中文版 | English
Title

投保联动及主观风险测度数学模型

Alternative Title
MATHEMATICAL MODELS OF LOAN GUARANTEES WITH INVESTMENT AND HEDGING-BASED UTILITY RISK MEASURE
Author
Name pinyin
DONG Linjia
School number
11849461
Degree
博士
Discipline
0701 数学
Subject category of dissertation
07 理学
Supervisor
杨招军
Mentor unit
金融系
Publication Years
2022-09-27
Submission date
2022-12-29
University
哈尔滨工业大学
Place of Publication
哈尔滨
Abstract

    解决中小企业“融资难,融资贵”的问题是当前数学和金融交叉研究的一大热点,同时,投资和风险是讨论金融问题时离不开的两大切入点。本学位论文综合运用数学方法和金融经济学理论,从担保投资和风险度量的两个角度协助中小企业融资。首先,从多个角度分析新型的担保模式——``投保联动”,建立了用以量化的、符合经济学规律的数学模型。同时,在担保市场是完全竞争的假设下,研究了股权、债权以及相应衍生品的风险中性定价,对最优担保合同进行了定量分析,提出了担保过程中的股权回购数学模型。最后,从风险对冲的角度,提出了一种新的、个性化的效用风险测度。
    
    受到新冠疫情下的经济波动对担保行业影响的启发,从经济环境的角度出发并结合实际的担保业务创新,在理论上研究一种新兴的担保模式——投保联动数学模型。现有的投保联动模式中,一个企业家由于没有足够的抵押品从银行借到足够的资金来投资一个项目,于是与第三方担保公司达成了一项协议。担保公司为债务提供完全担保,并承诺为未来的扩张性投资提供资金。由于这一完全担保,借款是没有风险的,因而银行愿意以最低的利率贷款给企业家。作为回报,企业家在借款时向担保公司支付一笔固定费用,并在扩张性投资发生时转让给担保公司一部分股权。假设企业现金流分别服从双指数跳扩散数学模型和马尔科夫区制转换数学模型,定量地分析经济形势交替变化对担保合同和企业投融资决策的影响。与传统的关于担保的研究形成鲜明对比的是,在这两类不同模型假设下,担保费用在投资之前就已经制定了计算方法。基于这样的模型,本文通过求解一系列的最优化问题和概率问题,解析地给出了公平担保定价公式、企业最优破产选择、最优投资时机和最优融资选择。
    
    在完成投保联动基本数学模型构架及计算求解后,本文从实际出发,将关注点转向增长型投资的优化计算问题。分别在增长期权属于出资方和经营者的条件下,沿用传统的方法分析了固定担保费用的数额和担保公司最终股份所有权的大小之间的公平关系。同时,为确定两种不同的投资方案的时机和定价提供了详细的数值解法,并给出了可靠的模拟计算结果。通过数值实验发现,如果担保公司拥有增长型投资的决策权,那么该项目会比企业家选择增长投资时机更有价值,将控制权转让给担保公司可以缓解投资不足的问题。 
    
    基于实际的经济活动,本文还考虑了含有股权回购的投保联动担保合同,建立了一个新的数学模型来描述担保成本、两阶段投资方案和股份回购方案的定价和最优停时问题。 本文发现,存在一个使公司价值最大化的最佳担保成本组合,其中固定担保费率约为1\%或2\%,与中国政府对某些行业的建议一致。如果回购是由企业家而不是担保公司发起的,公司价值会更高,而且协商回购会更早发生。强制回购的时间越晚,或者协商回购的时间越早,公司价值就越高。
    
    最后,考虑到在解决中小企业融资问题时,只考虑投资而不考虑风险是不够全面的,而现有的风险度量标准主要是为那些大到不能倒闭的金融机构制定的,本文提出了一种新的主观风险测度——基于对冲的效用风险测度(HBU)。这是为需要对金融产品进行全面风险评估的个人投资者定制的新颖风险度量方法。本文从数学上严格地证明了HBU是一个凸的风险测度。进一步严格地证明了如果效用具有恒定的相对风险厌恶指数,HBU也是一致的风险测度。粗略地说,HBU是广义效用无差别价格的相反数,它取决于投资者的效用函数和他们可以使用的用来对冲风险的金融工具。本文发现并证明了HBU的数学性质,同时通过提供的两个应用举例进一步解释了该主观风险测度的科学性和合理性。

Other Abstract

Through a combination of mathematical methods and financial economics theory, the credit guarantee with investment as a new quantitative and economically consistent mathematical model of the guarantee model is developed in this thesis. Under the assumption that the guarantee market is perfectly competitive, the risk-neutral pricing of equity, debt and corresponding derivatives is investigated, the optimal guarantee contract is quantitatively analysed, and a mathematical model of equity buyback in the guarantee process is proposed. Finally, a new and personalised measure of utility risk from a risk hedging perspective is presented. First, inspired by the impact of economic fluctuations on the guarantee industry caused by COVID-19, the credit guarantee with investment mathematical model is studied theoretically from the perspective of the economic environment and based on actual guarantee business innovations. In the existing credit guarantee with investment model, an entrepreneur, who does not have enough collateral to borrow enough money from a bank to invest in a project, enters into an agreement with a third-party guarantee company. The guarantee company fully guarantees the debt and promises to fund future expansionary investments. As a result of this full guarantee, the borrowing is risk-free and thus the bank is willing to lend to the entrepreneur at the lowest possible interest rate. In return, the entrepreneur pays a fixed fee to the guarantee company when borrowing money and transfers a certain portion of the equity to the guarantee company when the expansionary investment occurs. On the basis of the assumption that corporate cash flows obey the double exponential jump diffusion model and the Markov regime switching model, the impact of alternating changes in economic conditions and corporate financing decisions are quantitatively analyzed. In contrast to the traditional studies on guarantees, under the assumptions of these two different types of models, the calculation method of guarantee fees is developed before the investment is made. Based on this model and by solving a series of optimization and probability problems, the fair guarantee scheme, the optimal bankruptcy option, the optimal stopping time and the optimal financing option are given analytically in this thesis. Having completed the construction and calculation of the basic mathematical model of the credit guarantee with investment, the focus of this thesis is turned to the problem of optimising the calculation of growth investments. Following the traditional approach, the fair relationship between the amount of the fixed guarantee fee and the eventual size of the guarantee company’s share ownership is analysed in this thesis. Numerical experiments reveal that the project is more valuable if the guarantee company has the right to make decisions about the timing of the growth investment. Transferring control to the guarantee company can alleviate the problem of underinvestment. Based on actual economic activity, the credit guarantee with investment guarantee contracts containing equity buybacks are also considered in this thesis, and a new mathematical model is developed to describe the pricing and optimal stopping time problems for guarantee costs, two-stage investment options and share buyback options. It is found that there exists an optimal combination of guarantee costs that maximises the value of the firm, where the fixed guarantee rate is around 1% or 2%, which is quite consistent with the Chinese government’s recommendations for certain industries. Firm value is higher if buyback is initiated by the entrepreneur rather than the guarantee company, and negotiated buybacks will occur sooner. The later the mandatory buyback occurs, or the earlier the negotiated buyback, the higher the value of the company will be. Finally, considering that existing risk measures are mainly developed for too-bigto-fail financial institutions, the hedge-based utility risk measure (HBU) is presented in this thesis as a new subjective risk measure. This is a novel risk measure tailored for individual investors who need a comprehensive risk assessment of financial products. The HBU is strictly mathematically proven to be a convex risk measure. If utility has a constant relative risk aversion index, it is rigorously shown that HBU is also a consistent risk measure. Roughly speaking, HBU is the opposite of the generalised utility-free price, which depends on the claimant’s utility and the hedging instruments available to them. The mathematical properties of HBU is discovered and demonstrated in this thesis, and the two application examples provided explain the scientific and rational nature of this risk measure.

Keywords
Language
Chinese
Training classes
联合培养
Enrollment Year
2018
Year of Degree Awarded
2023-01
References List

[1] 董裕平. 小企业融资担保服务的商业发展模式研究——基于粤浙两省数据的情景模拟试验分析[J]. 金融研究, 2009(5): 157-168.
[2] TANG X, YANG Z. Optimal investment and financing with macroeconomic risk and loan guarantees[J]. Journal of Credit Risk, 2017, 13(4): 75-97.
[3] 唐小林. 信用担保与中小企业动态投资研究[D]. 湖南大学, 2018.
[4] LUO P, WANG H, YANG Z. Investment and financing for smes with a partial guarantee and jump risk[J]. European Journal of Operational Research, 2016, 249(3): 1161-1168.
[5] 杨招军, 罗鹏飞. 信用担保下的企业最优投资和融资[J]. 系统工程学报,2017, 32(2): 233-240.
[6] LELAND H E. Corporate debt value, bond covenants, and optimal capital structure[J]. The Journal of Finance, 1994, 49(4): 1213-1252.
[7] CHATZOUZ M, GEREBEN Á, LANG F, et al. Credit guarantee schemes for sme lending in western europe[R]. EIF Working Paper, 2017.
[8] AKERLOF G A. The market for “lemons”: Quality uncertainty and the market mechanism[M]//Uncertainty in economics. Elsevier, 1978: 235-251.
[9] BOATENG A, ASONGU S, AKAMAVI R, et al. Information asymmetry andmarket power in the african banking industry[J]. Journal of Multinational Financial Management, 2018, 44: 69-83.
[10] DE MEDEIROS N D, DE MELO CARVALHO F, CHAIN C P, et al. Estrutura decapital e assimetria de informação: um estudo em empresas brasileiras de capitalaberto dos setores têxtil e de energia elétrica[J]. Revista de Administração daUniversidade Federal de Santa Maria, 2018, 11(2): 268-289.
[11] TAGHIZADEH-HESARY F, YOSHINO N, FUKUDA L, et al. A model for calculating optimal credit guarantee fee for small and medium-sized enterprises[J].Economic Modelling, 2021, 95: 361-373.
[12] MERTON R C. An analytic derivation of the cost of deposit insurance and loan guarantees an application of modern option pricing theory[J]. Journal of Banking& Finance, 1977, 1(1): 3-11.
[13] BEYHAGHI M. Third-party credit guarantees and the cost of debt: Evidence from corporate loans[J]. Review of Finance, 2022, 26(2): 287-317.
[14] JAMES A. Y Y, Wilcox. Government guarantees of loans to small businesses:Effects on banks’ risk-taking and non-guaranteed lending[J]. Journal of Financial Intermediation, 2019, 37: 45-57.
[15] LEONELLO A. Government guarantees and the two-way feedback between banking and sovereign debt crises[J]. Journal of Financial Economics, 2018, 130(3):592-619.
[16] KOIJEN R S, YOGO M. The fragility of market risk insurance[J]. The Journal of Finance, 2022, 77(2): 815-862.
[17] LELARGE C, SRAER D, THESMAR D. Entrepreneurship and credit constraints:Evidence from a french loan guarantee program[M]//International differences in entrepreneurship. University of Chicago Press, 2010: 243-273.
[18] BARBOSA L, FERRAO P, RODRIGUES A, et al. Feed-in tariffs with minimum price guarantees and regulatory uncertainty[J]. Energy Economics, 2018, 72: 517-541.
[19] TAMBUNAN T T. Msmes and access to financing in a developing economy:The indonesian experience[M]//Financial entrepreneurship for economic growth inemerging nations. IGI Global, 2018: 148-172.
[20] YANG Z. Investment and asset securitization with an option-for-guarantee swap[J]. European Financial Management, 2020, 26(4): 1006-1030.
[21] 张海, 杨招军. 担保换股权与中小企业家消费融资选择[J]. 经济研究, 2012(S1): 105-116.
[22] YANG Z, ZHANG H. Optimal capital structure with an equity-for-guarantee swap[J]. Economics Letters, 2013, 118(2): 355-359.
[23] YANG Z, ZHANG C. Two new equity default swaps with idiosyncratic risk[J].International Review of Economics & Finance, 2015, 37(may): 254-273.
[24] GAN L, LUO P, YANG Z. Real option, debt maturity and equity default swaps under negotiation[J]. Finance Research Letters, 2016, 18: 278-284.
[25] TAN Y, YANG Z. Contingent capital, capital structure and investment[J]. The North American Journal of Economics and Finance, 2016, 35: 56-73.
[26] LUO P, YANG Z. Real options and contingent convertibles with regime switching[J]. Journal of Economic Dynamics and Control, 2017, 75: 122-135.
[27] LUO P, YANG Z. Growth option and debt maturity with equity default swapsin a regime-switching framework[J]. Macroeconomic Dynamics, 2019, 23(6):2250-2268.
[28] TAN Y, LUO P, YANG J, et al. Investment and capital structure decisions under strategic debt service with positive externalities[J]. Finance Research Letters, 2020,33: 101193.
[29] TAN Y, LUO P. The impact of debt restructuring on dynamic investment and financing policies[J]. Economic Modelling, 2021, 102: 105583.
[30] DUFFIE D, GARLEANU N, PEDERSEN L H. Securities lending, shorting, and pricing[J]. Journal of Financial Economics, 2002, 66(2): 307-339.
[31] LI Y, CHI T. Venture capitalists’ decision to withdraw: The role of portfolio configuration from a real options lens[J]. Strategic Management Journal, 2013, 34(11): 1351-1366.
[32] PAE Y, BAEK S. Does leveraged stock buyback improve firms profitability?[J].Applied Economics Letters, 2022, 29(10): 939-946.
[33] BHATTACHARYA U, E. JACOBSEN S. The share repurchase announcementpuzzle: Theory and evidence[J]. Review of Finance, 2016, 20(2): 725-758.
[34] GUÉANT O, PU J, ROYER G. Accelerated share repurchase: pricing and execution strategy[J]. International Journal of Theoretical and Applied Finance, 2015, 18(03):1550019.
[35] NDAYISABA G A, AHMED A D. Demystifying the paradoxical popularity ofstock buybacks in a market environment characterised by high stock prices[J].International Review of Financial Analysis, 2021, 78: 101907.
[36] GRULLON G, MICHAELY R. The information content of share repurchase programs[J]. The Journal of Finance, 2004, 59(2): 651-680.
[37] BHULLAR P S, BHATNAGAR D, GUPTA P. Impact of buyback of shares onfirm value: An empirical evidence from india[J]. Iranian Journal of ManagementStudies, 2018, 11(3): 425-436.
[38] PEYER U, VERMAELEN T. The nature and persistence of buyback anomalies[J]. The Review of Financial Studies, 2009, 22(4): 1693-1745.
[39] GROUP W B. Principles for public credit guarantee schemes for smes[M]. Washington, DC: World Bank, 2015.
[40] COX J C, ROSS S A. The valuation of options for alternative stochastic processes[J]. Journal of Financial Economics, 1976, 3(1-2): 145-166.
[41] BIRGE J R, ZHANG R Q. Risk-neutral option pricing methods for adjusting constrained cash flows[J]. The Engineering Economist, 1999, 44(1): 36-49.
[42] AÏD R, CAMPI L, HUU A N, et al. A structural risk-neutral model of electricity prices[J]. International Journal of Theoretical and Applied Finance, 2009, 12(07):925-947.
[43] LIN Y N. Pricing vix futures: Evidence from integrated physical and risk-neutral probability measures[J]. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 2007, 27(12): 1175-1217.
[44] BAN X J, FERRIS M C, TANG L, et al. Risk-neutral second best toll pricing[J].Transportation Research Part B: Methodological, 2013, 48: 67-87.
[45] MUZZIOLI S, REYNAERTS H. American option pricing with imprecise riskneutral probabilities[J]. International Journal of Approximate Reasoning, 2008, 49(1): 140-147.
[46] ZAGLAUER K, BAUER D. Risk-neutral valuation of participating life insurance contracts in a stochastic interest rate environment[J]. Insurance: Mathematics and Economics, 2008, 43(1): 29-40.
[47] BADESCU A, QUAYE E, TUNARU R. On non-negative equity guarantee calculations with macroeconomic variables related to house prices[J]. Insurance:Mathematics and Economics, 2022, 103: 119-138.
[48] NAIK V, LEE M. General equilibrium pricing of options on the market portfolio with discontinuous returns[J]. The Review of Financial Studies, 1990, 3(4): 493-521.
[49] KOU S G. A jump-diffusion model for option pricing[J]. Management Science,2002, 48(8): 1086-1101.
[50] CHEN X, CHEN Z Q, TRAN K, et al. Recurrence and ergodicity for a class of regime-switching jump diffusions[J]. Applied Mathematics & Optimization, 2019,80(2): 415-445.
[51] JAKOBSEN N M, SØRENSEN M. Estimating functions for jump–diffusions[J].Stochastic Processes and their Applications, 2019, 129(9): 3282-3318.
[52] YIN W, CAO J, REN Y. Inverse optimal control of regime-switching jump diffusions[J]. Mathematical Control and Related Fields, 2022, 12(3): 567-579.
[53] YANG J, YANG Z. Consumption utility-based pricing and timing of the option to invest with partial information[J]. Computational Economics, 2012, 39(2): 195-217.
[54] SU X, WANG W, WANG W. Pricing warrant bonds with credit risk under a jump diffusion process[J]. Discrete Dynamics in Nature and Society, 2018, 2018.
[55] CHEN R, LI Z, ZENG L, et al. Option pricing under the double exponential jump-diffusion model with stochastic volatility and interest rate[J]. Journal of Management Science and Engineering, 2017, 2(4): 252-289.
[56] PLATEN E. Pricing and hedging for incomplete jump diffusion benchmark models[C]//AMS-IMS-SIAM Joint Summer Research Conference on Mathematics of Finance. American Mathematical Society, 2004.
[57] ZHU L, KAN X, SHU H, et al. A new binomial tree method for european options under the jump diffusion model[J]. Journal of Applied Mathematics and Physics,2019, 7(12): 3012.
[58] XIN G, MIAO J, MORELLEC E. Irreversible investment with regime shifts[J].Journal of Economic Theory, 2005, 122(1): 37-59.
[59] KOU S G. Jump-diffusion models for asset pricing in financial engineering[J].Handbooks in operations research and management science, 2007, 15: 73-116.
[60] GUIDOLIN M. Markov switching models in empirical finance[M]//Missing datamethods: Time-series methods and applications. Emerald Group Publishing Limited, 2011.
[61] XI F. On the stability of jump-diffusions with markovian switching[J]. Journal of Mathematical Analysis and Applications, 2008, 341(1): 588-600.
[62] DAVID A. Fluctuating confidence in stock markets: Implications for returns andvolatility[J]. Journal of Financial and Quantitative Analysis, 1997, 32(04): 427-462.
[63] HONDA T. Optimal portfolio choice for unobservable and regime-switching meanreturns[J]. Journal of Economic Dynamics and Control, 2003, 28(1): 45-78.
[64] FARMER R, WAGGONER D F, TAO Z. Minimal state variable solutions to markov-switching rational expectations models[J]. Journal of Economic Dynamics& Control, 2011, 35(12): 2150-2166.
[65] 尚华, 杨文光, 韩元良. 中国物流产业与经济增长的协同性——基于 Markov区制转移模型[J]. 数学的实践与认识, 2021, 51(18): 67-74.
[66] CHEN S T, DIAO X D, ZHU A L. Valuation and hedging strategy of currency options under regime-switching jump-diffusion model[J]. Acta Mathematicae Applicatae Sinica, English Series, 2017, 33(4): 871-892.
[67] 路妍, 吴琼. 量化宽松货币政策调整对人民币汇率变动的影响研究[J]. 宏观经济研究, 2017(4): 99-111.
[68] CHEVALLIER J. Global imbalances, cross-market linkages, and the financial crisis: A multivariate markov-switching analysis[J]. Economic Modelling, 2012,29(3): 943-973.
[69] LUO P, XIONG J, YANG J, et al. Real options under a double exponential jumpdiffusion model with regime switching and partial information[J]. Quantitative Finance, 2019, 19(6): 1061-1073.
[70] ZHU D M, LU J, CHING W K, et al. Option pricing under a stochastic interest rateand volatility model with hidden markovian regime-switching[J]. Computational Economics, 2019, 53(2): 555-586.
[71] BULFONE G, CASARIN R, RAVAZZOLO F, et al. Corporate cds spreads fromthe eurozone crisis to covid-19 pandemic: A bayesian markov switching model[M].Rimini Centre for Economic Analysis, 2021.
[72] XIA X, GAN L. Sme financing with new credit guarantee contracts over the business cycle[J]. International Review of Economics & Finance, 2020, 69: 515-538.
[73] 蔚林巍, 章刚. 实物期权方法综述[J]. 企业经济, 2005(5): 133-135.
[74] MYERS S C. The determinants of corporate borrowing[J]. Journal of Financial Economics, 1977, 5(2): 147-175.
[75] MCDONALD R, SIEGEL D. The value of waiting to invest[J]. The Quarterly Journal of Economics, 1986, 101(4): 707-727.
[76] DIXIT A K, PINDYCK R S. Investment under uncertainty[M]. Princeton university press, 1994.
[77] TRIGEORGIS L. The nature of option interactions and the valuation of investments with multiple real options[J]. Journal of Financial and Quantitative Analysis, 1993,28(1): 1-20.
[78] GRENADIER S R. Option exercise games: An application to the equilibrium investment strategies of firms[J]. The Review of Financial Studies, 2002, 15(3):691-721.
[79] IPSMILLER E, BROUTHERS K D, DIKOVA D. 25 years of real option empirical research in management[J]. European Management Review, 2019, 16(1): 55-68.
[80] HERATH H S, HERATH T C, DUNN P. Profit-driven corporate social responsibility as a bayesian real option in green computing[J]. Journal of Business Ethics,2019, 158(2): 387-402.
[81] CAO J, RIEGER M O. Risk classes for structured products: mathematical aspects and their implications on behavioral investors[J]. Annals of Finance, 2013, 9(2):167-183.
[82] HENDERSON B J, PEARSON N D. The dark side of financial innovation: A case study of the pricing of a retail financial product[J]. Journal of Financial Economics,2011, 100(2): 227-247.
[83] WALLMEIER M. Beyond payoff diagrams: How to present risk and return characteristics of structured products[J]. Financial Markets and Portfolio Management,2011, 25(3): 313-338.
[84] ZINGALES L. Presidential address: Does finance benefit society?[J]. Journal of Finance, 2015, 70(4): 1327-1363.
[85] HENS T, RIEGER M O. Can utility optimization explain the demand for structured investment products?[J]. Quantitative Finance, 2014, 14(4): 673-681.
[86] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: A unified embeddingfor face recognition and clustering[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 815-823.
[87] TCHAMYOU V S, ASONGU S A, NWACHUKWU J C. Effects of asymmetric information on market timing in the mutual fund industry[J]. International Journal of Managerial Finance, 2018, 14(5): 542-557.
[88] ROSSETTO S, VAN BOMMEL J. Endless leverage certificates[J]. Journal of Banking & Finance, 2009, 33(8): 1543-1553.
[89] WILKENS S, STOIMENOV P A. The pricing of leverage products: An empirical investigation of the german market for‘long’and‘short’stock index certificates[J]. Journal of Banking & Finance, 2007, 31(3): 735-750.
[90] ARTZNER P, DELBAEN F, EBER J M, et.al. Coherent measures of risk[J].Mathematical Finance, 1999, 9(3): 203-228.
[91] FÖLLMER H, SCHIED A. Convex measures of risk and trading constraints[J].Finance and Stochastics, 2002, 6(4): 429-447.
[92] ACERBI C. Spectral measures of risk: A coherent representation of subjective risk aversion[J]. Journal of Banking & Finance, 2002, 26(7): 1505-1518.
[93] RIEDEL F. Dynamic coherent risk measures[J]. Stochastic Processes and Their Applications, 2004, 112(2): 185-200.
[94] KLÖPPEL S, SCHWEIZER M. Dynamic indifference valuation via convex risk measures[J]. Mathematical Finance, 2007, 17(4): 599-627.
[95] SIU T K. A functional itô’s calculus approach to convex risk measures with jump diffusion[J]. European Journal of Operational Research, 2016, 250(3): 874-883.
[96] FÖLLMER H, SCHIED A. Stochastic finance[M]//Stochastic Finance. de Gruyter,2016.
[97] BEN-TAL A, TEBOULLE M. An old-new concept of convex risk measures: The optimized certainty equivalent[J]. Mathematical Finance, 2007, 17(3): 449-476.
[98] GEISSEL S, SASS J, SEIFRIED F T. Optimal expected utility risk measures[J].Statistics & Risk Modeling, 2018, 35(1-2): 73-87.
[99] XU M, ANGULO J M. Divergence-based risk measures: a discussion on sensitivities and extensions[J]. Entropy, 2019, 21(7): 634.
[100] PARAVISINI D, RAPPOPORT V, RAVINA E. Risk aversion and wealth: Evidence from person-to-person lending portfolios[J]. Management Science, 2017, 63(2):279-297.
[101] FINK H, GEISSEL S, SASS J, et al. Implied risk aversion: An alternative ratingsystem for retail structured products[J]. Review of Derivatives Research, 2019, 22(3): 357-387.
[102] 宫晓琳, 杨淑振, 胡金焱, 等. 非线性期望理论与基于模型不确定性的风险度量[J]. 经济研究, 2015, 50(11): 135-149.
[103] 李仲飞, 汪寿阳. EaR 风险度量与动态投资决策[J]. 数量经济技术经济研究, 2003, 01: 47-53.
[104] 张日升平, 吴冲锋. 权益人视角下基于期权定价理论的类一致性风险测度研究[J]. 系统工程理论与实践, 2007, 27(9): 9-16.
[105] 李建平, 丰吉闯, 宋浩, 等. 风险相关性下的信用风险、市场风险和操作风险集成度量[J]. 中国管理科学, 2010, 018(1): 18-25.
[106] 杨子晖, 陈雨恬, 谢锐楷. 我国金融机构系统性金融风险度量与跨部门风险溢出效应研究[J]. 金融研究, 2018, 460(10): 19-37.
[107] PENG S. G-expectation, g-brownian motion and related stochastic calculus of itôtype[M]//Stochastic analysis and applications. Springer, 2007: 541-567.
[108] DONG L, YANG Z. A new risk measure customized for individual investors[J].Available at SSRN 3884285, 2022.
[109] BLACK F, COX J C. Valuing corporate securities: Some effects of bond indenture provisions[J]. The Journal of Finance, 1976, 31(2): 351-367.
[110] MAUER D, SARKAR S. Real option, agency conflicts, and optimal capital structure[J]. Journal of Banking & Finance, 2005, 29(6): 1505-1428.
[111] MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1-2): 125-144.
[112] WATKINS G P. Knight’s risk, uncertainty and profit[J]. The Quarterly Journal of Economics, 1922, 36(4): 682-690.
[113] YANG Z, ZHANG C. The pricing of two newly invented swaps in a jump-diffusion model[J]. Annals of Economics and Finance, 2015, 16(2): 371-392.
[114] LYANDRES E, ZHDANOV A. Convertible debt and investment timing[J]. Journalof Corporate Finance, 2014, 24: 21-37.
[115] MAUER D C, OTT S H. Agency costs, underinvestment, and optimal capitalstructure[J]. Project Flexibility, Agency, and Competition: New Developments inthe Theory and Application of Real Options. Oxford, 2000: 151-179.
[116] 张春红. 股权违约互换及中小企业融资选择[D]. 湖南大学, 2016.
[117] SONG D, YANG Z. Contingent capital, real options and agency costs[J]. International Review of Finance, 2016, 16(1): 3-40.
[118] TAN Y, YANG Z. Growth option, contingent capital and agency conflicts[J].International Review of Economics and Finance, 2017, 51(sep.): 354-369.
[119] GERTLER M, GILCHRIST S. Monetary policy, business cycles, and the behaviorof small manufacturing firms[J]. The Quarterly Journal of Economics, 1994, 109(2): 309-340.
[120] CAMPELLO M, GRAHAM J R, HARVEY C R. The real effects of financialconstraints: Evidence from a financial crisis[J]. Journal of Financial Economics,2010, 97(3): 470-487.
[121] ARNOLD M, WAGNER A F, WESTERMANN R. Growth options, macroeconomic conditions, and the cross section of credit risk[J]. Journal of Financial Economics, 2013, 107(2): 350-385.
[122] CHEN H, MANSO G. Macroeconomic risk and debt overhang[J]. Review ofCorporate Finance Studies, 2017, 6(1): 1-38.
[123] HACKBARTH D, MAUER D C. Optimal priority structure, capital structure, andinvestment[J]. The Review of Financial Studies, 2012, 25(3): 747-796.
[124] CHEN H. Macroeconomic conditions and the puzzles of credit spreads and capitalstructure[J]. The Journal of Finance, 2010, 65(6): 2171-2212.
[125] DEMARZO P M, SANNIKOV Y. Optimal security design and dynamic capitalstructure in a continuous-time agency model[J]. Journal of Finance, 2006, 61(6):2681-2724.
[126] MIAO J, WANG N. Investment, consumption, and hedging under incompletemarkets[J]. Journal of Financial Economics, 2007, 86(3): 608-642.
[127] MAUER D C, SARKAR S. Real options, agency conflicts, and optimal capitalstructure[J]. Journal of Banking & Finance, 2005, 29(6): 1405-1428.
[128] WONG T Y, YU J. Credit default swaps and debt overhang[J]. ManagementScience, 2022, 68(3): 2069-2097.
[129] DEMARZO P, DUFFIE D. A liquidity-based model of security design[J]. Econometrica, 1999, 67(1): 65-99.
[130] SHIBATA T, NISHIHARA M. Investment timing under debt issuance constraint[J]. Journal of Banking & Finance, 2012, 36(4): 981-991.
[131] SUNDARESAN S, WANG Z. On the design of contingent capital with a markettrigger[J]. The Journal of Finance, 2015, 70(2): 881-920.
[132] PRATT J W. Risk aversion in the small and in the large[M]. Elsevier, 1978: 59-79.
[133] XU S, FANG L. Partial credit guarantee and trade credit in an emission-dependentsupply chain with capital constraint[J]. Transportation Research Part E: Logisticsand Transportation Review, 2020, 135: 101859.
[134] 王焰, 闫述乾. 面向物流企业供应链金融的担保公司投保联动业务模式研究[J]. 经济研究导刊, 2022(5): 127-129.
[135] HAWKES A G. Spectra of some self-exciting and mutually exciting point processes[J]. Biometrika, 1971, 58(1): 83-90.

Academic Degree Assessment Sub committee
数学系
Domestic book classification number
O21
Data Source
人工提交
Document TypeThesis
Identifierhttp://kc.sustech.edu.cn/handle/2SGJ60CL/417039
DepartmentDepartment of Mathematics
Recommended Citation
GB/T 7714
董琳佳. 投保联动及主观风险测度数学模型[D]. 哈尔滨. 哈尔滨工业大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11849461-董琳佳-数学系.pdf(2178KB) Restricted Access--Fulltext Requests
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[董琳佳]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[董琳佳]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[董琳佳]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.