
[76] Pan C, Cheng J, Wu H, et al. Cu(OAc)2-Catalyzed N-Arylation of Sulfonamides with Arylboronic Acids or Trimethoxy(Phenyl)Silane [J]. Synthetic Communications, 2009, 39(12): 2082.
[77] Sanjeeva Rao K, Wu T-S. Chan-Lam Coupling Reactions: Synthesis of Heterocycles [J]. Tetrahedron, 2012, 68(38): 7735.
[78] Xie R-G, Yu X-Q, Lan J-B, et al. A Simple Copper Salt Catalyzed N-Arylation of Amines, Amides, Imides, and Sulfonamides with Arylboronic Acids [J]. Synlett, 2004, (6): 1095.
[79] Kantam M L, Neelima B, Reddy C V, et al. N-Arylation of Imidazoles, Imides, Amines, Amides and Sulfonamides with Boronic Acids Using a Recyclable Cu(OAc)2·H2O/[bmim][BF4] System [J]. Journal of Molecular Catalysis A: Chemical, 2006, 249(1-2): 201.
[80] You C, Yao F, Yan T, et al. A Highly Efficient Heterogeneous Copper-Catalyzed Chan-Lam Coupling Reaction of Sulfonyl Azides with Arylboronic Acids Leading to N-Arylsulfonamides [J]. RSC Advances, 2016, 6(49): 43605.
[81] West M J, Thomson B, Vantourout J C, et al. Discovery, Scope, and Limitations of an N-Dealkylation/N-Arylation of Secondary Sulfonamides under Chan-Lam Conditions [J]. Asian Journal of Organic Chemistry, 2019, 9(3): 364.
[82] Zu W, Liu S, Jia X, et al. Chemoselective N-Arylation of Aminobenzene Sulfonamides via Copper Catalysed Chan-Evans-Lam Reactions [J]. Organic Chemistry Frontiers, 2019, 6(9): 1356.
[83] Mudryk B, Zheng B, Chen K, et al. Development of a Robust Process for the Preparation of High-Quality Dicyclopropylamine Hydrochloride [J]. Organic Process Research & Development, 2014, 18(4): 520.
[84] Moessner C, Bolm C. Cu(OAc)2-Catalyzed N-Arylations of Sulfoximines with Aryl Boronic Acids [J]. Organic Letters, 2005, 7(13): 2667.
[85] Bohmann R A, Bolm C. Copper-Catalyzed C-N Cross-Coupling of Sulfondiimines with Boronic Acids [J]. Organic Letters, 2013, 15(17): 4277.
[86] Zhu H, Teng F, Pan C, et al. Radical N-Arylation/Alkylation of Sulfoximines [J]. Tetrahedron Letters, 2016, 57(22): 2372.
[87] Gupta S, Baranwal S, Muniyappan N, et al. Copper-Catalyzed N-Arylation of Sulfoximines with Arylboronic Acids under Mild Conditions [J]. Synthesis, 2019, 51(10): 2171.
[88] Baranwal S, Kandasamy J. Copper Catalyzed N-Arylation of Sulfoximines with Aryldiazonium Salts in the Presence of Dabco under Mild Conditions [J]. Tetrahedron Letters, 2020, 61(27):
[89] Wang C, Zhang H, Wells L A, et al. Autocatalytic Photoredox Chan-Lam Coupling of Free Diaryl Sulfoximines with Arylboronic Acids [J]. Nature Communications, 2021, 12(1): 932.
[90] Wang Y, Meng T, Su S, et al. Copper-Catalyzed Chan-Lam Coupling of NH-Diaryl Sulfondiimines [J]. Advanced Synthesis & Catalysis, 2022, 364(12): 2040.
[91] Collman J P, Zhong M. An Efficient Diamine·Copper Complex-Catalyzed Coupling of Arylboronic Acids with Imidazoles [J]. Organic Letters, 2000, 2(9): 1233.
[92] Lam P Y S, Deudon S, Averill K M, et al. Copper-Promoted C-N Bond Cross-Coupling with Hypervalent Aryl Siloxanes and Room-Temperature N-Arylation with Aryl Iodide [J]. Journal of the American Chemical Society, 2000, 122(31): 7600.
[93] Lam P Y S, Bonne D, Vincent G, et al. N-Arylation of α-Aminoesters with p-Tolylboronic Acid Promoted by Copper(II) Acetate [J]. Tetrahedron Letters, 2003, 44(8): 1691.
[94] Lam P Y S, Vincent G, Bonne D, et al. Copper-Promoted/Catalyzed C-N and C-O Bond Cross-Coupling with Vinylboronic Acid and Its Utilities [J]. Tetrahedron Letters, 2003, 44(26): 4927.
[95] King A E, Brunold T C, Stahl S S. Mechanistic Study of Copper-Catalyzed Aerobic Oxidative Coupling of Arylboronic Esters and Methanol: Insights into an Organometallic Oxidase Reaction [J]. Journal of the American Chemical Society, 2009, 131(14): 5044.
[96] Hardouin Duparc V, Bano G L, Schaper F. Chan-Evans-Lam Couplings with Copper Iminoarylsulfonate Complexes: Scope and Mechanism [J]. ACS Catalysis, 2018, 8(8): 7308.
[97] Kim Y, Ho S O, Gassman N R, et al. Efficient Site-Specific Labeling of Proteins via Cysteines [J]. Bioconjugate Chemistry, 2008, 19(3): 786.
[98] Chen X, Muthoosamy K, Pfisterer A, et al. Site-Selective Lysine Modification of Native Proteins and Peptides via Kinetically Controlled Labeling [J]. Bioconjugate Chemistry, 2012, 23(3): 500.
[99] Rodriguez J, Martinez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules [J]. Chemistry, 2020, 26(44): 9792.
[100] Ohata J, Martin S C, Ball Z T. Metal-Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold [J]. Angewandte Chemie International Edition, 2019, 58(19): 6176.
[101] deGruyter J N, Malins L R, Baran P S. Residue-Specific Peptide Modification: A Chemist's Guide [J]. Biochemistry, 2017, 56(30): 3863.
[102] Boutureira O, Bernardes G J. Advances in Chemical Protein Modification [J]. Chemical Reviews, 2015, 115(5): 2174.
[103] Munir I, Zahoor A F, Rasool N, et al. Synthetic Applications and Methodology Development of Chan-Lam Coupling: A Review [J]. Molecular Diversity, 2019, 23(1): 215.
[104] Arndt H-D, Kilitoglu B. Thieme Chemistry Journal Awardees - Where Are They Now? Scope of Tyrosine O-Arylations with Boronic Acids: Optimized Synthesis of an Orthogonally Protected Isodityrosine [J]. Synlett, 2009, 2009(05): 720.
[105] Hooper M W, Utsunomiya M, Hartwig J F. Scope and Mechanism of Palladium-Catalyzed Amination of Five-Membered Heterocyclic Halides [J]. Journal of Organic Chemistry, 2003, 68(7): 2861.
[106] Monnier F, Taillefer M. Catalytic C-C, C-N and C-O Ullmann-Type Coupling Reactions [J]. Angewandte Chemie International Edition, 2009, 48(38): 6954.
[107] DalZotto C, Michaux J, Martinand-Lurin E, et al. Chan-Lam-Evans Coupling of Cbz-Protected Histidines [J]. European Journal of Organic Chemistry, 2010, 2010(20): 3811.
[108] El Khatib M, Molander G A. Copper(II)-Mediated O-Arylation of Protected Serines and Threonines [J]. Organic Letters, 2014, 16(18): 4944.
[109] Li H, Tsu C, Blackburn C, et al. Identification of Potent and Selective Non-Covalent Inhibitors of the Plasmodium Falciparum Proteasome [J]. Journal of the American Chemical Society, 2014, 136(39): 13562.
[110] Ohata J, Minus M B, Abernathy M E, et al. Histidine-Directed Arylation/Alkenylation of Backbone N-H Bonds Mediated by Copper(II) [J]. Journal of the American Chemical Society, 2016, 138(24): 7472.
[111] Ohata J, Zeng Y, Segatori L, et al. A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan-Lam Coupling [J]. Angewandte Chemie International Edition, 2018, 57(15): 4015.
[112] Shabani S, Hutton C A. Total Synthesis of Seongsanamide B [J]. Organic Letters, 2020, 22(11): 4557.
[113] Li S, Cai H, He J, et al. Extent of the Oxidative Side Reactions to Peptides and Proteins During the Cuaac Reaction [J]. Bioconjugate Chemistry, 2016, 27(10): 2315.
[114] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, revision B.01, Gaussian, Inc.: Wallingford, CT, 2016.
[115] Perdew J P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas [J]. Physical Review B, 1986, 33(12): 8822.
[116] Marenich A V, Cramer C J, Truhlar D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions [J]. Journal of Physical Chemistry B, 2009, 113(18): 6378.
[117] Becke A D. A New Mixing of Hartree-Fock and Local Density-Functional Theories [J]. Journal of Chemical Physics, 1993, 98(2): 1372.
[118] Becke A D. Density-Functional Thermochemistry. III. The Role of Exact Exchange [J]. Journal of Chemical Physics, 1993, 98(7): 5648.
[119] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density [J]. Physical Review B, 1988, 37(2): 785.
[120] Legault, C. Y. CYLview, 1.0b. Université de Sherbrooke, Canada, 2009, http://www.cylview.org.
[121] Sies H, Berndt C, Jones D P. Oxidative Stress [J]. Annual Review of Biochemistry, 2017, 86(1): 715.
[122] Rack J. Electron Transfer Triggered Sulfoxide Isomerization in Ruthenium and Osmium Complexes [J]. Coordination Chemistry Reviews, 2009, 253(1-2): 78.
[123] Alvarez-Paggi D, Hannibal L, Castro M A, et al. Multifunctional Cytochrome C: Learning New Tricks from an Old Dog [J]. Chemical Reviews, 2017, 117(21): 13382.
[124] Conry R R. Copper: Inorganic & Coordination [M]. Encyclopedia of Inorganic Chemistry. 2006.
[125] Losada J, del Peso I, Beyer L. Electrochemical and Spectroelectrochemical Properties of Copper(II) Schiff-Base Complexes [J]. Inorganica Chimica Acta, 2001, 321(1): 107.
[126] Gurung S R, Mitchell C, Huang J, et al. Development and Scale-up of an Efficient Miyaura Borylation Process Using Tetrahydroxydiboron [J]. Organic Process Research & Development, 2016, 21(1): 65.
[127] Yan L, Lu Y, Li X. A Density Functional Theory Protocol for the Calculation of Redox Potentials of Copper Complexes [J]. Physical Chemistry Chemical Physics, 2016, 18(7): 5529.
[128] Huang Y-T, Tsai W-T, Badsara S S, et al. Copper-Catalyzed Cross-Couplingligand-Free Conditions Reaction of Thiols with Aryl Iodides under Ligand-Free Conditions [J]. Journal of the Chinese Chemical Society (Taipei, Taiwan), 2014, 61(9): 967.
[129] Marzinzik A L, Sharpless K B. A Simple Method for the Preparation of N-Sulfonylsulfilimines from Sulfides [J]. Journal of Organic Chemistry, 2001, 66(2): 594.
[130] Yoshimura T, Omata T, Furukawa N, et al. Free Sulfilimines. 5. Preparation and Physical and Chemical Properties of "Free" Sulfilimines [J]. Journal of Organic Chemistry, 1976, 41(10): 1728.
[131] Atabaki F, Abedini E, Shokrolahi A. Efficient Oxidation of Sulfides to Sulfoxides and Deoxygenation of Sulfoxides over Carbonaceous Solid Acid [J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2015, 190(7): 1169.
[132] Krüger J, Gries J. A Practical Approach to N-(Trifluoroacetyl)Sulfilimines [J]. Synlett, 2014, 25(13): 1831.
[133] Whitlock G A, Carreira E M. Enantioselective Synthesis of ent-Stellettamide A: Asymmetric Dipolar Cycloadditions with Me3SiCHN2 [J]. Helvetica Chimica Acta, 2000, 83(8): 2007.
[134] Feng Z, Min Q-Q, Xiao Y-L, et al. Palladium-Catalyzed Difluoroalkylation of Aryl Boronic Acids: A New Method for the Synthesis of Aryldifluoromethylated Phosphonates and Carboxylic Acid Derivatives [J]. Angewandte Chemie International Edition, 2014, 53(6): 1669.
[135] Servatius P, Junk L, Kazmaier U. Peptide Modifications: Versatile Tools in Peptide and Natural Product Syntheses [J]. Synlett, 2019, 30(11): 1289.
[136] Kotha S, Meshram M, Panguluri N. Advanced Approaches to Post-Assembly Modification of Peptides by Transition-Metal-Catalyzed Reactions [J]. Synthesis, 2019, 51(09): 1913.
[137] Ager D J, Pantaleone D P, Henderson S A, et al. Commercial, Synthetic Nonnutritive Sweeteners [J]. Angewandte Chemie International Edition, 1998, 37(13-14): 1802.
[138] Simbirtsev A, Kolobov A, Zabolotnych N, et al. Biological Activity of Peptide SCV-07 against Murine Tuberculosis [J]. Russian journal of immunology, 2003, 8(1): 11.
[139] Ding W, Zhang J, Yao Z, et al. The Synthesis, Distribution, and Anti-Hepatic Cancer Activity of YSL [J]. Bioconjugate Chemistry, 2004, 12(18): 4989.
[140] Kawakami A, Kayahara H, Tadasa K. Taste Evaluations of Angiotensin I Converting Enzyme Inhibitors, Leu-Lys-Tyr Analogues [J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(4): 709.
[141] Wu G, Fang Y-Z, Yang S, et al. Glutathione Metabolism and Its Implications for Health [J]. Journal of Nutritional Biochemistry, 2004, 134(3): 489.
[142] Puig A, Antón J M, Mangues M. A New Decorin-Like Tetrapeptide for Optimal Organization of Collagen Fibres [J]. International Journal of Cosmetic Science, 2008, 30(2): 97.
[143] Ishihara Y, Oka M, Tsunakawa M, et al. Melanostatin, a New Melanin Synthesis Inhibitor. Production, Isolation, Chemical Properties, Structure and Biological Activity [J]. Journal of Antibiotics, 1991, 44(1): 25.
[144] Byun H-G, Kim S. Purification and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Alaska Pollack (Theragra Chalcogramma) Skin [J]. Process Biochemistry, 2001, 36(12): 1155.
[145] Terskiy A, Wannemacher K M, Yadav P N, et al. Search of the Human Proteome for Endomorphin-1 and Endomorphin-2 Precursor Proteins [J]. Life Sciences, 2007, 81(23): 1593.
[146] Walker J M, Berntson G G, Sandman C A, et al. An Analog of Enkephalin Having Prolonged Opiate-Like Effects in vivo [J]. Science, 1977, 196(4285): 85.
[147] Erspamer V, Melchiorri P, Falconieri-Erspamer G, et al. Deltorphins: A Family of Naturally Occurring Peptides with High Affinity and Selectivity for δ Opioid Binding Sites [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(13): 5188.
[148] Sun H B, Gong L, Tian Y B, et al. Metal- and Base-Free Room-Temperature Amination of Organoboronic Acids with N-Alkyl Hydroxylamines [J]. Angewandte Chemie International Edition, 2018, 57(30): 9456.
[149] Kaiser E, Colescott R L, Bossinger C D, et al. Color Test for Detection of Free Terminal Amino Groups in the Solid-Phase Synthesis of Peptides [J]. Analytical Biochemistry, 1970, 34(2): 595.
[150] Los G V, Wood K. The Halotag: A Novel Technology for Cell Imaging and Protein Analysis [M]. Methods in Molecular Biology. 2007: 195.
[151] Ohana R F, Hurst R, Vidugiriene J, et al. Halotag-Based Purification of Functional Human Kinases from Mammalian Cells [J]. Protein Expression and Purification, 2011, 76(2): 154.
[152] England C G, Luo H, Cai W. Halotag Technology: A Versatile Platform for Biomedical Applications [J]. Bioconjugate Chemistry, 2015, 26(6): 975.
[153] Los G V, Encell L P, McDougall M G, et al. Halotag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis [J]. ACS Chemical Biology, 2008, 3(6): 373.
[154] Singh V, Wang S, Chan K M, et al. Genetically Encoded Multispectral Labeling of Proteins with Polyfluorophores on a DNA Backbone [J]. Journal of the American Chemical Society, 2013, 135(16): 6184.
[155] Hu L, Maurer K, Moeller K D. Building Addressable Libraries: Site-Selective Suzuki Reactions on Microelectrode Arrays [J]. Organic Letters, 2009, 11(6): 1273.
Edit Comment